The invention relates to a hearing protection earplug comprising a shell (12) for being worn at least in part in the ear canal of a user, the shell having a sound passage (1016, 1036) extending from an outer sound inlet opening (50) of the shell to an inner sound output opening (1034) adapted to acoustically connect to the user's ear canal, and a noise attenuation button (1002) which is provided at the outer end of the shell, wherein said button is manually movable relative to the shell between a resting position in which the outer sound inlet opening of the shell is closed by the button and at least one communication position in which the outer sound inlet opening of the shell is at least partially opened by the button for enabling sound communication between the environment and the sound passage of the shell, wherein the sound passage (1016, 1036) is designed such that it has a sound attenuation of less than 10 dB averaged over the audible frequencies. The invention also relates to a use of such an earplug and a method for manufacturing such an earplug.
|
1. Hearing protection earplug comprising a shell for being worn at least in part in an ear canal of a user, said shell having a sound passage extending from an outer sound inlet opening of said shell to an inner sound output opening adapted to acoustically connect to said user's ear canal, and a noise attenuation button which is provided at an outer end of said shell, wherein said button is manually movable relative to said shell axially between a resting position in which said outer sound inlet opening of said shell is closed by said button and at least one communication position in which said outer sound inlet opening of said shell is at least partially opened by said button for sound communication between an environment and said sound passage of said shell, further comprising means for axially biasing said button towards said resting position, said biasing means comprising a spring seated at said shell and at said button.
2. Hearing protection earplug according to
|
1. Field of the Invention
The present invention relates to a hearing protective earplug according to the preamble of claim 1 and to a corresponding manufacturing method.
2. Description of Related Art
A large part of the population is exposed to hazardous noise from time to time. This can be at work, whilst traveling, during leisure activities or at home. The exposure can lead to permanent hearing loss, distract people's attention from other hazards or simply cause stress. In order to prevent both accidents and permanent hearing damage, hearing protection devices (HPDs) have been provided in many styles and over many years. It started with the earmuff which is still very relevant and addresses very noisy environments (e.g. airports, construction, shooting) or complex working/communication situations (e.g. fighter pilots). Over the years development of biocompatible soft materials has enabled soft earplugs in different styles and colors as well as recent development of “one fits many” standard semi-soft earplugs in silicon-rubber type materials. For severe situations even the combination of an earmuff and an “in-the-ear” HPD is required to achieve desired attenuation. The physical limitation of hearing protection based on ear worn devices is defined where bone-conduction (body acoustics) becomes dominant at around 40 dB attenuation.
A common disadvantage of the above mentioned HPD styles is wearing discomfort. In case of the earmuffs, they are large which creates difficulties in combination with other head worn gear and they “close off” the ear too much for most applications. The in-the-ear styles mentioned are devices made to fit “the average” ear in one way or the other. Either the fit is provided by softness of the material which leads to undefined device insertion and undefined attenuation, or the fit is provided by standard shaped structures intended to block off the ear canal. In both cases the flat distribution of the individual shape of the outer ear and the ear canal leads to bad fit, pressure points in the ear and undefined positioning of the device.
To address this wearing comfort issue, in-the-ear hearing aid technology has been applied making customized ear molds with passive acoustical filter. These are long lasting devices with good wearing comfort. However, this customization process is traditionally a very manual process creating varying results over time, low reproducibility and the quality is very operator skill dependent.
The idea to use rapid prototyping technology, such as layer-by-layer laser sintering, in manufacturing shells, primarily for hearing aids, is described, for example, in U.S. Pat. No. 6,533,062 B1 or U.S. 2003/0133583 A1.
Environmental sounds are typically comprised of a mixture of various sound wave frequencies having varying intensities. It is well documented that repeated or prolonged exposure to sounds of sufficiently high sound pressure level will cause temporary or permanent hearing loss, i.e. can damage the auditory organ and cause serious hearing problems, including deafness. Harmful noise such as caused by explosions or bursts are often comprised of a mixture of sound wave frequencies of varying intensity. These disturbing frequencies are in both the high and low frequency bands and have an intensity sufficient to cause hearing problems. Individuals who are frequently exposed to such disturbing and sometimes dangerous frequencies and intensities run the risk of incurring such injuries as hearing loss or even deafness. These individuals include workers at demolition or construction sites, operators of heavy, noisy equipment and those in active military service. Ear (i.e. hearing) protection is needed to prevent a loss in hearing acuity and the gradual increase in the threshold of hearing resulting from extended exposures to loud noise.
In general, higher sound attenuation of a hearing protection device will reduce the communication ability with the surroundings. The attempts of the prior art to solve this problem, namely to configure the frequency selective sound attenuation such as to retain a high dynamic in speech or voice frequencies, have failed because of the stringent requirements set up by the high noise concentration at certain working places and in the military area, for example, and the worker, employee or soldier must remove the hearing protection device if he wants to hear a person who wants to communicate with him.
Furthermore, personal communication in high noise fields is a major problem for wearers of HPDs when they are occupied in environments with changing sound or noise amplitude. In such situations, it is highly desired to adapt the hearing protection to the actual noise in terms of amplitude, not primarily in terms of noise frequency. In these cases, the user should change his hearing protection device against another one with higher or lower damping ability. This is complicated since there is a necessity to store a number of different HPDs. Moreover, these different HPDs must not only be provided as such but also, due to hygienic reasons, this number of different HPDs must be provided separately for each person to be admitted to the noisy area concerned.
U.S. Pat. No. 6,148,821 discloses a selective non-linear attenuating earplug according to the preamble of claim 1, in which the button comprises a hollow stem which is inserted into a mating cylindrical outer opening of the shell. The hollow stem and the cylindrical wall of the outer opening of the shell both have a radially extending hole, which may be aligned by rotating the stem relative to the shell. The distal end of the hollow stem is provided with a sound attenuation filter connecting the interior of the hollow stem with a sound bore within said shell communicating with the user's ear canal. When the two holes are aligned, sound may enter through the opening into the interior of the hollow stem, pass through the filter and reach, attenuated by the filter, the ear canal.
However, this approach does not allow non-attenuated sound communication and lacks convenient and safe operation by the user, since the button has to be reset manually and the button has to be rotated.
It is an object of the invention to provide for a hearing protection earplug which is operable to provide temporarily for a full sound communication and which is convenient and safe to handle. It is a further object to provide for a corresponding manufacturing method.
These objects are attained according to the present invention by hearing, protection earplugs as defined in claims 1, 4, and 29, respectively and by manufacturing methods as defined in claims 35, 36 and 37, respectively.
The solution according to claims 1 and 35 is beneficial in that, by designing the sound passage such that it has a sound attenuation of less than 10 dB averaged over the audible frequencies, non-attenuated or at least close to non-attenuated sound communication, can be achieved in the communication position of the button.
The solution according to claims 4 and 36 is beneficial in that, by providing means for biasing the button towards the resting position, manual operation of the button is convenient, since it automatically returns to the attenuation position, thereby avoiding the danger that the user button forgets to return the button to the attenuation position before being exposed to noise which may damage the user's hearing.
The solution according to claims 29 and 37 is beneficial in that, by providing the movement of the button between the resting position and the communication position as an axial movement, convenient handling of the button, for example by simply pressing the button for achieving the communication position, is enabled.
These and further objects, features and advantages of the present invention will become apparent from the following description when taken in connection with the accompanying drawings which, for purposes of illustration only, show several embodiments in accordance with the present invention.
The devices shown in the figures are represented in an enlarged scale. Furthermore, the different parts of the devices are also not necessarily at scale.
The HPD of
The cylindrical inner wall of an outer, cylindrical and hollow portion 18 of the shell 12 has a number of partial turns 20 of a relatively steep female thread cut as grooves into the wall of this cylindrical portion.
A button 30 is inserted from above into the outer cylindrical portion 18 of the shell 12. The button 30 is provided with reeding so that it may better be actuated by hand. The button 30 comprises a disk like top portion 34 and a downward directed, hollow cylindrical, integrally formed sleeve-like portion 32. This sleeve 32 has a rectangular triangle cut-out 36; the long leg of the triangle 36 being parallel to the upper end plane of the cylindrical portion 18 or to the lower surface of the top portion 34 of the button 30. The corner of the triangle formed by the short leg and the hypotenuse touches the lower surface of the top portion 34 of the button 30.
A second triangular cut-out 38, drawn in dotted lines, may be provided on the diametrically opposed side of the sleeve 32.
Outer ribs 40 that are inclined to the horizontal plane in
As it can be seen by comparing
The shell 12 comprises an sound passage 17 which extends from the sound inlet opening, i.e. the open outer end of the outer portion 18 of the shell 12, to an inner sound output opening 14 at the distal end of the shell 12 communicating with the user's ear canal. In order to achieve unobstructed or at least almost unobstructed sound communication in the communication position of the button 30, the minimum cross section of the sound passage 17 should be an area corresponding to the area of a circle having a diameter of 0.5 mm.
When the button 30 is rotated with respect to the shell 12, in the clockwise direction in
Of course, the one skilled in the art will be aware that the pressure spring 54 may also be replaced by a tension spring and he will adapt the construction accordingly.
In both embodiments described above, the movement of the button 30 against the shell 12 may be limited by stop means known per se and not shown.
In the embodiments shown and described, the area of the opening provided by rotating the button 30 is essentially linearly proportional to the angle of rotation. However, in order to adapt the varying attenuation obtained by the device to the approximately logarithmic sensibility of the ear to noise intensity, the straight borders of the openings 36, 38, 48, 50 may be replaced by appropriately curved ones.
The device of this invention may be varied in several ways. In a manner known per se, the shape of the device or earplug may be adapted to the shape of the human auditory canal and/or the auricle. The device of this invention may be equipped with a cord, also known per se, for avoiding its loss. The position of the button may be indicated by marks so that it can be seen by another person.
The advantages of the invention are multiple. Thus, the handling of the button is easy and can also be effected with dirty finger or with gloved hands. The button cannot be lost. The device has a pleasant aspect. The device has an extremely wide range of adjustment, between virtually no attenuation until a nearly full attenuation of environmental noise. Furthermore, the embodiment having the reset function diminishes the risk of hearing damages.
The invention is not limited to the embodiment described above. Other constructive solutions may afford equivalent results. Thus, for example, the invention as defined in the independent claim may also be realized when said button is movably held within said plug for an axial displacement wherein the configuration of the opening(s) in the button can also be an equilateral triangle with its summit directed upwardly or any other configuration that provides an increasing passageway in response to the displacement of the button. Such an approach allows a still easier reset movement of the button. Furthermore, the triangular opening in the stem 18 and the rectangular opening in the rim 42 may be interchanged.
The insert part 103 may be replaced by an integral portion of the shell 12.
During normal operation of the earplug the external measuring tube 1024 is removed an the measuring hole is closed by removable plug (not shown) connected to the adapter element 1014 instead of the measuring tube 1024.
At an intermediate point of the measuring channel 1016 a sound passage 1036 merges with the measuring channel 1016. The sound passage 1016 extends to a sound inlet opening in the faceplate 1001 which is provided with a sound attenuation button 1002 operable in the direction 1003 to acoustically open or close the sound inlet opening, preferably by axially pushing the button 1002. The button 1002 preferably is biased towards the attenuation position and may be constructed according to the embodiments of
The sound passage 1036 and the measuring channel 1016 preferably have a minimum cross sectional area corresponding to the area of a circle having a diameter of 0.5 mm.
The sound passage 1036, together with the distal part of the measuring tube 1016, serves to acoustically by-pass the attenuation filter 1010 for enabling an unobstructed or almost unobstructed communication function.
In general, the sound attenuation button is designed to attenuate, in its attenuation position, sound waves reaching the button. This includes the option to provide the attenuation button itself with at least one defined acoustic filter, e.g. a membrane filter, to achieve a defined sound attenuation in the attenuation position. In any case, the button, in its communication position, acts to by-pass such filters.
In general, the sound passage is preferably designed such that it has a sound attenuation of less than 10 dB averaged over the audible frequencies. This can be achieved by selecting the shape and the minimum cross section accordingly, for example by choosing a minimum cross section with an area corresponding to the area of a circle with a diameter of 0.5 mm.
Generally, the shell is preferably a customized hard shell having an elasticity from shore D 85 to shore D 65, for example made of polyamide, and an outer surface individually shaped according to the measured inner shape of the user's outer ear and ear canal. The customized shell may be produced by an additive or incremental build-up process, such as layer-by-layer laser sintering (also known as “selective laser sintering”) of a powder material. The inner shape of the user's outer ear and ear canal may be measured, for example, by three dimensional (3D) laser scanning of the ear or by taking an impression of the ear which then undergoes 3D laser scanning. Such manufacturing processes are described for example in U.S. Pat. No. 6,533,062 B1.
In particular, fabricating the shell by selective laser sintering includes the option to fabricate also the attenuation button including all components, e.g. the biasing spring, together and simultaneously with the shell in a single process step, whereby the usually required step for mounting the button at the shell is eliminated. In other words, by selective laser sintering the button may be fabricated already at its final place at the shell.
The sound input opening 1032 is provided with a mechanical peak clipper 1004. The resonance cavity 1008 is provided with an inner mechanical structure 1030 for frequency tuning. An insert cavity 1007 for a RFID (radio frequency identification device)-tag 1006 and an insert cavity 1012 for a detectable metal part 1013 are formed integral with the shell 1000. While the neck cord 1020 serves to prevent loss of the earplug, the ring 1018 or the cord 1020 also may serve to manually pull the earplug in the axial direction 1022.
In the following these additional features and their functions will be explained in more detail.
Semi-Integrated Passive Filter
In passive HPDs acoustical filters mainly serve two purposes: firstly there is the defined amount of attenuation, secondly the filter can shape the frequency response of the attenuation in order to protect some frequencies while letting others through (e.g. block low frequency noise and let speech pass above 1 kHz). The proposed base technology enables both usages of predefined component placement geometries (e.g. cavities 1012 for metal component 1013 insertion) as well as semi-integration of functions where the material itself becomes part of the solution (e.g. insert cavities, acoustical filters). The semi-integrated passive filter 1010 is a structure of the second kind, where the tubes are made in shell material while the membranes are inserted components. Selection of membranes can be done to order and individual need, hence the component remains customizable. The filter must be considered and dimensioned together with other filter means like the customizable front chamber shaping structure (or resonance cavity) 1008, 1030 (Helmholtz resonator) and the mechanical peak clipper 1004.
Inverse Anatomy Force Button
A further level of integration of a communication on/off switch is based on the shell technology combined with the natural anatomy of the outer ear. In addition to a defined audio “leak” via a tube 1016 through the HPD, there is the alternative of creating a temporary leak between the device and the outer ear by slightly pulling the device out of the ear. This pull can be done by the cord 1020 or directly by grip and pull on the cord ring 1018. If the shell 1000 is shaped in an appropriate manner, the ear shape is such that the device will be naturally pulled back in place when the pull is relaxed.
Intelligent Passive HPD
Inserting a device into the ear principally blocks the acoustical tube (ear canal) and destroys the natural outer ear amplification and frequency shaping (open ear gain, OEG). The open ear has a natural resonance in the frequency area of the most critical speech information, hence this loss is a real loss and not normally desired. The resonance frequency is given by the length of the tube; hence there is a need for compensation of the reduced length. This can be individually modeled and implemented with a defined acoustical front (outer) chamber 1008 and artificially stretched to a desired length by a mechanical means 1030 for resonance shaping directly integrated into the shell making process, possibly in combination with frequency shaping filter 1010 and means for maximum power limiting such as a mechanical peak clipper 1004.
Mechanical Peak Clipping
Many applications for HPDs experience strong variations in noise exposure over time. The extreme example is people shooting with guns (military, hunters) where speech communication in-between the actions is strongly desired and where the sound gets very loud for a short time. In active devices such conditions have been solved with so-called “peak clippers” which are fairly easy to implement in electronics and which limit the output of the device independent of the input signal while leaving the signal undistorted for normal noise levels. For a passive device this can be realized by a pressure sensitive valve 1004 opening or blocking the audio canal at the sound inlet.
Detectable HPD
HPDs are mostly used in industrial environments. In the food processing industry an additional requirement also affects these devices. Any foreign particle (to the food ingredients) must be detectable within the production process. For HPDs this implies that the devices need to contain a certain amount of metal to enable the detection equipment to find it if lost in the production line. Metal can be inserted into HPDs in a number of different ways: metal can be mixed into the shell base material 1000, a specific metal component 1013 can be mounted in a prepared cavity 1012, the cord adapter faceplate element 1014 can be made of metal and the button part of the on/off switch 1002 can be made of metal. In a HPD with a RFID tag, the tag itself is detectable if the equipment for detection is implemented in the production line.
HPD Wearing Compliance
Wearing of HPDs in industrial environments obliges to regulations in most countries. Assuming that the devices have the desired protective effect when they are worn (most other topics described address this very issue), the wearing itself becomes the compliance control topic. With recent developments in miniaturized RFID (radio frequency identification devices) technology, it becomes feasible to implement such devices into a customized HPD given the shell technology described. The RFID tag 1006 is inserted into a predefined cavity 1007 and when the wearer passes through gateways equipped with RFID detection systems, the positions of the two HPDs can be obtained and the control function carried out according to whether a predefined condition regarding the detected positions is fulfilled or not (e.g. separation of the HPDs according to the width of the head and height of the HPDs according to the ear height). As mentioned, the RFIDs can also serve as HPD detection devices in food production processes.
Basic Functions
Functions that conventionally are mounted components, such as a grip handle for insertion and removal of the HPD, can easily be integrated with use of the shell technology. The product design and assembly more and more becomes a software issue and the individual product is increasingly designed to order according to the specific requirements of each customer.
While various embodiments in accordance with the present invention have been shown and described, it is understood that the invention is not limited thereto, and is susceptible to numerous changes and modifications as known to those skilled in the art. Therefore, this invention is not limited to the details shown and described herein, and includes all such changes and modifications as encompassed by the scope of the appended claims.
Patent | Priority | Assignee | Title |
10441472, | Jan 04 2013 | 3M Innovative Properties Company | Selective attenuating earplug |
10735847, | Aug 17 2018 | COOLER MASTER TECHNOLOGY INC. | Earphone |
10779992, | Oct 12 2016 | DELFINO, BLAISE | Hearing protection devices and attenuation button for same |
10940043, | Apr 16 2015 | JMJ Holdings, LLC | Sound attenuation apparatus and method |
11179273, | Apr 16 2015 | JMJ Holdings, LLC | Sound-attenuation system |
11389332, | Dec 18 2018 | Make Great Sales Limited | Noise-cancelling ear plugs |
11546702, | Aug 15 2022 | Custom electronic switchable hearing protection system | |
8391536, | May 13 2009 | Panasonic Corporation | Earphone device and earphone device main body |
8433071, | Mar 30 2007 | Siemens Audiologische Technik GmbH | In situ measurement |
8820470, | Jun 14 2011 | Brown Innovation, LLC | Adjustably attenuating ear plug |
8931489, | Jan 07 2013 | OCEANS EDGE, INC | Hearing protection devices and kits including adjustable sound-attenuation assemblies |
8983101, | May 22 2012 | Shure Acquisition Holdings, Inc | Earphone assembly |
9060897, | Oct 18 2013 | Switchable hearing protection ear plug | |
9138352, | Dec 20 2011 | The Johns Hopkins University | Blast attenuating earplug |
9814625, | Jan 04 2013 | 3M Innovative Properties Company | Selective attenuating earplug |
Patent | Priority | Assignee | Title |
2327620, | |||
2881759, | |||
3097643, | |||
3702123, | |||
4353364, | Jan 18 1979 | Ear acoustical attenuating device | |
6082485, | Aug 10 1999 | Adjustable earplug | |
6148821, | Apr 29 1998 | 3M Innovative Properties Company | Selective nonlinear attenuating earplug |
6533062, | Sep 25 2000 | Sonova AG | Production process for custom-moulded ear-plug devices |
20030133583, | |||
AU5606773, | |||
DE2318735, | |||
DE4217043, | |||
DE91128153, | |||
DE93130619, | |||
EP333298, | |||
WO67638, | |||
WO2071794, | |||
WO250499, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 25 2004 | Phonak AG | (assignment on the face of the patent) | / | |||
Aug 25 2004 | HAUSSMANN, MATHIAS | Phonak AG | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015997 | /0972 | |
Jul 10 2015 | Phonak AG | Sonova AG | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 036674 | /0492 |
Date | Maintenance Fee Events |
Sep 04 2012 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Nov 10 2016 | REM: Maintenance Fee Reminder Mailed. |
Mar 31 2017 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 31 2012 | 4 years fee payment window open |
Oct 01 2012 | 6 months grace period start (w surcharge) |
Mar 31 2013 | patent expiry (for year 4) |
Mar 31 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 31 2016 | 8 years fee payment window open |
Oct 01 2016 | 6 months grace period start (w surcharge) |
Mar 31 2017 | patent expiry (for year 8) |
Mar 31 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 31 2020 | 12 years fee payment window open |
Oct 01 2020 | 6 months grace period start (w surcharge) |
Mar 31 2021 | patent expiry (for year 12) |
Mar 31 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |