A method of driving a linear motor having a multi-phase coil as a stator or a movable element includes the steps of positioning the stator at a position where a driving electric power becomes largest, and driving the movable element relative to the stator.
|
3. A driving device for driving an object using a linear motor, wherein:
a stator of the linear motor is movable in a direction opposite to or approximately opposite to a driving direction of the object;
said driving device includes stator moving means configured to position the stator so that an electrical phase angle of the linear motor when the object is accelerated or decelerated is brought into a predetermined state; and
the predetermined state is such that the electrical phase angle assures uniform or approximately uniform electric currents of coils being driven at a moment where a driving electric power of the linear motor becomes largest.
1. A driving device for driving an object using an N-phase excitation sinusoidal wave drive type linear motor, where N≧2, wherein:
a stator of the linear motor is movable in a direction opposite to or approximately opposite to a driving direction of the object;
said driving device includes stator moving means configured to position the stator so that an electrical phase angle of the linear motor when the object is accelerated or decelerated is brought into a predetermined state; and
the predetermined state is such that the electrical phase angle at a moment where a driving electric power of the linear motor becomes largest is equal to or close to 90(deg.)/N.
2. A driving device for driving an object using a phase excitation sinusoidal wave drive type linear motor, wherein:
a stator of the linear motor is movable in a direction opposite to or approximately opposite to a driving direction of the object;
said driving device includes stator moving means configured to position the stator so that an electrical phase angle of the linear motor when the object is accelerated or decelerated is brought into a predetermined state; and
the predetermined state is such that, in each phase, the electrical phase angle at a moment where a driving electric power of the linear motor becomes largest is not equal to or close to zero.
4. A driving device according to
5. An exposure apparatus including a driving device recited in
6. A device manufacturing method, comprising:
a step of exposing a substrate using an exposure apparatus as recited in
a step of developing the exposed substrate.
|
This is a divisional of application Ser. No. 11/212,652, filed on Aug. 29, 2005.
This invention relates to a linear motor having a multi-phase coil and, more particularly, to a linear motor suitably usable in an exposure apparatus.
Driving systems for moving a mask stage or a wafer stage in semiconductor exposure apparatuses include one using a multi-phase linear motor in which coils are selectively switched over in accordance with the position of a movable element of the motor. Japanese Laid-Open Patent Application, Publication No. 09-19178 and Japanese Laid-Open Patent Application, Publication No. 2002-258289 show a multi-phase exciting sinewave driving method as a method of controlling the drive current of such multi-phase linear motor. In these Japanese patent documents, for driving the stage, to two-phase coils which are placed at positions spaced from each other by 90-degree equivalent in terms of the phase angle of the magnetic flux density, electric currents corresponding to the respective magnetic flux densities are applied simultaneously (two-phase excitement), by which a certain thrust force is produced in accordance with the principle that
sin2(x)+(−cos(x))2=1.
In accordance with the method described above, there is a possibility that, depending on the position of the movable element, most acceleration is carried out by use of a single phase coil only. For example, in
If it occurs, the temperature of one coil is raised relatively and it may rise beyond the allowable temperature of an insulative coating film of wires. Furthermore, motor drivers for producing a driving force of each coil need to have a capacity that enables flow of a larger electric current. Moreover, the higher the temperature is, the larger the resistance of each coil is. Hence, the electric power efficiency will be lowered.
It is accordingly an object of the present invention to provide a unique and improved linear motor by which at least one of the inconveniences described above can be removed or reduced.
It is another object of the present invention to provide an exposure apparatus having such a linear motor.
In accordance with an aspect of the present invention, there is provided a linear motor having a multi-phase coil to be energized, comprising: a movable element; a stator; and a control system for controlling the position of said movable element; wherein said control system is arranged to acquire drive information related to said linear motor going to be driven, and to position said stator on the basis of the drive information prior to the driving.
In one preferred form of this aspect of the present invention, for acceleration/deceleration of said movable element, said control system may position said stator so that an electric phase angle of said linear motor is brought into a predetermined state.
Further, for acceleration/deceleration of said movable element, said control system may operate to position said stator so as to reduce local heat generation of said linear motor.
The control system may position said stator so as to make uniform or approximately uniform electric currents to be applied to coils which are used for the driving for a maximum driving electric power of said linear motor.
The control system may operate to position said stator so as to avoid that, when a driving electric power of said linear motor becomes largest, an electric phase angle of each coil phase becomes equal to zero or close to zero.
Furthermore, where the linear motor has a two-phase coil to be energized, said control system may operate to position said stator so that, when a driving electric power of said linear motor becomes largest, an electric phase angle of each phase coil becomes equal to or close to 45 degrees.
In accordance with the present invention, a consumed electric current particularly at large current consumption is distributed to plural coils, by which the largest consumed electric current at each coil is reduced. Therefore, temperature rise of a single coil can be suppressed and the load for a motor driver can be made light. As a result, efficient electric current consumption is enabled.
These and other objects, features and advantages of the present invention will become more apparent upon a consideration of the following description of the preferred embodiments of the present invention taken in conjunction with the accompanying drawings.
Preferred embodiments of the present invention will now be described with reference to the attached drawings.
A reticle 7 is held by the reticle stage 4. As the reticle stage 4 is driven in a direction of an arrow in accordance with the view angle of the reticle 7, whereby scan exposure thereof is carried out. The reticle stage 4 is connected to the movable element 15, and thus it is movable with the movement of the movable element 15. The position of the reticle stage (movable element) is measured by means of a laser interferometer 21, and also the position of the stator 13 is measured by means of another laser interferometer 22.
In the step-and-scan exposure, the driving pattern of the reticle stage is determined by the length of the reticle in the scan direction, the scan speed and the acceleration, for example. Conventionally, these parameters are constant with respect to a single substrate to be exposed. Thus, when a reticle pattern is going to be printed on a substrate, the reticle stage performs repeated drives of a number corresponding to the exposure shots, constantly in accordance with a particular driving pattern.
This problem can however be avoided by displacing the stator coil before start of the exposure so that, as shown in
In accordance with this embodiment, while referring to
In the second step, the control unit 23 determines a driving pattern (profile) of the reticle stage on the basis of the acquired parameters. Subsequently, on the basis of this driving pattern, the control unit calculates the time (t1) in which a largest driving electric power is required. Additionally, on the basis of the time thus calculated, the control unit calculates the position (L1) where a largest driving electric power is required.
In the third step, the position of the stator is set so as to avoid that the position determined at the second step (for example, position pos_max in
In the example described above, if the same driving pattern is going to be repeated, the procedure at the first, second and third steps may be carried out only once at the initial operation.
The example described above has been explained with reference to the driving method of a reticle stage. However, a similar method can be used to a wafer stage as well. In that case, the exposure method may not be a step-and-scan method, but it may be a step-and-repeat method.
Anyway, in accordance with this embodiment of the present invention, an undesirable phenomenon that large heat generation occurs only in one or some of the coils can be avoided, and the largest consumed electric current of each coil can be reduced. As a result, temperature rise of a single coil can be suppressed, and the load to the motor driver can be made light. Thus, good efficiency current consumption is assured.
Although the first embodiment described above uses a two-phase exciting sinewave driving method, similar technical advantages are obtainable even with three or more phases. In the case of N-phase exciting sinewave driving method, the optimum position is 90 (deg)/N. Further, as regards the sinewave as an electric current to be applied to the coils, it may include a harmonics component such as sin(3x) or sin(5x), for example.
Furthermore, while the embodiment described above uses a moving magnet type linear motor, the present invention can be applied also to a case where a moving coil type linear motor is used.
Next, an embodiment of a device manufacturing method which uses an exposure apparatus described above, will be explained.
Step 1 is a design process for designing a circuit of a semiconductor device. Step 2 is a process for making a mask on the basis of the circuit pattern design. Step 3 is a process for preparing a wafer by using a material such as a silicon. Step 4 is a wafer process which is called a pre-process wherein, by using the thus prepared mask and wafer, a circuit is formed on the wafer in practice, in accordance with lithography. Step 5 subsequent to this is an assembling step which is called a post-process wherein the wafer having been processed at step 4 is formed into semiconductor chips. This step includes an assembling (dicing and bonding) process and a packaging (chip sealing) process. Step 6 is an inspection step wherein an operation check, a durability check and so on, for the semiconductor devices produced by step 5, are carried out. With these processes, semiconductor devices are produced, and they are shipped (step 7).
More specifically, the wafer process at step 4 described above includes: (i) an oxidation process for oxidizing the surface of a wafer; (ii) a CVD process for forming an insulating film on the wafer surface; (iii) an electrode forming process for forming electrodes upon the wafer by vapor deposition; (iv) an ion implanting process for implanting ions to the wafer; (v) a resist process for applying a resist (photosensitive material) to the wafer; (vi) an exposure process for printing, by exposure, the circuit pattern of the mask on the wafer through the exposure apparatus described above; (vii) a developing process for developing the exposed wafer; (viii) an etching process for removing portions other than the developed resist image; and (ix) a resist separation process for separating the resist material remaining on the wafer after being subjected to the etching process. By repeating these processes, circuit patterns are superposedly formed on the wafer.
While the invention has been described with reference to the structures disclosed herein, it is not confined to the details set forth and this application is intended to cover such modifications or changes as may come within the purposes of the improvements or the scope of the following claims.
This application claims priority from Japanese Patent Application No. 2004-250390 filed Aug. 30, 2004, for which is hereby incorporated by reference.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4247794, | Mar 27 1978 | International Business Machines Corporation | Linear actuator |
4318038, | Nov 15 1978 | Nippon Electric Co., Ltd. | Moving-coil linear motor |
4916340, | Jan 22 1988 | Canon Kabushiki Kaisha | Movement guiding mechanism |
5130583, | Nov 13 1989 | RICOH COMPANY, LTD A JOINT-STOCK COMPANY OF JAPAN | Linear motor |
5973459, | Jun 27 1995 | Canon Kabushiki Kaisha | Linear motor apparatus, and stage apparatus, exposure system and device production method using the linear motor apparatus |
6107703, | Sep 24 1997 | Canon Kabushiki Kaisha | Linear motor mechanism for exposure apparatus, and device manufacturing method using the same |
6144118, | Sep 18 1998 | BARCLAYS BANK PLC, AS COLLATERAL AGENT | High-speed precision positioning apparatus |
6265793, | Nov 12 1998 | Canon Kabushiki Kaisha | Linear motor coil for exposure apparatus |
6326708, | Jul 06 1999 | Nippon Thompson Co., Ltd. | Slider unit with built-in moving-coil linear motor |
6348746, | May 18 1999 | Nippon Thompson Co., Ltd. | Slider unit with built-in moving-coil linear motor |
6573623, | Jun 22 2000 | Nippon Thompson Co., Ltd. | Sliding means with built-in moving-magnet linear motor |
6713903, | Aug 15 2002 | ASM Technology Singapore PTE Ltd. | Motor system for positioning a load |
6717653, | Jun 23 2000 | Canon Kabushiki Kaisha | Moving mechanism in exposure apparatus, and exposure apparatus having the same |
6873404, | Jul 09 2001 | Canon Kabushiki Kaisha | Stage apparatus and method of driving the same |
6965426, | Oct 29 2002 | Canon Kabushiki Kaisha | Positioning system and exposure apparatus having the same |
7276866, | Jan 31 2005 | Canon Kabushiki Kaisha | Moving control apparatus and moving control method |
20060043799, | |||
JP2002258289, | |||
JP20028971, | |||
JP919178, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 10 2007 | Canon Kabushiki Kaisha | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Mar 06 2013 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 26 2017 | REM: Maintenance Fee Reminder Mailed. |
Nov 13 2017 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Oct 13 2012 | 4 years fee payment window open |
Apr 13 2013 | 6 months grace period start (w surcharge) |
Oct 13 2013 | patent expiry (for year 4) |
Oct 13 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 13 2016 | 8 years fee payment window open |
Apr 13 2017 | 6 months grace period start (w surcharge) |
Oct 13 2017 | patent expiry (for year 8) |
Oct 13 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 13 2020 | 12 years fee payment window open |
Apr 13 2021 | 6 months grace period start (w surcharge) |
Oct 13 2021 | patent expiry (for year 12) |
Oct 13 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |