A candidate pixel generating unit searches a path-undetermined adjacent pixel j which is adjacent around a parent pixel i, and, with respect to the searched adjacent pixel j, generates a candidate pixel having data {j(i,|Wij|)} in which the parent pixel i and magnitude |Wij| of a phase difference Wij in which phase skip between the pixels is corrected are combined. The registration control unit registers the pixel to a heap having a function of ordering the registration order, and order the pixel, if the weight |Wij| is equal to or more than a predetermined threshold value TH; and registers the pixel to a queue not having the function of ordering the registration order if it is less than the threshold value TH. A path determination unit prioritizes the queue to retrieve and eliminate one candidate pixel, and determines a path between the eliminated candidate pixel and the parent pixel.
|
1. A phase unwrapping method of generating a wrapping phase distribution in which pixels of wrapped phases are two-dimensionally disposed according to an interference fringe image of a measurement object, and determining an unwrapping path connecting pixels of unwrapped phases according to the wrapping phase distribution; the phase unwrapping method characterized by having
a candidate pixel generating step of setting a starting pixel or a path-determined latest pixel as a parent pixel, searching a path-undetermined adjacent pixel which is adjacent around the parent pixel, and generating, with respect to the searched adjacent pixel, a candidate pixel having pixel data in which the parent pixel and a weight which is magnitude of a phase difference in which phase skip between the pixels is corrected are combined;
a registration control step of, if the weight of the candidate pixel is equal to or more than a predetermined threshold value, registering the pixel to a first data registration unit having a function of ordering the registration order and ordering the pixel based on the weight, and, if it is less than the threshold value, registering the pixel to a second data registration unit not having the function of ordering the registration order; and
a path determination step of, every time the process in which all the adjacent pixel around the parent pixel is set as the candidate pixel is finished, retrieving and eliminating one candidate pixel in accordance with the registration order from the second data registration unit if the candidate pixels are present in the first data registration unit and the second data registration unit or if the candidate pixel is present merely in the second data registration unit, retrieving and eliminating the candidate pixel having an ordered minimum weight if the candidate pixel is present merely in the first data registration unit, determining a path between the eliminated candidate pixel and the parent pixel, and passing the eliminated pixel to the candidate pixel generating step as a next parent pixel.
10. A computer-readable storage medium which stores a phase unrapping program characterized by causing a computer of an interference measurement apparatus for generating a wrapping phase distribution in which pixels of wrapped phases are two-dimensionally disposed according to an interference fringe image of a measurement object, and determining an unwrapping path connecting pixels of unwrapped phases according to the wrapping phase distribution, to execute
a candidate pixel generating step of setting a starting pixel or a path-determined latest pixel as a parent pixel, searching a path-undetermined adjacent pixel which is adjacent around the parent pixel, and generating, with respect to the searched adjacent pixel, a candidate pixel having pixel data in which the parent pixel and a weight which is magnitude of a phase difference in which phase skip between the pixels is corrected are combined;
a registration control step of, if the weight of the candidate pixel is equal to or more than a predetermined threshold value, registering the pixel to a first data registration unit having a function of ordering the registration order and ordering the pixel based on the weight, and, if it is less than the threshold value, registering the pixel to a second data registration unit not having the function of ordering the registration order; and
a path determination step of, every time the process in which all the adjacent pixel around the parent pixel is set as the candidate pixel is finished, retrieving and eliminating one candidate pixel in accordance with the registration order from the second data registration unit if the candidate pixels are present in the first data registration unit and the second data registration unit or if the candidate pixel is present merely in the second data registration unit, retrieving and eliminating the candidate pixel having an ordered minimum weight if the candidate pixel is present merely in the first data registration unit, determining a path between the eliminated candidate pixel and the parent pixel, and passing the eliminated pixel to the candidate pixel generating step as a next parent pixel.
17. An interference measurement apparatus for generating a wrapping phase distribution in which pixels of wrapped phases are two-dimensionally disposed according to an interference fringe image of a measurement object, and determining an unwrapping path connecting pixels of unwrapped phases according to the wrapping phase distribution; the interference measurement apparatus characterized by having
a first data registration unit having a function of ordering the registration order of registered information;
a second data registration unit not having the function of ordering the registration order of registered information;
a candidate pixel generating unit for setting a starting pixel or a path-determined latest pixel as a parent pixel, searching a path-undetermined adjacent pixel which is adjacent around the parent pixel, and generating, with respect to the searched adjacent pixel, a candidate pixel having pixel data in which the parent pixel and a weight which is magnitude of a phase difference in which phase skip between the pixels is corrected are combined;
a registration control unit for, if the weight of the candidate pixel is equal to or more than a predetermined threshold value, registering the pixel to a first data registration unit and ordering the pixel based on the weight, and, if it is less than the threshold value, registering the pixel to a second data registration unit; and
a path determination unit for, every time the process in which all the adjacent pixel around the parent pixel is set as the candidate pixel is finished, retrieving and eliminating one candidate pixel in accordance with the registration order from the second data registration unit if the candidate pixels are present in the first data registration unit and the second data registration unit or if the candidate pixel is present merely in the second data registration unit, retrieving and eliminating the candidate pixel having an ordered minimum weight if the candidate pixel is present merely in the first data registration unit, determining a path between the eliminated candidate pixel and the parent pixel, and passing the eliminated pixel to the candidate pixel generating unit as a next parent pixel.
2. The method according to
3. The method according to
if the weight of the registered candidate pixel is large, after the pixel is rewritten by the parent pixel and the weight of the candidate pixel generated in the candidate pixel generating step, the pixel is ordered, and
if the weight of the registered candidate pixel is small, the candidate pixel generated in the candidate pixel generating step is discarded, and the registered candidate pixel is caused to remain.
4. The method according to
the candidate pixel generated in the candidate pixel generating step is discarded, and the registered candidate pixel is caused to remain.
5. The method according to
6. The method according to
7. The method according to
8. The phase unwrapping method described in
9. The phase unwrapping method described in
11. The storage medium according to
12. The storage medium according to
if the weight of the registered candidate pixel is large, after the pixel is rewritten by the parent pixel and the weight of the candidate pixel generated in the candidate pixel generating step, the pixel is ordered, and
if the weight of the registered candidate pixel is small, the candidate pixel generated in the candidate pixel generating step is discarded, and the registered candidate pixel is caused to remain.
13. The storage medium according to
the candidate pixel generated in the candidate pixel generating step is discarded, and the registered candidate pixel is caused to remain.
14. The storage medium according to
15. The storage medium according to
16. The storage medium according to
18. The apparatus according to
19. The apparatus according to
|
This application is a priority based on prior application No. JP2005-332789, filed Nov. 17, 2005, in Japan.
1. Field of the Invention
The present invention relates to a phase unwrapping method and program, and an interference measurement apparatus for obtaining heights from interference fringes of a measurement object, and particularly relates to a phase unwrapping method and program, and an interference measurement apparatus for determining an unwrapping path connecting pixels of phases which are unwrapped from a wrapping phase distribution based on an interference fringe image.
2. Description of the Related Arts
Conventionally, an interference measurement apparatus can measure the surface shape of a sample which is a measurement object with high precision. Therefore, it is utilized in, for example, quality inspection and quality control of various samples such as optical lenses and magnetic disks, semiconductor wafers, MEMS (Micro Electro Mechanical Systems).
it can be represented by
[Expression 1]
I(x,y)=a(x,y)+b(x,y)cos {φ(x,y)} (1).
Herein, a(x,y), b(x,y) are constants determined by the state of the optical system, and φ(x,y) is the phase at the position (x,y) of the interference fringe. Since the phase φ(x,y) and the height h(x,y) of the sample are related with each other according to the following expression (2), the height of the sample can be known by obtaining the phase of the interference fringe.
[Expression 2]
Note that λ is a light source wavelength.
As methods of eliminating influence of a(x,y), b(x,y) from the intensity information of the interference fringe of the expression (1) to obtain the phase φ(x,y) with high precision, for example, a phase shift method, a Fourier transform method, and a heterodyne method are known. However, in these methods, since the phase φ(x,y) is obtained as a function of an arctangent, the phase φ(x,y) is obtained in away that it is folded, i.e., wrapped into −π to π which is the range of the value of the arctangent.
For example,
Herein, φs is a phase at a pixel S, and φE′ is a phase at a pixel E after unwrapping. Moreover, Wij is a phase difference in which phase skip due to wrapping between a pixel i and pixel j which are adjacent to each other along the unwrapping path 122 is corrected. The addition of the expression (3) is performed with respect to all of the adjacent pixels along the unwrapping path 122. In the corrected phase difference Wij of pixels before and after wrapping occurs like a pixel 112-2 and a pixel 112-3 of
When a phase unwrapping process is to be performed according to such expression (3) and expressions (4), if the phase state is sufficiently smooth and continuous in the entire phase map region in
Because of such reason, for example, when simple unwrapping paths 126-1 to 126-9 are set from the starting pixel 120 as shown in
Authors, Li An et al., Title: A Fast Implementation of the Minimum Spanning Tree method for Phase Unwrapping, Document Name: IEEE TRANSACTIONS ON MEDICAL IMAGING Vol. 19, NO. 8 AUG. 2000).
The MST method is known as one path problem in graph theory. When the method is utilized in an unwrapping process, as shown in
However, such conventional unwrapping path selection according to the conventional MST method involves a problem that the process in path search takes time. In order to explain this problem, first, an example of simple unwrapping path generating procedures in which the phase difference Wij is not taken into consideration is shown in
In
candidate pixel i (parent pixel j) and registered, wherein the pixel to be connected to the parent pixel i represents the candidate pixel j. Moreover, white circles of dotted lines are unvisited pixels, solid-line white circles are visited pixels (registered pixels), and black circles represent path-determined pixels. Furthermore, the lines connecting pixels to pixels are called sides, the sides shown by dotted lines represent sides which are currently registered in the queue 130, and the sides shown by solid lines represent the sides which have been determined as unwrapping paths. Hereinafter, details of the procedures will be sequentially described.
(First Procedure)
In a first procedure of
(Second Procedure)
In a second procedure of
(Third Procedure)
In a third procedure of
candidate pixel j (parent pixel i, weight |Wij|)
is generated and registered as pixel data of the candidate pixel j. Numerical values shown by the sides between the pixels are the phase differences Wij which have undergone the correction calculation, and |Wij| which is the magnitude of the phase differences are used for magnitude determination when they are registered to the heap 132. Herein, in order to simplify the numerical values representing the phase differences, the phase range is standardized to a range of −5 to 5, and these are shown by the numerical values of the sides. The heap 132 is a data structure in which data is retained at nodal points of two trees, and the data of a parent is designed to be smaller than the data of two children, wherein, by using the weight |Wij| for determination of magnitude relations, a candidate pixel having the weight having the minimum value can be always ordered at a root position.
(First Procedure)
In a first procedure of
and the generated candidate pixels are registered to the heap 132, such that the candidate pixel having the minimum weight is disposed at the lowest (root) position of the heap. When search of all the adjacent pixels is finished, the candidate pixel (d) which is registered at the bottom of the heap 132 and has the minimum weight is eliminated from the heap 132, and the side (side d→a) connecting the eliminated candidate pixel (d) with the parent pixel (a) thereof is determined as a phase unwrapping path.
(Second Procedure)
In a second procedure of
and the generated candidate pixels are registered to the heap 132, thereby ordering them such that the candidate pixel having the minimum weight is at the lowest position of the heap. When search of all the adjacent pixels is finished, the candidate pixel (e) which is registered at the bottom of the heap 132 and has the minimum weight is eliminated from the heap 132, and the side (side e→d) connecting the eliminated candidate pixel (e) with the parent pixel (d) is determined as a phase unwrapping path.
(Third Procedure)
In a third procedure of
“h(e, 2)”, “(f(e,0)”, and “b(e,3)”,
and they are registered to the heap 132 in the ascending order of the weight of the candidate pixels. However, regarding the candidate pixel (b), the pixel data “b(a,5)” of the same pixel (b) is registered in the heap 132 as shown in
According to the present invention to provide a phase unwrapping method, program, and an interference measurement apparatus which can achieve both the avoiding ability of phase non-continuous regions and high-speed processing.
In order to achieve this object, the present invention is constituted in the following manner.
(Method)
The present invention provides a phase unwrapping method. More specifically, the present invention is
a phase unwrapping method of generating a wrapping phase distribution in which pixels of wrapped phases are two-dimensionally disposed according to an interference fringe image of a measurement object, and determining an unwrapping path connecting pixels of unwrapped phases according to the wrapping phase distribution characterized by having
a candidate pixel generating step of setting a starting pixel or a path-determined latest pixel as a parent pixel i, searching a path-undetermined adjacent pixel j which is adjacent around the parent pixel i, and generating, with respect to the searched adjacent pixel j, a candidate pixel having pixel data {j(i,|Wij|} in which the parent pixel i and a weight |Wij| which is magnitude of a phase difference between the pixels which has undergone a correction calculation are combined;
a registration control step of, if the weight |Wij| of the candidate pixel is equal to or more than a predetermined threshold value TH, registering the pixel to a first data registration unit having a function of ordering the registration order and ordering the pixel based on the weight, and, if it is less than the threshold value TH, registering the pixel to a second data registration unit not having the function of ordering the registration order; and
a path determination step of, every time the process in which all the adjacent pixel around the parent pixel is set as the candidate pixel is finished, retrieving and eliminating one candidate pixel in accordance with the registration order from the second data registration unit if the candidate pixels are present in the first data registration unit and the second data registration unit or if the candidate pixel is present merely in the second data registration unit, retrieving and eliminating the candidate pixel having an ordered minimum weight if the candidate pixel is present merely in the first data registration unit, determining a path between the eliminated candidate pixel and the parent pixel, and passing the eliminated pixel to the candidate pixel generating step as a next parent pixel.
Herein, in the registration control step, if the weight of the candidate pixel generated in the candidate pixel generating step is less than the threshold value, and the same candidate pixel is registered in the first data registration unit, the registered candidate pixel of the first data registration unit is moved to the second data registration unit, and the parent pixel is rewritten by the parent pixel of the candidate pixel generated in the candidate pixel generating step.
In the registration control step, if the weight of the candidate pixel generated in the candidate pixel generating step is equal to or more than the threshold value, and the candidate pixel which is same as the candidate pixel generated in the candidate pixel generating step is registered in the first registration unit; and
if the weight of the registered candidate pixel is large, after the pixel is rewritten by the parent pixel and the weight of the candidate pixel generated in the candidate pixel generating step, the pixel is ordered, and
if the weight of the registered candidate pixel is small, the candidate pixel generated in the candidate pixel generating step is discarded, and the registered candidate pixel is caused to remain.
In the registration control step, if the weight of the candidate pixel generated in the candidate pixel generating step is less than the threshold value, and the same candidate pixel is registered in the second data registration unit,
the candidate pixel generated in the candidate pixel generating step is discarded, and the registered candidate pixel is caused to remain.
The first data registration unit is a heap. The second data registration unit is a queue having a first-in first-out function or a stack having a first-in last-out function.
Furthermore, a threshold value setting step of variably setting the threshold value used in the registration control step is provided. In the threshold value setting step, an optimal threshold value is determined based n variation information of phases of a phase distribution obtained from an interference fringe image of a predetermined sample.
In the threshold value setting step, with respect to the determined unwrapping path of the measurement object, a phase difference after unwrapping and a phase difference according to an unwrapping correction calculation are compared with each other with respect to adjacent pixels which are not the unwrapping path, and unwrapping failure is determined when the discrepant pixels exceed a predetermined number; and, when the number of times of unwrapping failure exceeds a predetermined number of times, the threshold value used for determination of the unwrapping path is lowered, and the process of determining an unwrapping path is retried.
(Program)
The present invention provides a phase unwrapping program. More specifically, the unwrapping program of the present invention is characterized by causing a computer of an interference measurement apparatus for generating a wrapping phase distribution in which pixels of wrapped phases are two-dimensionally disposed according to an interference fringe image of a measurement object, and determining an unwrapping path connecting pixels of unwrapped phases according to the wrapping phase distribution, to execute
a candidate pixel generating step of setting a starting pixel or a path-determined latest pixel as a parent pixel i, searching a path-undetermined adjacent pixel j which is adjacent around the parent pixel i, and generating, with respect to the searched adjacent pixel j, a candidate pixel having data j(i, |Wij|) in which the parent pixel i and a weight which is magnitude of a phase difference Wij between the pixels which has undergone an unwrapping process are combined;
a registration control step of, if the weight |Wij| of the candidate pixel is equal to or more than a predetermined threshold value TH, registering the pixel to a first data registration unit having a function of ordering the registration order and ordering the pixel based on the weight, and, if it is less than the threshold value TH, registering the pixel to a second data registration unit not having the function of ordering the registration order; and
a path determination step of, every time the process in which all the adjacent pixel around the parent pixel is set as the candidate pixel is finished, retrieving and eliminating one candidate pixel in accordance with the registration order from the second data registration unit if the candidate pixels are present in the first data registration unit and the second data registration unit or if the candidate pixel is present merely in the second data registration unit, retrieving and eliminating the candidate pixel having an ordered minimum weight if the candidate pixel is present merely in the first data registration unit, determining a path between the eliminated candidate pixel and the parent pixel, and passing the eliminated pixel to the candidate pixel generating step as a next parent pixel.
(Apparatus)
The present invention provides an interference measurement apparatus. More specifically, the present invention is an interference measurement apparatus for generating a wrapping phase distribution in which pixels of wrapped phases are two-dimensionally disposed according to an interference fringe image of a measurement object, and determining an unwrapping path connecting pixels of unwrapped phases according to the wrapping phase distribution; characterized by having
a first data registration unit having a function of ordering the registration order of registered information;
a second data registration unit not having the function of ordering the registration order of registered information;
a candidate pixel generating unit for setting a starting pixel or a path-determined latest pixel as a parent pixel i, searching a path-undetermined adjacent pixel j which is adjacent around the parent pixel i, and generating, with respect to the searched adjacent pixel j, a candidate pixel having data j(i, |Wij|) in which the parent pixel i and a weight which is magnitude of a phase difference Wij between the pixels which has undergone an unwrapping process are combined;
a registration control unit for, if the weight |Wij| of the candidate pixel is equal to or more than a predetermined threshold value TH, registering the pixel to the first data registration unit and ordering the pixel based on the weight, and, if it is less than the threshold value TH, registering the pixel to the second data registration unit; and
a path determination unit for, every time the process in which all the adjacent pixel around the parent pixel is set as the candidate pixel is finished, retrieving and eliminating one candidate pixel in accordance with the registration order from the second data registration unit if the candidate pixels are present in the first data registration unit and the second data registration unit or if the candidate pixel is present merely in the second data registration unit, retrieving and eliminating the candidate pixel having an ordered minimum weight if the candidate pixel is present merely in the first data registration unit, determining a path between the eliminated candidate pixel and the parent pixel, and passing the eliminated pixel to the candidate pixel generating unit as a next parent pixel.
It should be noted that details of the phase unwrapping program and the interference measurement apparatus according to the present invention are basically same as the phase unwrapping method according to the present invention.
According to the present invention, the weight which is the magnitude of the phase difference between the wrapping pixels is compared with the threshold value, it is registered to the heap which is a data structure having the ordering function if the weight is larger, and path determination of the pixels having the possibility of non-continuous region is gathered to the end of the path search process, thereby avoiding failure of unwrapping caused when paths pass through non-continuous regions in the middle thereof. If the weight is smaller meanwhile, it is registered to the queue which is a data structure not having the ordering function or a stack, and an unwrapping path is determined through a simple process of retrieving the oldest pixel or the latest pixel, thereby shortening the processing time. Particularly, by setting the threshold value, which is for determining the magnitude of the weight for allocating the pixels to the data structure having the ordering function and the data structure not having it, to an optimal value, for example, the ratio of the pixels for determining paths by the data structure having the ordering function can be suppressed to about 1 percent of the entirety; consequently, phase unwrapping can be performed by the time about ¼ that of the conventional MST method. The above and other objects, features, and advantages of the present invention will become more apparent from the following detailed description with reference to the drawings.
{j(i,|Wij|)}
which is in the form of a combination of them. The magnitude |Wij| of the phase difference Wij which is contained in the pixel data and has been subjected to a correction calculation according to the expressions (4) is used as a weight when it is to be ordered by determining the magnitude relation thereof upon registration to the heap 44; therefore, the magnitude |Wij| of the phase difference Wij will be referred to as a weight in the below description. The registration control unit 48 compares the weight |Wij| of the candidate pixel j which has been generated in the candidate pixel generating unit 46 with a predetermined threshold value TH which has been set by the threshold value setting unit 52; and, when it is equal to or more than the threshold value TH, registers it to the heap 44 having a function of ordering the registration order so as to perform ordering such that a candidate pixel having the minimum weight is at the lowest position in the heap, and, when it is less than the threshold value TH, registers it to the queue 45 not having the function of ordering the registration order. The path determination unit 50 executes a process for determining a path in which the queue 45 not having the ordering function is prioritized. More specifically, every time a process in which all adjacent pixels around a certain parent pixel i are set as candidate pixels is completed by the candidate image generating unit 46 and the registration control unit 48, when candidate pixels are present in both the heap 44 and the queue 45 or when a candidate pixel(s) is present merely in the queue 45, a candidate pixel corresponding to the registration order, i.e., the oldest registered pixel is retrieved from the queue 45 and eliminated, and a path between the eliminated candidate pixel and the parent pixel is determined. Furthermore, when the path is determined, the eliminated pixel is passed to the candidate pixel generating unit 46 as a next parent pixel, so as to perform next path generation. Meanwhile, when no candidate pixel is present in the queue 45, and a candidate pixel(s) is present merely in the heap 44, a candidate pixel having the minimum ordered weight is retrieved and eliminated, a path between the eliminated candidate pixel and the parent pixel is determined, and the eliminated pixel is passed to the candidate pixel generating unit 46 as a next parent pixel. As described above, in registration of pixel data to the heap 44 and the queue 45 in the unwrapping path generating unit 42 of the present invention, the queue 45 not having the ordering function is prioritized. As long as there is a candidate pixel(s) in the queue 45, the candidate pixel is retrieved from the queue 45 to determine a path, and, only when there is no more candidate pixel in the queue 45, a candidate pixel(s) of the heap 44 is retrieved in the ascending order of the weight to determine a path. Whether it is to be stored in the heap 44 or to be stored in the queue 45 is determined by the value of the threshold value TH according to the threshold value setting unit 52. Therefore, when the threshold value TH is optimized, a pixel(s) having an abnormal phase such as that across a phase non-continuous region is stored and remains to the end in the heap 44. Thus, the situation in which a path passes through a phase non-continuous region during generation of the path can be prevented. At the same time, by largely increasing the ratio of the pixels to be stored in the queue 45, the processing time required for path search in whole can be shortened. This process performed by the unwrapping path generating unit 42 will be described in detail in below description separately in specific procedures. When path generation is completed in the unwrapping path generating unit 42, the determined unwrapping path is stored in the unwrapping path file 54. With respect to the determined unwrapping path of the unwrapping path file 54, the unwrapping phase calculation unit 56 sequentially performs the addition calculation of phase differences of the above described expression (3) from the starting pixel to the last pixel of the path along the path by use of the correction-calculation-subjected phase differences Wij between the pixels which have already been calculated in the unwrapping path generating process, thereby converting wrapping phases of all the pixels into an unwrapped phase, and stores it in the unwrapping phase distribution file 58. The result of the unwrapping phase distribution file 58 is read and displayed in the monitor 32 as shown in
{candidate pixel j (parent pixel i, weight |Wij|)}
as pixel data of the candidate pixel j is generated and registered. Numerical values shown by the sides between the pixels are phase differences Wij which have been subjected to the correction calculation, and |Wij| which is the magnitude of each phase difference is used for determination of magnitude when it is registered to the heap 44. The heap 44 generally has a data structure which is designed such that data is retained at each connecting point of two trees, and data of a parent is smaller than data of two children; wherein, by using the weight |Wij| for determination of magnitude relations, a candidate pixel having the smallest weight can be always ordered at a root position. In
(First Procedure)
In the first procedure of
“b(a,5)”
is generated. Then, the weights of the candidate pixels (d), (b) are compared with the predetermined threshold value TH. In this example, the threshold value TH=3. With respect to the candidate pixel d, since the weight=2 which is less than the threshold value TH=3, the pixel data d (a,2) thereof is stored in the queue 45. With respect to the candidate pixel b, since the weight=5 which is above the threshold value TH=3, it is stored in the heap 44 such that the candidate pixel having the minimum weight is ordered to be at the lowest position of the heap. Then, since the candidate pixels (b) and (d) are registered in both the heap 44 and the queue 45, the queue 45 is prioritized in this case, the pixel data of the candidate pixel (d) which is the oldest data in the queue 45 is eliminated, and the side (d→a) connecting the eliminated candidate pixel (d) with the parent pixel (a) is determined as a phase unwrapping path.
(Second Procedure)
In the second procedure of
“g(d,4)” and “e(d,0)”
is generated. Then, the pixel data of the candidate pixel (g) having a weight=4 which is large with respect to the threshold value TH=3, is registered in the heap 44 such that the candidate pixel having the minimum weight is ordered to be at the lowest position of the heap, and the pixel data of the candidate pixel (e) having a weight=0 which is smaller than the threshold value TH=3 is registered in the queue 45.
Subsequently, the queue 45 is prioritized since the candidate pixels are registered in both the heap 44 and the queue 45 at this point, the pixel data of the candidate pixel (e) which is the oldest registered data is retrieved from the queue 45 and eliminated, and the side (e→d) connecting the eliminated candidate pixel (e) with the parent pixel (d) thereof is determined as a phase unwrapping path.
(Third Procedure)
In the third procedure of
[Expression 5]
X=Wij−(φ′j−φ′i) (5)
Herein, φi′ and φj′ are phase values at the pixels i and j after phase unwrapping, and Wij is a phase difference which is at the side 85-1 or the side 85-2 having the pixel i and the pixel j as vertices and is calculated and corrected according to the expressions (4). According to the expression (5), when the phase difference of the phase values of the pixels i and j after unwrapping at both ends of the side 85-1 or the side 85-2 obtained through phase unwrapping is equal to the corrected phase difference Wij obtained through the correction calculation from wrapping phases of the pixels i and j before unwrapping, the unwrapping process can be determined to be successful for this part. Conversely, when they are not equal, that is, the difference of them is not 0, the unwrapping process can be determined to be failure with respect to the side 85-1 or the side 85-2. Meanwhile, in a case in which the value X calculated for a side according to the expression (5) is not X=0, a value Y in which phase differences Wij of four adjacent pixels (a), (d), (e), and (b) surrounding the side 85-1 or the side 85-2 for which X is not 0 like
[Expression 6]
Y=ΣWij (6)
The side for which the value of Y calculated according to the expression (6) is not 0 but ±2π, that is, in the case of
Therefore, although the first procedure and the second procedure of
Tsukahara, Hiroyuki, Takahashi, Fumiyuki
Patent | Priority | Assignee | Title |
9726473, | Dec 20 2013 | Mitutoyo Corporation | Light interference measuring device and program therefor |
Patent | Priority | Assignee | Title |
5608405, | Oct 06 1995 | Lockheed Martin Corp | Method of generating visual representation of terrain height from SAR data employing multigrid analysis |
6011625, | Jul 08 1998 | Lockheed Martin Corporation | Method for phase unwrapping in imaging systems |
JP1090112, | |||
JP2001241930, | |||
JP2002195806, | |||
JP2003042728, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 07 2006 | TAKAHASHI, FUMIYUKI | Fujitsu Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017790 | /0968 | |
Apr 07 2006 | TSUKAHARA, HIROYUKI | Fujitsu Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017790 | /0968 | |
Apr 20 2006 | Fujitsu Limited | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Aug 04 2010 | ASPN: Payor Number Assigned. |
Feb 20 2013 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Mar 09 2017 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Mar 10 2021 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Sep 22 2012 | 4 years fee payment window open |
Mar 22 2013 | 6 months grace period start (w surcharge) |
Sep 22 2013 | patent expiry (for year 4) |
Sep 22 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 22 2016 | 8 years fee payment window open |
Mar 22 2017 | 6 months grace period start (w surcharge) |
Sep 22 2017 | patent expiry (for year 8) |
Sep 22 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 22 2020 | 12 years fee payment window open |
Mar 22 2021 | 6 months grace period start (w surcharge) |
Sep 22 2021 | patent expiry (for year 12) |
Sep 22 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |