The invention relates to a method of ciphering data transmission in a radio system, and to a user equipment using the method, and to a radio network subsystem using the method. The method includes the steps of: (602) generating a ciphering key; (604A) producing a ciphering mask in a ciphering algorithm using the ciphering key as an input parameter; (604B) using a logical channel specific parameter or a transport channel specific parameter as an additional input parameter to the ciphering algorithm; and (606) producing ciphered data by applying the ciphering mask to plain data.
|
1. A method comprising:
generating a ciphering key;
producing a ciphering mask in a ciphering algorithm using the ciphering key as an input parameter,
producing ciphered data by applying the ciphering mask to plain data; and
using a logical channel identifying parameter or a transport channel identifying parameter as an additional input parameter to the ciphering algorithm;
wherein the plain data includes radio link control layer Protocol Data units from at least two parallel logical channels for communication with one user equipment, and for each logical channel an individual ciphering mask is produced.
12. An apparatus comprising:
a generator configured to generate a ciphering key;
a ciphering algorithm device connected with the generator, said device configured to produce a ciphering mask using the ciphering key as an input parameter,
a ciphering circuit connected with the ciphering algorithm device, said circuit configured to produce ciphered data by applying the ciphering mask to plain data; and
the ciphering algorithm device being configured to use a logical channel identifying parameter or a transport channel identifying parameter as an additional input parameter,
wherein the ciphering circuit is configured to accept plain data including radio link control layer Protocol Data units from at least two parallel logical channels, and the ciphering algorithm device is configured to produce for each logical channel an individual ciphering mask and the ciphering circuit is configured to use for each logical channel the ciphering mask of said channel.
23. A system comprising;
a generator configured to generate a ciphering key;
a ciphering algorithm device connected with the generator, said device configured to produce a ciphering mask using the ciphering key as an input parameter;
a ciphering circuit connected with the ciphering algorithm device, said circuit configured to produce ciphered data by applying the ciphering mask to plain data;
and the ciphering algorithm device being configured to use a logical channel identifying parameter or a transport channel identifying parameter as an additional input parameter,
wherein the ciphering circuit is configured to accept plain data including radio link control layer Protocol Data units from at least two parallel logical channels for communication with one user equipment, and the ciphering algorithm device is configured to produce for each logical channel an individual ciphering mask and the ciphering circuit is configured to use for each logical channel the ciphering mask of said channel.
2. The method as claimed in
3. The method as claimed in
4. The method as claimed in
5. The method as claimed in
6. The method as claimed in
7. The method as claimed in
8. The method as claimed in
9. The method as claimed in
10. The method as claimed in
11. The method as claimed in
13. The apparatus as claimed in
14. The apparatus as claimed in
15. The apparatus as claimed in
16. The apparatus as claimed in
17. The apparatus as claimed in
18. The apparatus as claimed in claimed in
19. The apparatus as claimed in
20. The apparatus as claimed in
21. The apparatus, as claimed in
22. The apparatus, as claimed in
24. The system as claimed in
25. The system as claimed in
26. The system as claimed in
27. The system as claimed in
28. The system as claimed in
29. The system as claimed in
30. The system as claimed in
31. The system as claimed in
32. The system as claimed in
33. The system as claimed in
34. The system as claimed in
|
This application is a divisional of application Ser. No. 09/519,184, filed Mar. 6, 2000, now U.S. Pat. No. 6,882,727, hereby incorporated by reference. The priority of said application is hereby claimed.
The invention relates to a method of ciphering data transmission in a radio system.
Ciphering is today used in many data transmission systems to prevent the data transmitted from falling into the hands of an unauthorized user. The ciphering has grown in significance in the past few years, particularly as wireless telecommunication has become more common.
The ciphering can be performed, for example, by encrypting the information to be transmitted in a transmitter, and by decrypting the information in a receiver. In the encryption means the information to be transmitted, for example a bit stream, is multiplied by a certain number of encryption bit patterns, whereby it is difficult to find out what the original bit stream was if the encryption bit pattern used is unknown.
In a digital GSM system, for example, ciphering is performed on the radio path: a ciphered bit stream to be transmitted onto the radio path is formed by XORing data bits with ciphering bits, the ciphering bits being formed by an algorithm known per se (the A5 algorithm), using a ciphering key Kc. The A5 algorithm encrypts the information transmitted on the traffic channel and the DCCH control channel.
The ciphering key Kc is set when the network has authenticated the terminal but the traffic on the channel has not yet been ciphered. In the GSM system the terminal is identified on the basis of the International Mobile Subscriber Identity IMSI, which is stored in the terminal, or the Temporary Mobile Subscriber Identity TMSI, which is formed on the basis of the subscriber identity. A subscriber identification key Ki is also stored in the terminal. A terminal identification key is also known to the system.
In order that the ciphering would be reliable, information on the ciphering key Kc must be kept secret. The cipher key is therefore transmitted from the network to the terminal indirectly. A Random Access Number RAND is formed in the network, and the number is then transmitted to the terminal via the base station system. The ciphering key Kc is formed by a known algorithm (the A5 algorithm) from the random access number RAND and the subscriber identification key Ki. The ciphering key Kc is computed in the same way both in the terminal and in the network part of the system.
In the beginning, data transmission on a connection between the terminal and the base station is thus not ciphered. The ciphering does not start until the base station system sends the terminal a cipher mode command. When the terminal has received the command, it starts to cipher data to be sent and to decipher received data. Correspondingly, the base station system starts to decipher the received data after sending the cipher mode command and to cipher the sent data after the reception and successful decoding of the first ciphered message from the terminal. In the GSM system the cipher mode command comprises a command to start ciphering, and information on the algorithm to be used.
The problem in the known methods is that they have been designed for the present systems, wherefore they are inflexible and not suited for the ciphering of data transmission in new systems, where several parallel services for one mobile station are possible. If we use the same ciphering mask twice for two or more parallel protocol data units that will be sent using the same air interface frame, then an eavesdropper may deduce a lot of information from the data streams. The amount of information that can be deduced depends on the structure of the data streams. From random data that has no structure one cannot obtain any information, but usually there is a structure in the data, especially in the signaling data.
It is an object of the invention to provide a method, and a user equipment and a radio network subsystem implementing the method, solving the above problems. This is achieved with a method of ciphering data transmission in a radio system, comprising: generating a ciphering key; producing a ciphering mask in a ciphering algorithm using the ciphering key as an input parameter; producing ciphered data by applying the ciphering mask to plain data. Using a logical channel specific parameter or a transport channel specific parameter as an additional input parameter to the ciphering algorithm.
The invention also relates to a user equipment, comprising: generating means for generating a ciphering key; a ciphering algorithm connected with the generating means for producing a ciphering mask using the ciphering key as an input parameter; ciphering means connected with the ciphering algorithm for producing ciphered data by applying the ciphering mask to plain data. The ciphering algorithm uses a logical channel specific parameter or a transport channel specific parameter as an additional input parameter.
The invention further relates to a radio network subsystem, comprising: generating means for generating a ciphering key; a ciphering algorithm connected with the generating means for producing a ciphering mask using the ciphering key as an input parameter; ciphering means connected with the ciphering algorithm for producing ciphered data by applying the ciphering mask to plain data. The ciphering algorithm uses a logical channel specific parameter or a transport channel specific parameter as an additional input parameter.
The preferred embodiments of the invention are claimed in the dependent claims.
Several advantages are achieved with the invention. In the solution of the present invention, ciphering and its properties can be flexibly controlled. The present invention enhances user security in new radio systems. This solution is also better than the known technique, which uses a long enough ciphering mask only once for each air interface frame, because it allows distributed implementation of the needed functionality in the protocol stack.
In the following the invention will be described in greater detail by means of preferred embodiments and with reference to the attached drawings, in which
The present invention can be used in different mobile telephone systems. In the following examples, the use of the invention is described in the Universal Mobile Telephone System (UMTS) without restricting the invention to it. The examples illustrate the FDD (Frequency Division Duplex) operation of the UMTS, but do not restrict the invention to it.
With reference to
The UTRAN is composed of radio network subsystems RNS. The interface between two RNSs is called the Iur interface. The RNS is composed of a radio network controller RNC and one or more node Bs B. The interface between the RNC and the node B is called the Iub interface. The reception area of the node B, i.e. cell, is denoted in
As the presentation in
The infrastructure of the radio network UTRAN is composed of radio network subsystems RNS, i.e. base station subsystems. The radio network subsystem RNS is composed of a radio network controller RNC, i.e. a base station controller, and at least one node B, i.e. a base station, under the control of the RNC.
The node B comprises a multiplexer 114, transceivers 116, and a control unit 118 which controls the operation of the transceivers 116 and the multiplexer 114. The multiplexer 114 arranges the traffic and control channels used by a plurality of transceivers 116 on a single transmission connection Iub.
The transceivers 116 of the node B have a connection to an antenna unit 120 which is used for providing a bi-directional (or sometimes one-way) radio connection Uu to a user equipment UE. The structure of the frames transmitted on the radio connection Uu is determined in detail and the connection is referred to as an air interface.
The radio network controller RNC comprises a group switching field 110 and a control unit 112. The group switching field 110 is used for switching speech and data and for connecting signaling circuits. The node B and the radio network controller RNC form a base station subsystem, which additionally comprises a transcoder, also known as a speech codec, or TRAU (Transcoder and Rate Adapter Unit) 108.
The division of the functions and the physical structures of the radio network controller RNC and the node B may differ according to the actual realization of the radio network subsystem. Typically, the node B implements the radio connection. The radio network controller RNC typically manages the following: radio resource control, inter-cell handover control, power control, timing and synchronization, and paging for user equipment.
The transcoder 108 is usually located as close to a mobile switching center 106 as possible because this allows speech to be transmitted between the transcoder 108 and the radio network controller RNC in a cellular radio network form, which saves transmission capacity.
The transcoder 108 converts different digital speech coding modes used between a public switched telephone network and a cellular radio network to make them compatible, for instance from the 64 kbit/s fixed network form to another form (such as 13 kbit/s) of the cellular radio network, and vice versa. Naturally, the transcoding is carried out only for speech. The control unit 112 carries out call control, mobility management, collection of statistical data and signaling.
The core network CN is composed of the infrastructure belonging to the mobile telephone system which is not part of the UTRAN.
The upper portion of
First the logical channels are ciphered in blocks 216A, 216B. In the ciphering, ciphered data is produced by applying a ciphering mask to plain data. Then the ciphered data is placed in the transport channel in blocks 200A, 200B. As later will be explained with reference to
Having been channel encoded, the channels are interleaved in an interleaver 204A, 204B. The object of the interleaving is to make error correction easier. In the interleaving, the bits are mixed with each other in a predetermined fashion, so that transitory fading on the radio path does not necessarily make the transferred information unidentifiable.
Different signals are multiplexed in block 208 so that they can be sent using the same transmitter.
The interleaved encrypted bits are then spread with a spreading code, scrambled with a scrambling code, and modulated in block 206, whose operation is described in detail in
Finally, the combined signal is conveyed to the radio frequency parts 210, which may comprise power amplifiers and bandwidth restricting filters. An analog radio signal is then transmitted through an antenna 212 to the radio path Uu.
The lower portion of
Because the signal in question is a multipath propagated signal, efforts are made to combine the signal components propagated on different multipaths in block 228, which comprises several Rake fingers.
In a so-called rowing Rake finger, delays for the different multipath propagated signal components are searched. After the delays have been found, different Rake fingers are allocated for receiving each of the multipath propagated signals by correlating the received signal with the used spreading code delayed with the found delay of that particular multipath. The different demodulated and despread multipaths of the same signal are then combined in order to obtain a stronger signal.
The received physical channel is then demultiplexed in a demultiplexer 224 into data streams of different channels. The channels are then directed each to a de-interleaver 226A, 226B, where the received physical channel is then de-interleaved. After that the physical channels are processed in a specific channel decoder 222A, 222B, where the channel coding used in the transmission is decoded. Convolutional coding is advantageously decoded with a Viterbi decoder. After this the transport channels are mapped to the logical channels in blocks 200A, 200B, or the other possibility is that the deciphering is performed for the transport channels. The channel decoded channels (logical or transport) are deciphered in blocks 220A, 220B by applying a ciphering mask to the received data. Each received logical channel can be further processed, for example, by transferring the data to the computer 122 connected with the user equipment UE. The control channels of the system are conveyed to the control unit 236 of the radio receiver.
As the ciphering is the key issue in the current invention, its principle will be next described in more detail. In Table 1 the first row represents the plain data bits that have to be transmitted to the recipient. The bits on the second row constitute a ciphering mask. The ciphering mask is applied to the plain data, usually by using the exclusive-or operation, i.e. XOR. The resulting ciphered data is on the third row. This ciphered data is sent through the air interface to the recipient. The recipient then performs deciphering by applying the same ciphering mask that has been used in the transmitter to the received data. The fourth row is a ciphering mask that is summed with the third row by using the XOR operation. The resulting recovered data is presented on the fifth row. As we will see, the recovered data is the same as the plain data.
TABLE 1
Plain data
0
1
1
1
0
1
0
0
1
1
1
0
0
1
1
1
0
0
0
Ciphering mask
0
0
1
0
1
0
1
0
0
0
1
0
0
0
0
1
1
1
1
Ciphered data
0
1
0
1
1
1
1
0
1
1
0
0
0
1
1
1
1
1
1
Ciphering mask
0
0
1
0
1
0
1
0
0
0
1
0
0
0
0
1
1
1
1
Recovered data
0
1
1
1
0
1
0
0
1
1
1
0
0
1
1
1
0
0
0
The physical channels are divided into different types, including common physical channels and dedicated physical channels.
The common physical channels are used to carry the following transport channels: PCH, BCH, RACH and FACH.
The dedicated physical channels consist of dedicated physical data channels (DPDCH) 310 and dedicated physical control channels (DPCCH) 312. The DPDCHs 310 are used to carry data 306 generated in layer two of the OSI (Open Systems Interconnection) model and layers above it, i.e. dedicated control channels (DCH). The DPCCHs 312 carry the control information generated in layer one of the OSI model. Control information comprises: pilot bits 300 used in channel estimation, feedback information (FBI) 308 transmit power-control commands (TPC) 302, and optionally a transport format combination indicator (TFCI) 304. The TFCI 304 tells the receiver the transport formats of different transport channels, i.e. Transport Format Combination, used in the current frame.
As can be seen from
The channels in the radio interface Uu are processed according to a protocol architecture comprising, according to the ISO (International Standardization Organization) OSI (Open Systems Interconnection) model, three protocol layers: a physical layer (=layer one), a data link layer (=layer two), and a network layer (=layer three). The protocol stacks are located both in the radio network subsystem RNS and in the user equipment UE. Each unit (e.g. user equipment, or radio network subsystem) has a layer which is in logical communication with a layer of another unit. Only the lowest, physical layers communicate with each other directly. The other layers always use the services offered by the next, lower layer. The message must thus physically pass in the vertical direction between the layers, and only in the lowermost layer the message passes horizontally between the layers.
The physical layer L1 offers different transport channels to the MAC sub-layer MAC and higher layers. The physical layer transport services are described by how and with what characteristics data is transferred over the radio interface. The transport channels include a Paging Channel PCH, Broadcast Channel BCH, Synchronization Channel SCH, Random Access Channel RACH, Forward Access Channel FACH, Down-link Shared Channel DSCH, Fast Up-link Signaling Channel FAUSCH, and Dedicated Channel DCH. The physical layer L1 maps transport channels with physical channels. In the FDD (Frequency Division Duplex) mode a physical channel is characterized by the code, frequency and, in the up-link, the relative phase (I/Q). In the TDD (Time Division Duplex) mode the physical channel is also characterized by the time slot.
The transport channels may be divided into common channels (where there is a need for in-band identification of the UEs when particular UEs are addressed) and dedicated channels (where the UEs are identified by the physical channel, i.e. code and frequency for the FDD and code, time slot and frequency for the TDD).
The common transport channel types are as follows. The RACH is a contention based up-link channel used for transmission of a relatively small amount of data, for example of initial access or non-real-time dedicated control or traffic data. The FACH is a common down-link channel without closed-loop power control used for transmission of a relatively small amount of data. The DSCH is a down-link channel shared by several UEs carrying dedicated control or traffic data. The BCH is a down-link channel used for broadcasting system information to an entire cell. The SCH is a down-link channel used for broadcasting synchronization information to an entire cell in the TDD mode. The PCH is a down-link channel used for broadcasting control information to an entire cell allowing efficient UE sleep mode procedures.
The dedicated transport channel types, in turn, are as follows. The DCH is a channel dedicated to one UE used in up-link or down-link. The FAUSCH is an up-link channel used to allocate dedicated channels in conjunction with the FACH. The data link layer is divided into two sub-layers: a MAC sub-layer (Medium Access Control) and a RLC sub-layer (Radio Link Control). The MAC sub-layer L2/MAC offers different logical channels to the RLC sub-layer L2/RLC. The logical channel is characterized by the type of information that is transferred. The logical channels include a Paging Control Channel PCCH, Broadcast Control Channel BCCH, Synchronization Control Channel SCCH, Common Control Channel, Dedicated Control Channel DCCH and Dedicated Traffic Channel DTCH.
The control channels are used for transfer of control plane information only. The SCCH is a down-link channel for broadcasting synchronization information in case of TDD (Time Division Duplex) operation. The BCCH is a down-link channel for broadcasting system control information. The PCCH is a down-link channel that transfers paging information. The CCCH is a bi-directional channel for transmitting control information between the network and the UEs. This channel is commonly used by the UEs having no RRC connection with the network. The DCCH is a point-to-point bi-directional channel that transmits dedicated control information between the UE and the network. This channel is established through an RRC connection setup procedure.
The traffic channels are used for the transfer of user plane information only. The DTCH is a point-to-point channel, dedicated to one UE, for the transfer of user information. A DTCH can exist in both up-link and down-link.
The MAC layer maps logical channels with transport channels. One of the functions of the MAC sub-layer is to select the appropriate transport format for each transport channel depending on the momentary source bit rate.
The third layer L3 has a RRC sub-layer (Radio Resource Control) that handles the control plane signaling of layer three between the user equipment and the network. Among the functions carried out by the RRC sub-layer are assignment, reconfiguration and release of radio resources for the RRC connection. So the RRC sub-layer handles the assignment of the radio resources required for the RRC connection, including the requirements of both the control and the user plane. The RRC layer may reconfigure radio resources during an established RRC connection.
In the present invention we are interested in the encryption of the different services' data flows of one user. According to the known techniques, all data flows would be encrypted using the same ciphering mask.
The method according to the invention for ciphering data transmission in a radio system is presented in
In block 602 a ciphering key is generated according to a known technique, for example as described in the Background of the Invention section.
In block 604A a ciphering mask is produced in a ciphering algorithm using the ciphering key as an input parameter. Also a logical channel specific parameter or a transport channel specific parameter is used as an additional input parameter to the ciphering algorithm. The logical channel specific parameter can be one of the following: a Radio Access Bearer Identifier, a Logical Channel Identifier, a Signaling Link Identifier, or some other parameter identifying the logical channel used. The transport channel specific parameter can be, for example, the Dedicated Channel Identifier, or some other parameter identifying the transport channel used.
The term ‘bearer’ is a high-level name for transmission of information used in connection with a network service. Depending on the services, information in the UMTS can usually be transmitted using one or more bearers. The services include, for example, speech transmission, data services and video service. A radio bearer, on the other hand, represents that part of the bearer which extends over the air interface. One logical channel normally carries one radio bearer. A logical channel defines the service offered by the MAC layer. A logical channel can be mapped to different types of transport channels depending on the existing service mode (either to a dedicated transport channel or common transport channels). The transport channels define the services offered by the physical layer. It is also possible to multiplex several logical channels into one transport channel in the MAC layer. The transport channels are further mapped to physical channels in the physical layer. Several transport channels can be multiplexed into one physical channel by layer 1. It is also possible that after transport channel multiplexing the data stream is divided between several physical channels.
The invention can thus be applied to a radio system whose terminals can communicate with other transceivers using one or more parallel radio bearers. Typically, when a call is established between a terminal and a network, a physical channel is first established for a Signaling Radio Bearer SRB between the terminal and the radio network subsystem, and once this channel has been established, the actual traffic bearer(s) can be established. The SRB can also be called a signaling link.
The direction of transmission (up-link/down-link) can be used as an additional input parameter to the ciphering algorithm.
Yet another parameter exists: a radio frame specific parameter can be used as an additional input parameter to the ciphering algorithm. The radio frame specific parameter can be, for example, the User Equipment Frame Number (UEFN), or some other parameter identifying the used radio frame. The radio frame specific parameter depends on the protocol layer where the ciphering function is implemented. If it is implemented in the protocol layer that is terminated in the UE and the CN, then a mechanism for conveying the used frame number to the receiving entity has to be defined. If the ciphering function is located in the MAC layer or layer 1 (or some other layer terminated in the UE and the node B or the RNC), a frame number at least partly consisting of the physical frame number can be used, which means that the used frame number need not be signaled with the data.
In block 606 ciphered data is produced by applying the ciphering mask to plain data, using for example the XOR operation as described in Table 1.
Next, an elaborated example illustrating the implementation of the ciphering method in the transmitter and in the receiver is explained in connection with
In the receiver end, the logical channel specific parameter needed for deciphering can be read from an unciphered MAC header, for example from the C/T-field of the MAC header. The structure of the MAC PDU is illustrated in
Connected with the ciphering algorithm 400 there are ciphering means 416A, 416B, 416C for producing ciphered data 418A, 418B, 418C by applying the ciphering mask 412A, 412B, 412C to the plain data 414A, 414B, 414C. As can be seen from
In block 420 the ciphered RLC-PDUs are processed through the MAC layer and mapped into one Transport Block Set, i.e. MAC PDU Set.
Another possible solution is one in which the plain data includes one Radio Link Control Layer Protocol Data Unit 414A from only one logical channel, and for said logical channel an individual ciphering mask 412A is produced. So the invention also works for the individual logical channel.
Normally a new ciphering mask is produced for each radio frame of the physical layer of the protocol stack. If interleaving is used, then a new ciphering mask can be produced for each interleaving period of the physical layer of the protocol stack. Typically one interleaving period consists of several radio frames.
The left-hand side of
In one embodiment of the invention, a Radio Link Control Layer Protocol Data Unit of at least one logical channel is already ciphered, and the step of producing ciphered data is not repeated for said already ciphered Radio Link Control Layer Protocol Data Unit. It is thus avoided that the data would be ciphered twice. Of course, if for example such end-to-end ciphering is used, the data can be ciphered twice: first by the application using the service, and then by the MAC layer according to the invention. This will cause no loss of transmission capacity, as the XOR operation does not add any extra bits, even if it is performed twice.
Another possible solution is one in which the plain data includes one Transport Block Set including a Medium Access Control Layer Protocol Data Unit of one logical channel, and for each Transport Block Set one ciphering mask is used in producing the ciphered data.
The solution of the invention is implemented in the radio system preferably by software, whereby the invention requires certain functions in the protocol processing software located in the transmitter and in the receiver, especially in blocks 204A, 204B and 226A, 226B of
The method of the invention can be implemented, for example, in the Medium Access Control Layer of the protocol stack. This is illustrated in
Even though the invention is described above with reference to an example shown in the attached drawings, it is apparent that the invention is not restricted to it, but can vary in many ways within the inventive idea disclosed in the attached claims.
Patent | Priority | Assignee | Title |
10187794, | Feb 22 2000 | Nokia Technologies Oy | Integrity check in a communication system |
10772086, | Jan 16 2001 | QUARTERHILL INC ; WI-LAN INC | Packing source data packets into transporting packets with fragmentation |
11197290, | Jan 16 2001 | Wi-LAN Inc. | Packing source data packets into transporting packets with fragmentation |
7945051, | Apr 07 2001 | LG Electronics Inc. | Method for setting up radio bearer in mobile communication system |
8014307, | Feb 22 2000 | Nokia Technologies Oy | Integrity check in a communication system |
8379855, | Jun 03 2010 | RPX Corporation | Ciphering in a packet-switched telecommunications system |
8989577, | Jun 21 2012 | Qualcomm Incorporated | Methods and systems for implementing time-division duplexing in the physical layer |
9071358, | Jun 21 2012 | Qualcomm Incorporated | Repeater fiber-coax units |
9208333, | Mar 31 2010 | British Telecommunications public limited company | Secure data recorder |
9363017, | Jul 06 2012 | Qualcomm Incorporated | Methods and systems of specifying coaxial resource allocation across a MAC/PHY interface |
Patent | Priority | Assignee | Title |
4418425, | Aug 31 1981 | IBM Corporation | Encryption using destination addresses in a TDMA satellite communications network |
4484025, | Feb 04 1980 | Licentia Patent-Verwaltungs-GmbH | System for enciphering and deciphering data |
4797921, | Nov 13 1984 | Hitachi, Ltd. | System for enciphering or deciphering data |
5016275, | Oct 28 1988 | International Business Machines Corporation | Buffered encryption/decryption |
5148485, | Jul 20 1990 | Ericsson, Inc | Encrypton system for digital cellular communications |
5185796, | May 30 1991 | MOTOROLA SOLUTIONS, INC | Encryption synchronization combined with encryption key identification |
5278906, | Dec 20 1991 | KONINKLIJKE KPN N V | System for encoding data presented with a first coding device and for decoding encoded data with a second coding device, and coding device for use in the system |
5285497, | Apr 01 1993 | Cisco Technology, Inc | Methods and apparatus for scrambling and unscrambling compressed data streams |
5319712, | Aug 26 1993 | Google Technology Holdings LLC | Method and apparatus for providing cryptographic protection of a data stream in a communication system |
5345506, | Jun 11 1992 | KDDI Corporation | Mutual authentication/cipher key distribution system |
5375169, | May 28 1993 | CROWLEY, JOHN J | Cryptographic key management method and apparatus |
5412730, | Oct 06 1989 | TQP DEVELOPMENT, LLC | Encrypted data transmission system employing means for randomly altering the encryption keys |
5455863, | Jun 29 1993 | Google Technology Holdings LLC | Method and apparatus for efficient real-time authentication and encryption in a communication system |
5500650, | Dec 15 1992 | Round Rock Research, LLC | Data communication method using identification protocol |
5537474, | Jul 29 1994 | MOTOROLA SOLUTIONS, INC | Method and apparatus for authentication in a communication system |
5544245, | Jun 10 1993 | KDDI Corporation | Mutual authentication/cipher key delivery system |
5596641, | Mar 17 1994 | KDDI Corporation | Authentication method for mobile communications |
5600722, | Oct 06 1993 | Nippon Telegraph & Telephone Corp. | System and scheme of cipher communication |
5604806, | Jan 20 1995 | Ericsson Inc | Apparatus and method for secure radio communication |
5675581, | Jul 13 1994 | Qualcomm Incorporated | Simulating user interference in a spread spectrum communication network |
5689563, | Jun 29 1993 | Google Technology Holdings LLC | Method and apparatus for efficient real-time authentication and encryption in a communication system |
5696828, | Sep 22 1995 | UT Automotive Dearborn, INC | Random number generating system and process based on chaos |
5729537, | Jun 14 1996 | TELEFONAKTIEBOLAGET L M ERICSSON PUBL | Method and apparatus for providing anonymous data transfer in a communication system |
5745575, | May 20 1996 | The United States of America as represented by the Secretary of the Army | Identification-friend-or-foe (IFF) system using variable codes |
5771288, | Apr 10 1992 | Ericsson, Inc | Multiple access coding for radio communications |
5884158, | Oct 15 1996 | Pitney Bowes Inc. | Cellular telephone authentication system using a digital certificate |
5987137, | Jun 06 1996 | Nokia Technologies Oy | Method for the encryption of data transfer |
5987139, | Sep 27 1995 | Telefonaktiebolaget LM Ericsson | Method for encryption of information |
6081600, | Oct 03 1997 | Google Technology Holdings LLC | Method and apparatus for signaling privacy in personal communications systems |
6097817, | Dec 10 1997 | Intel Corporation | Encryption and decryption in communication system with wireless trunk |
6137885, | May 21 1997 | Alcatel | Method for enabling direct encrypted communication between two terminals of a mobile radio network, and corresponding station and terminal facilities |
6178506, | Oct 23 1998 | Qualcomm Inc.; Qualcomm, Incorporated | Wireless subscription portability |
6192474, | Jul 31 1998 | WSOU Investments, LLC | Method for establishing a key using over-the-air communication and password protocol and password protocol |
6330333, | Jul 03 1995 | AT&T Corp | Cryptographic system for wireless communications |
6373946, | May 31 1996 | DBSD SERVICES LIMITED | Communication security |
6374112, | Apr 03 1998 | Telefonaktiebolaget LM Ericsson | Flexible radio access and resource allocation in a universal mobile telephone system |
6374355, | Jul 31 1998 | WSOU Investments, LLC | Method for securing over-the-air communication in a wireless system |
6453159, | Feb 25 1999 | Extreme Networks, Inc | Multi-level encryption system for wireless network |
6463055, | Jun 01 1998 | TELEFONAKTIEBOLAGET LM ERICSSON PUBL | Integrated radio telecommunications network and method of interworking an ANSI-41 network and the general packet radio service (GPRS) |
6526506, | Feb 25 1999 | Extreme Networks, Inc | Multi-level encryption access point for wireless network |
6535979, | Jan 29 1998 | Qualcomm Incorporated | Method of ciphering data transmission, and cellular radio system |
6580906, | Dec 10 1997 | Intel Corporation | Authentication and security in wireless communication system |
6618395, | May 27 1999 | Hewlett Packard Enterprise Development LP | Physical coding sub-layer for transmission of data over multi-channel media |
6690679, | Jun 16 1998 | Nokia Mobile Phones, Ltd. | Method and system for bearer management in a third generation mobile telecommunications system |
6810258, | Jan 14 1998 | Nokia Corporation | Contention resolution method in channel allocation |
6826406, | Jan 29 1998 | SISVEL INTERNATIONAL S A | Method for reconfiguring a cellular radio network connection |
6842445, | Apr 13 1999 | Nokia Technologies Oy | Retransmission method with soft combining in a telecommunications system |
6845095, | Apr 27 2001 | Unwired Planet, LLC | Efficient header handling involving GSM/EDGE radio access networks |
6882727, | Mar 08 1999 | Nokia Technologies Oy | Method of ciphering data transmission in a radio system |
6973189, | Sep 27 1995 | Telefonaktiebolaget LM Ericsson (publ) | Method of encrypting information in a TDMA mobile radio system using a modified pseudo-random sequence |
7065340, | Jun 04 1999 | Nokia Technologies Oy | Arranging authentication and ciphering in mobile communication system |
20060120530, | |||
CA2411999, | |||
EP673178A2, | |||
EP752772A2, | |||
EP757459, | |||
GB2305822, | |||
RE36946, | Dec 05 1996 | Sun Microsystems, Inc. | Method and apparatus for privacy and authentication in wireless networks |
WO9712461, | |||
WO9939525, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 01 2001 | Nokia Mobile Phones, Ltd | Nokia Corporation | MERGER SEE DOCUMENT FOR DETAILS | 016999 | /0173 | |
Dec 15 2004 | Nokia Corporation | (assignment on the face of the patent) | / | |||
Jan 16 2015 | Nokia Corporation | Nokia Technologies Oy | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 034840 | /0740 |
Date | Maintenance Fee Events |
Dec 17 2010 | ASPN: Payor Number Assigned. |
Mar 06 2013 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Mar 30 2017 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
May 31 2021 | REM: Maintenance Fee Reminder Mailed. |
Nov 15 2021 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Oct 13 2012 | 4 years fee payment window open |
Apr 13 2013 | 6 months grace period start (w surcharge) |
Oct 13 2013 | patent expiry (for year 4) |
Oct 13 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 13 2016 | 8 years fee payment window open |
Apr 13 2017 | 6 months grace period start (w surcharge) |
Oct 13 2017 | patent expiry (for year 8) |
Oct 13 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 13 2020 | 12 years fee payment window open |
Apr 13 2021 | 6 months grace period start (w surcharge) |
Oct 13 2021 | patent expiry (for year 12) |
Oct 13 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |