A microelectromechanical (MEMS) device includes a first reflective layer, a movable element, and an actuation electrode. The movable element is over the first reflective layer. The movable element includes a deformable layer and a reflective element. The actuation electrode is between the deformable layer and the reflective element.
|
17. A microelectromechanical (MEMS) device comprising:
a first reflective layer;
a movable element over the first reflective layer, the movable element comprising a deformable layer and a reflective element; and
an actuation electrode between the deformable layer and the reflective element, wherein a lower surface of the deformable layer contacts a stationary portion of the device when an actuation voltage is applied to the actuation electrode.
27. A microelectromechanical (MEMS) device comprising:
a first reflective layer;
a movable element over the first reflective layer, the movable element comprising a deformable layer and a reflective element; and
an actuation electrode between the deformable layer and the reflective element, wherein an upper surface of the reflective element contacts a stationary portion of the device when an actuation voltage is applied to the actuation electrode.
1. A microelectromechanical (MEMS) device comprising:
a first reflective layer;
a movable element over the first reflective layer, the movable element comprising a deformable layer and a reflective element; and
an actuation electrode between the deformable layer and the reflective element, wherein a voltage applied to the actuation electrode generates a first attractive force in a first direction on a first portion of the movable element and generates a second attractive force in a second direction on a second portion of the movable element, the second direction substantially opposite the first direction, the first attractive force greater than the second attractive force, the movable element responsive to the first and second attractive forces by moving generally in the first direction.
2. The MEMS device of
3. The MEMS device of
4. The MEMS device of
5. The MEMS device of
6. The MEMS device of
8. The MEMS device of
9. The MEMS device of
10. The MEMS device of
a display;
a processor that is configured to communicate with said display, said processor being configured to process image data; and
a memory device that is configured to communicate with said processor.
11. The MEMS device of
12. The MEMS device of
13. The MEMS device of
14. The MEMS device of
15. The MEMS device of
16. The MEMS device of
18. The MEMS device of
19. The MEMS device of
20. The MEMS device of
21. The MEMS device of
22. The MEMS device of
24. The MEMS device of
25. The MEMS device of
26. The MEMS device of
28. The MEMS device of
29. The MEMS device of
30. The MEMS device of
31. The MEMS device of
32. The MEMS device of
34. The MEMS device of
35. The MEMS device of
36. The MEMS device of
|
This application is a continuation-in-part of U.S. patent application Ser. No. 11/057,045, filed Feb. 11, 2005, which claims the benefit of U.S. Provisional Application No. 60/613,372, filed Sep. 27, 2004, which are incorporated herein by reference in their entirety.
Microelectromechanical systems (MEMS) include micromechanical elements, actuators, and electronics. Micromechanical elements may be created using deposition, etching, and/or other micromachining processes that etch away parts of substrates and/or deposited material layers or that add layers to form electrical and electromechanical devices. One type of MEMS device is called an interferometric modulator. As used herein, the term interferometric modulator or interferometric light modulator refers to a device that selectively absorbs and/or reflects light using the principles of optical interference. In certain embodiments, an interferometric modulator may comprise a pair of conductive plates, one or both of which may be partially transparent and capable of relative motion upon application of an appropriate electrical signal. In a particular embodiment, one plate may comprise a stationary layer deposited on a substrate, the other plate may comprise a metallic membrane separated from the stationary layer by an air gap. As described herein in more detail, the position of one plate in relation to another can change the optical interference of light incident on the interferometric modulator. Such devices have a wide range of applications, and it would be beneficial in the art to utilize and/or modify the characteristics of these types of devices so that their features can be exploited in improving existing products and creating new products that have not yet been developed.
The system, method, and devices of the invention each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this invention, its more prominent features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description of Certain Embodiments” one will understand how the features of this invention provide advantages over other display devices.
In certain embodiments, a microelectromechanical (MEMS) device comprises a first reflective layer, a movable element, and an actuation electrode. The movable element is over the first reflective layer. The movable element comprises a deformable layer and a reflective element. The actuation electrode is between the deformable layer and the reflective element.
In certain embodiments, a microelectromechanical (MEMS) device comprises means for moving a portion of the device, second means for reflecting light, and means for actuating the moving means. The moving means comprises means for deforming and first means for reflecting light. The actuating means is between the deforming means and the first reflecting means.
In certain embodiments, a method of manufacturing a microelectromechanical (MEMS) device comprises forming a first sacrificial layer over a reflective layer, forming a reflective element over the first sacrificial layer, forming a second sacrificial layer over the reflective element, forming an actuation electrode over the second sacrificial layer, forming a third sacrificial layer over the actuation electrode, forming a deformable layer over the third sacrificial layer, and removing the first, second, and third sacrificial layers. The deformable layer is mechanically coupled to the reflective element.
In certain embodiments, a method of modulating light comprises providing a display element comprising a reflective layer, a movable element over the reflective layer, and an actuation electrode. The movable element comprises a deformable layer and a reflective element. The actuation electrode is between the deformable layer and the reflective element. The method further comprises applying a voltage to the actuation electrode. The voltage generates a first attractive force in a first direction on a first portion of the movable element and generates a second attractive force in a second direction on a second portion of the movable element. The second direction is substantially opposite to the first direction. The first attractive force is greater than the second attractive force, which thereby causes the movable element to move generally in the first direction.
The following detailed description is directed to certain specific embodiments of the invention. However, the invention can be embodied in a multitude of different ways. In this description, reference is made to the drawings wherein like parts are designated with like numerals throughout. As will be apparent from the following description, the embodiments may be implemented in any device that is configured to display an image, whether in motion (e.g., video) or stationary (e.g., still image), and whether textual or pictorial. More particularly, it is contemplated that the embodiments may be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile telephones, wireless devices, personal data assistants (PDAs), hand-held or portable computers, GPS receivers/navigators, cameras, MP3 players, camcorders, game consoles, wrist watches, clocks, calculators, television monitors, flat panel displays, computer monitors, auto displays (e.g., odometer display, etc.), cockpit controls and/or displays, display of camera views (e.g., display of a rear view camera in a vehicle), electronic photographs, electronic billboards or signs, projectors, architectural structures, packaging, and aesthetic structures (e.g., display of images on a piece of jewelry). MEMS devices of similar structure to those described herein can also be used in non-display applications such as in electronic switching devices. Moreover, all figures herein have been drawn to depict the relationships between certain elements, and therefore are highly diagrammatic and should not be considered to be to scale.
In certain embodiments, an actuation electrode disposed between the reflective surface and the deformable layer of a movable element is provided. The actuation electrode is not in the optical path, which allows it to comprise a non-transparent conductor and to be thicker, thereby improving power consumption. The actuation electrode acts on the deformable layer or the reflective element depending on the distance between the actuation electrode and the deformable layer and the distance between the actuation electrode and the deformable layer or shielding between the actuation electrode and either the reflective element or the deformable layer. In some embodiments, the deformable layer, rather than the reflective surface, contacts a stationary portion of the MEMS device upon actuation, which reduces, in turn, stiction, spring constant, electrostatic force, and capacitor area, thus enabling fast and low power operation. In some embodiments, surface roughening and other anti-stiction features may be formed between the actuation electrode and the deformable layer or between the actuation electrode and an upper surface of the reflective element without impacting optical performance because the features are not in the optical path. In some embodiments, the reflective surface does not contact anything upon actuation, allowing it to be substantially smooth and flat without the danger of stiction. In some embodiments, a second actuation electrode is provided above or below the deformable layer and/or the reflective surface such that the reflective surface is stable in at least three states.
One interferometric modulator display embodiment comprising an interferometric MEMS display element is illustrated in
The depicted portion of the pixel array in
The optical stacks 16a and 16b (collectively referred to as the optical stack 16), as referenced herein, typically comprise several fused layers, which can include an electrode layer, such as indium tin oxide (ITO), a partially reflective layer, such as chromium, and a transparent dielectric. The optical stack 16 is thus electrically conductive, partially transparent, and partially reflective, and may be fabricated, for example, by depositing one or more layers of the above layers onto a transparent substrate 20. The partially reflective layer can be formed from a variety of materials that are partially reflective such as various metals, semiconductors, and dielectrics. The partially reflective layer can be formed of one or more layers of materials, and each of the layers can be formed of a single material or a combination of materials.
In some embodiments, the layers of the optical stack 16 are patterned into parallel strips, and may form row electrodes in a display device as described further below. The movable reflective layers 14a, 14b may be formed as a series of parallel strips of a deposited metal layer or layers (orthogonal to the row electrodes of 16a, 16b) deposited on top of posts 18 and an intervening sacrificial material deposited between the posts 18. When the sacrificial material is etched away, the deformable metal layers 14a, 14b are separated from the optical stacks 16a, 16b by a defined air gap 19. A highly conductive and reflective material such as aluminum may be used for the reflective layers 14, and these strips may form column electrodes in a display device.
With no applied voltage, the gap 19 remains between the movable reflective layer 14a and optical stack 16a, with the movable reflective layer 14a in a mechanically relaxed state, as illustrated by the pixel 12a in
In one embodiment, the processor 21 is also configured to communicate with an array driver 22. In one embodiment, the array driver 22 includes a row driver circuit 24 and a column driver circuit 26 that provide signals to a display array or panel 30. The cross section of the array illustrated in
In typical applications, a display frame may be created by asserting the set of column electrodes in accordance with the desired set of actuated pixels in the first row. A row pulse is then applied to the row 1 electrode, actuating the pixels corresponding to the asserted column lines. The asserted set of column electrodes is then changed to correspond to the desired set of actuated pixels in the second row. A pulse is then applied to the row 2 electrode, actuating the appropriate pixels in row 2 in accordance with the asserted column electrodes. The row 1 pixels are unaffected by the row 2 pulse, and remain in the state they were set to during the row 1 pulse. This may be repeated for the entire series of rows in a sequential fashion to produce the frame. Generally, the frames are refreshed and/or updated with new display data by continually repeating this process at some desired number of frames per second. A wide variety of protocols for driving row and column electrodes of pixel arrays to produce display frames are also well known and may be used in conjunction with the present invention.
In the
The display device 40 includes a housing 41, a display 30, an antenna 43, a speaker 45, an input device 48, and a microphone 46. The housing 41 is generally formed from any of a variety of manufacturing processes as are well known to those of skill in the art, including injection molding and vacuum forming. In addition, the housing 41 may be made from any of a variety of materials, including, but not limited to, plastic, metal, glass, rubber, and ceramic, or a combination thereof. In one embodiment, the housing 41 includes removable portions (not shown) that may be interchanged with other removable portions of different color, or containing different logos, pictures, or symbols.
The display 30 of exemplary display device 40 may be any of a variety of displays, including a bi-stable display, as described herein. In other embodiments, the display 30 includes a flat-panel display, such as plasma, EL, OLED, STN LCD, or TFT LCD as described above, or a non-flat-panel display, such as a CRT or other tube device, as is well known to those of skill in the art. However, for purposes of describing the present embodiment, the display 30 includes an interferometric modulator display, as described herein.
The components of one embodiment of exemplary display device 40 are schematically illustrated in
The network interface 27 includes the antenna 43 and the transceiver 47 so that the exemplary display device 40 can communicate with one or more devices over a network. In one embodiment, the network interface 27 may also have some processing capabilities to relieve requirements of the processor 21. The antenna 43 is any antenna known to those of skill in the art for transmitting and receiving signals. In one embodiment, the antenna transmits and receives RF signals according to the IEEE 802.11 standard, including IEEE 802.11(a), (b), or (g). In another embodiment, the antenna transmits and receives RF signals according to the BLUETOOTH standard. In the case of a cellular telephone, the antenna is designed to receive CDMA, GSM, AMPS, or other known signals that are used to communicate within a wireless cell phone network. The transceiver 47 pre-processes the signals received from the antenna 43 so that they may be received by and further manipulated by the processor 21. The transceiver 47 also processes signals received from the processor 21 so that they may be transmitted from the exemplary display device 40 via the antenna 43.
In an alternative embodiment, the transceiver 47 can be replaced by a receiver. In yet another alternative embodiment, network interface 27 can be replaced by an image source, which can store or generate image data to be sent to the processor 21. For example, the image source can be a digital video disc (DVD) or a hard-disc drive that contains image data, or a software module that generates image data.
Processor 21 generally controls the overall operation of the exemplary display device 40. The processor 21 receives data, such as compressed image data from the network interface 27 or an image source, and processes the data into raw image data or into a format that is readily processed into raw image data. The processor 21 then sends the processed data to the driver controller 29 or to frame buffer 28 for storage. Raw data typically refers to the information that identifies the image characteristics at each location within an image. For example, such image characteristics can include color, saturation, and grayscale level.
In one embodiment, the processor 21 includes a microcontroller, CPU, or logic unit to control operation of the exemplary display device 40. Conditioning hardware 52 generally includes amplifiers and filters for transmitting signals to the speaker 45, and for receiving signals from the microphone 46. Conditioning hardware 52 may be discrete components within the exemplary display device 40, or may be incorporated within the processor 21 or other components.
The driver controller 29 takes the raw image data generated by the processor 21 either directly from the processor 21 or from the frame buffer 28 and reformats the raw image data appropriately for high speed transmission to the array driver 22. Specifically, the driver controller 29 reformats the raw image data into a data flow having a raster-like format, such that it has a time order suitable for scanning across the display array 30. Then the driver controller 29 sends the formatted information to the array driver 22. Although a driver controller 29, such as a LCD controller, is often associated with the system processor 21 as a stand-alone Integrated Circuit (IC), such controllers may be implemented in many ways. They may be embedded in the processor 21 as hardware, embedded in the processor 21 as software, or fully integrated in hardware with the array driver 22.
Typically, the array driver 22 receives the formatted information from the driver controller 29 and reformats the video data into a parallel set of waveforms that are applied many times per second to the hundreds and sometimes thousands of leads coming from the display's x-y matrix of pixels.
In one embodiment, the driver controller 29, array driver 22, and display array 30 are appropriate for any of the types of displays described herein. For example, in one embodiment, driver controller 29 is a conventional display controller or a bi-stable display controller (e.g., an interferometric modulator controller). In another embodiment, array driver 22 is a conventional driver or a bi-stable display driver (e.g., an interferometric modulator display). In one embodiment, a driver controller 29 is integrated with the array driver 22. Such an embodiment is common in highly integrated systems such as cellular phones, watches, and other small area displays. In yet another embodiment, display array 30 is a typical display array or a bi-stable display array (e.g., a display including an array of interferometric modulators).
The input device 48 allows a user to control the operation of the exemplary display device 40. In one embodiment, input device 48 includes a keypad, such as a QWERTY keyboard or a telephone keypad, a button, a switch, a touch-sensitive screen, or a pressure- or heat-sensitive membrane. In one embodiment, the microphone 46 is an input device for the exemplary display device 40. When the microphone 46 is used to input data to the device, voice commands may be provided by a user for controlling operations of the exemplary display device 40.
Power supply 50 can include a variety of energy storage devices as are well known in the art. For example, in one embodiment, power supply 50 is a rechargeable battery, such as a nickel-cadmium battery or a lithium ion battery. In another embodiment, power supply 50 is a renewable energy source, a capacitor, or a solar cell including a plastic solar cell, and solar-cell paint. In another embodiment, power supply 50 is configured to receive power from a wall outlet.
In some embodiments, control programmability resides, as described above, in a driver controller which can be located in several places in the electronic display system. In some embodiments, control programmability resides in the array driver 22. Those of skill in the art will recognize that the above-described optimizations may be implemented in any number of hardware and/or software components and in various configurations.
The details of the structure of interferometric modulators that operate in accordance with the principles set forth above may vary widely. For example,
In embodiments such as those shown in
The response time for discharging and charging an interferometric modulator is dependent in part on an RC (resistance-capacitance) time constant for the voltage circuit connected to the interferometric modulator. This response time of the interferometric modulator has an effect on the display quality of the interferometric modulator array. When the time between incoming scan pulses received by a given interferometric modulator is shorter than the response time of the interferometric modulator, the moving layer is unable to synchronize with the incoming scan pulses. Under such conditions, the state of the interferometric modulator does not respond to each and every scan pulse, thereby resulting in a degraded displayed image. It is therefore desirable to provide an interferometric modulator with a reduced response time to allow for faster scan and refresh rates.
The voltage circuit connected to an interferometric modulator comprises the electrodes of the interferometric modulator, as well as the contacts, conductors, and other conductive elements which provide electrical connections between the electrodes and the row/column driver electronics. In certain embodiments, the materials and geometries of the electrodes of the interferometric modulator impact the RC time constant for the voltage circuit. In certain array configurations, the electrodes of adjacent interferometric modulators are coupled together in series to connect adjacent interferometric modulators with the driver electronics, resulting in higher RC time constants. For other array configurations, wires or other electrical connectors may be utilized for the electrical connections between the row and column drivers and the electrodes of the interferometric modulators, with these wires contributing to the RC time constants of the interferometric modulators.
In certain embodiments, as shown in
In certain embodiments, the second electrode layer 1302 of each modulator comprises at least a portion of the moving layer above the first electrode layer 902. In the embodiment schematically illustrated by
In certain embodiments, as schematically illustrated by
In certain embodiments, each modulator of the array further comprises a conductive bus layer. At least a portion of the conductive bus layer is electrically coupled to at least one of the first electrode layer 902 and the second electrode layer 1302. The reflective surface 901 moves between the first position and the second position in response to a voltage applied to the conductive bus layer.
The conductive bus layer 600 of certain embodiments comprises a conductive material, including but not limited to, metals, composites, and alloys. Exemplary conductive materials for the conductive bus layer 600 include, but are not limited to, titanium, chromium, nickel, and aluminum. In certain embodiments, the thickness of the conductive bus layer 600 is in a range between about 0.1 micron and about 2 microns (μm) measured in a direction that is parallel to the direction 903 in
In certain embodiments, as shown in
In the exemplary embodiment illustrated in
Advantageously, for the embodiments schematically illustrated by
The conductive bus layer 600 of certain embodiments is positioned at various locations relative to the other portions of the display of interferometric modulators. In certain embodiments, as schematically illustrated by
In certain embodiments, each conductive bar 800 provides electrical connections between a column driver and the second electrode layers 1302 of the corresponding column of modulators. In certain embodiments, each conductive bus layer 800 is electrically connected to the corresponding second electrode layers 1302 at one or more locations. As illustrated in
The conductive bus layer 900 of certain such embodiments electrically connects a row driver and the first electrode layers 902 of a corresponding row of interferometric modulators. The row driver selectively applies voltages through the conductive bus layer 900 to the first electrode layers 902 of the interferometric modulators of a row of the display. The conductive bus layer 900 provides an electrical path that has significantly lower electrical resistance than configurations which electrically connect rows of interferometric modulators only through the first electrode layers 902.
The material for the conductive bus layer 1000 is selected to enhance the conductivity across the first electrode layers 902. In certain embodiments, the conductive bus layer 1000 comprises aluminum or other conductive material. Unlike the first electrode layers 902 of certain embodiments, the material selected for the conductive bus layer 1000 may be opaque. In certain embodiments, the conductive bus layer 1000 has a width in a range between about 4 microns and about 10 microns measured in a direction that is perpendicular to the direction 903 in
In certain embodiments, a dielectric layer 906 is located between the conductive bus layer 1000 and the reflective surface layers 901. The dielectric layer 906 of certain such embodiments advantageously prevents contact between the conductive bus layer 1000 and the reflective surface layer 901 of the interferometric modulator.
In certain embodiments, locating the conductive bus layer 1000 below the reflective surface layer 901 may adversely impact the optical performance of the interferometric modulator by blocking at least a portion of the incoming and reflected light of the interferometric modulator. To reduce the visual impact of the conductive bus layer 1000 on the optical performance of the interferometric modulator, conductive bus layers 1000 with smaller widths measured in a direction that is perpendicular to the direction 903 in
In
In certain embodiments, the lower resistance path provided by the conductive bus layers advantageously reduces the RC time constant of the circuit. Exemplary RC times for a plurality of interferometric modulators having their first electrode layers 902 electrically coupled in series can range from about 5 microseconds to about 100 microseconds, depending on the number of interferometric modulators. This same plurality of interferometric modulators may have a resistance of as high as about 30-50 ohms per square centimeter (Ω/cm2). The use of the conductive bus layers 1100, 1102 to electrically connect row and column drivers to the corresponding first electrode layers 902 and second electrode layers 1302 of the plurality of interferometric modulators, respectively, can reduce the electrical resistance of the circuit, thereby reducing the RC time constant.
Method of Manufacture Conductive Bus Over the Mechanical Layer
An exemplary series of processing steps for forming a conductive bus structure located above a second electrode layer 1302 is schematically illustrated in
A dielectric (e.g., silicon dioxide) layer 906 is formed over the metal layer 904, the first electrode layer 902, and the oxide layer 1802, as illustrated in
For example, in certain embodiments, a first sacrificial layer is deposited, masked and patterned, with the first sacrificial layer defining the area of a first modulator. A second sacrificial layer is then be deposited and patterned to define the combined area of the first modulator defined above and a second modulator. The combined thicknesses of the first sacrificial layer and the second sacrificial layer in the area of the first interferometric modulator is larger than the thickness of the second sacrificial layer in the area of the second interferometric modulator. Subsequently, in certain embodiments, a third sacrificial layer is formed over the second sacrificial layer defining the combined area of the first, second, and third interferometric modulator for each set of colored interferometric modulators. This third sacrificial layer need not be patterned in certain embodiments, since its thickness will be included in all three of the modulators of the set of colored interferometric modulators.
The three individual sacrificial layers described here may be of different thicknesses. In this way, the first modulator of the set of colored interferometric modulators would have a cavity depth equal to the combined thicknesses of the three sacrificial layers. The second modulator of the set of colored interferometric modulators would have a cavity depth equal to the combined thicknesses of two of the three sacrificial layers. The third modulator of the set of colored interferometric modulators would have a cavity depth equal to the thickness of one of the three sacrificial layers. When the sacrificial layers are removed, the cavity dimensions will vary according to the various combined thicknesses of the three sacrificial layers, resulting in three different colors such as red, green, and blue.
In
In
In
In
Alone, or in combination with the features described above, the capacitance of the interferometric modulators can be reduced. Reducing the capacitance of the circuit reduces the RC time constant.
Refresh Rate
The time required to charge and discharge or change the applied voltage across the first electrode layer 902 and the second electrode layer 1302 can affect the refresh rate of the display. For example, a decrease in the reaction time of the second electrode layer 1302 to changes in the applied voltage allows the display to refresh in less time. A faster refreshing display can provide a less noticeable transition between subsequent frames.
Image Resolution
In certain embodiments, the use of a conductive bus structure comprising complex routing lines along the backside of an array of interferometric modulators improves grayscale display techniques. Techniques for displaying a grayscale image include subdividing the pixels into a plurality of interferometric modulators or smaller sub-pixels. By having more sub-pixels in each pixel, deeper grayscales can be achieved. However, increasing the number of sub-pixels increases the complexity of the required routing to the row and column drivers located at the perimeter of the display array.
In certain embodiments, the use of a conductive bus structure improves the grayscale display. In temporal modulation, each interferometric modulator of a grayscale image is pulsed or rapidly refreshed so that the viewer perceives the display to be exhibiting variations in intensity level. In certain embodiments, the refresh or modulation rate of the interferometric modulator is increased with the incorporation of one or more of the modifications described above. The refresh rate can be calculated by the following calculation:
τline=τrc+τinterferometric modulator
where, τline is the time to update one line; τrc is the RC time for the line; and τinterferometric modulator is the mechanical response time of the interferometric modulator. Then:
τrefresh=nrows×τline
where, τrefresh is the time it takes to update the entire screen; and nrows is the number of rows on the display. Then:
where: Screen Refresh Rate is the update rate of the entire display, typically in Hz.
Thus, as τrc is decreased with the use of the conductive bus, τline decreases and τrefresh decreases. As τrefresh decreases, the Screen Refresh Rate increases and enhances temporal modulation.
Referring back to
The thickness of the first electrode layer 902 may vary. In certain embodiments, the thickness may be between about 300 angstroms and about 2,000 angstroms measured in a direction that is parallel to the direction 903 in
A material with a low dielectric constant can be selected for the dielectric material 906 that separates the first electrode layer 902 from the second electrode layer 1302. The dielectric material 906 electrically insulates the second electrode layer 1302 from the first electrode layer 902, allowing a charge or voltage to be stored between the first and second electrode layers 902, 1302. The dielectric layer 906 further allows the voltage or charge to form an electro-static force that acts upon the second electrode layer 1302. A material for the dielectric layer 906 having a low dielectric constant advantageously reduces the RC time constant of the electrical circuit. For example, a low dielectric constant, k, material can have a lower dielectric constant than a dielectric made from silicon dioxide (3.8). In certain embodiments, the dielectric constant of the dielectric layer 906 is as low as about 2.0.
Reduce Capacitance
Different and additional materials can be added to reduce the capacitance of the electrical circuit. In certain embodiments, the material selected for the dielectric layer 906 can reduce the capacitance of the electrical circuit. These materials include spun-on-glass, SiN, SiO2, Al2O3, and composites of one or more of these materials.
In certain embodiments, as illustrated in
In certain embodiments of interferometric modulators, the reduction in capacitance due to the addition of the second dielectric layer 104 is a function of the thicknesses of the dielectric layer 906 and the second dielectric layer 104 when the reflective surface 901 is in the “near” position. In certain embodiments, the two dielectric layers 906, 104 comprise the same material, while in other embodiments, the two dielectric layers 906, 104 comprise different materials. The capacitance of an interferometric modulator can be approximated by the equation below when the dielectric layer 906 and the second dielectric layer 104 are the same material.
In certain embodiments, the thickness of the dielectric layer 906 may vary. For example, as illustrated in
In certain embodiments, only the peripheral portion contributes to the electrically active area of the first electrode layer 902. In certain such embodiments, the peripheral portions are electrically connected to a conductive bus structure. In certain other embodiments, only the center portion contributes to the electrically active area of the first electrode layer 902. In certain such embodiments, the center portions are electrically connected to a conductive bus structure.
In certain embodiments, a MEMS device comprises a first reflective layer, a movable element over the first reflective layer, and an actuation electrode. The movable element comprises a deformable layer and a reflective element. As described above, in certain embodiments the optical properties of the movable element are separated from the mechanical properties of the movable element (e.g., by providing a deformable layer and a reflective element). In certain embodiments, the optical properties of the movable element are separated from the electrical properties of the movable element as well as the mechanical properties of the movable element by positioning the actuation electrode between the deformable layer and the reflective element.
In the embodiments illustrated in
As illustrated in
In
In the embodiments illustrated in
Electrostatic forces are due to electrical potential differences. In embodiments in which the movable element 2220 comprises an insulating connecting element 2219, the potential of the reflective element 914 can be about zero when the potential of the deformable layer 1302 is not zero. In certain such embodiments, the electrostatic forces acting on the deformable layer 1302 in response to voltages applied to the actuation electrode 902 may selectively be larger than the electrostatic forces acting on the reflective element 914 in response to voltages applied to the actuation electrode 902. Thus, the movable element 2220 may be configured to actuate towards first reflective layer 904 in response to voltages applied to the actuation electrode 902. Moreover, the area of a capacitor (e.g., between the actuation electrode 902 and deformable layer 1302) can be advantageously small, thereby taking less time to discharge than large capacitors (e.g., between reflective elements and actuation electrodes in the optical path), which can decrease response time. However, in embodiments in which the reflective element 914 is electrically insulated from the deformable layer 1302 or other structures, the reflective element 914 may become charged, thereby creating an electrostatic force itself In some embodiments, the reflective element 914 is coated (e.g., with plastic) to selectively dissipate electrostatic discharge.
In embodiments in which the deformable layer 1302 is in electrical communication with the reflective element 914 (e.g., due to a conductive connecting element 2218 and/or conductive connecting element 2219), the deformable layer 1302 and the reflective element 914 are at the same potential. In certain such embodiments, when a voltage is applied to the actuation electrode 902, a first attractive force in a first direction (e.g., towards the reflective element 914) acts on a first portion of the movable element 2220 (e.g., the deformable layer 1302) and a second attractive force in a second direction (e.g., away from the reflective element 914) acts on a second portion of the movable element 2220 (e.g., the reflective element 914). In certain other such embodiments, when a voltage is applied to the actuation electrode 902, a first attractive force in a first direction (e.g., away from the reflective element 914) acts on a first portion of the movable element 2220 (e.g., the reflective element 914) and a second attractive force in a second direction (e.g., towards the reflective element 914) acts on a second portion of the movable element 2220 (e.g., the deformable layer 1302). The second direction is substantially opposite to the first direction. In embodiments in which the first attractive force is greater than the second attractive force, the movable element 2220 is responsive to the first and second attractive forces by moving generally in the first direction, for example in a direction generally perpendicular to substrate 1106.
Other embodiments of MEMS devices comprising an actuation electrode 902 between a deformable layer 1302 and a reflective element 914 are also possible. For example, a MEMS device may comprise a connecting element 2219 as well as support structures 2202. Additionally, while not depicted in
In certain embodiments described above in which the MEMS device comprises an actuation electrode 902 in the optical path and an insulating layer 906, and in which the reflective surface 901 of the reflective element 914 contacts the top surface 905 of the insulating layer 906 in the actuated state, the area of contact includes a dielectric layer. To avoid trapping charges in the dielectric layer, the polarity of the voltages applied to the actuation electrode 902 and the movable element can be alternately switched. Switching polarity dissipates charge, but consumes power. However, in certain embodiments in which the MEMS device 2210 does not comprise the insulating layer 906 and in which the reflective surface 901 of the reflective element 914 contacts the top surface 905 of the first reflective layer 904 in the actuated state, the contact is advantageously free of an electric field. As such, the voltages applied to the actuation electrode 902 and the movable element 2220 may remain the same, which advantageously saves power.
Referring again to
In certain embodiments, the percentage difference between the distances D1, D2 is greater than about 5%, greater than about 10%, greater than about 15%, or greater than about 20%. The difference between the distances D1, D2 should be balanced with certain other factors, for example the optical interference properties (e.g., the reflected color) and the thickness of the MEMS device, which also depend on the distances D1, D2. Once there is some amount of imbalance (i.e., a suitable difference between the distances D1, D2), application of voltages to the actuation electrode 902 will attract the portion of the movable element 2220 with the shorter distance towards the actuation electrode 902, thereby decreasing that distance while also increasing the distance from the portion of the movable element 2220 with the larger distance. Thus, even in embodiments having a small amount of imbalance (e.g., due to distance differences below about 10%), the electrostatic forces can suitably cause actuation of the movable element 2220.
Regardless of the distances between the actuation electrode 902 and the first and second portions of the movable element 2220, electrostatic forces may be at least partially reduced by a conductive layer that shields at least a portion of the voltage difference between the actuation electrode 902 and the movable element 2220. For example, shielding the first portion of the movable element 2220 from the actuation electrode 902 can cause the electrostatic forces to act more substantially on the second portion of the movable element 2220. If the first portion of the movable element 2220 that is at least partially shielded from the actuation electrode 902 comprises the reflective element 914, application of voltages to the actuation electrode 902 will cause the movable element 2220 to move towards the first reflective layer 904. If the first portion of the movable element 2220 that is at least partially shielded from the actuation electrode 902 comprises the deformable layer 1302, application of voltages to the actuation electrode 902 will cause the movable element 2220 to move away from the first reflective layer 904. In certain such embodiments, shielding can reduce the thickness of a display device comprising the MEMS device 2200 because there does not need to be a difference between the distances D1, D2, although shielding may also increase design complexity and fabrication costs.
As described above, insulating the reflective element 914 from the deformable layer 1302 with a connecting element 2219 (e.g., certain embodiments described with respect to
In order to ensure that the displacement in response to voltages applied between the actuation electrode 902 and the movable element 2220 occurs substantially only in the movable element 2220 (e.g., due to deformation of the deformable layer 1302) and substantially not in the actuation electrode 902, the actuation electrode 902 is preferably stiff or rigid. The stiffness of a layer is proportional to the cube of the thickness of the layer. In certain embodiments, the actuation electrode 902 has a thickness such that it substantially does not deform. For example, in embodiments in which the actuation electrode 902 comprises aluminum, the actuation electrode may have a thickness greater than about 2.15 times the thickness of the deformable layer 1302. It will be appreciated that other dimensions (e.g., length and width) may also influence the rigidity of the actuation electrode 902.
The thickness of the insulating layer 2254 is included in the distance from the conductive portion 2252 of the actuation electrode 902 to the deformable layer 1302, D1 (e.g., when formed over the conductive portion 2252, as depicted in
Combinations of the illustrated MEMS devices 2200, 2205 are also possible. For example, the actuation electrode 902 of the MEMS device 2200 may comprise a plurality of cantilevers extending from the support structures 2202. For another example, the actuation electrode 902 of the MEMS device 2205 may be substantially planar and include the aperture 242. Other configurations in which the actuation electrode 902 is connected in rows are also possible (e.g., comprising planar strips supported by support structures 902 and having a gap therebetween through which the deformable layer 1302 may be mechanically coupled to the reflective element 914).
As described above, the response time of a MEMS device is proportional to a product of the resistance of the conductors and the capacitance. A MEMS device comprising an actuation electrode 902 between the deformable layer 1302 and the reflective element 914 may advantageously reduce resistance and/or and capacitance, thereby reducing response time. Reducing the response time can increase the screen refresh rate and enhance temporal modulation. In addition to decreasing response time, reducing the capacitance of the MEMS device can decrease the power consumption of the MEMS device.
In embodiments in which the actuation electrode 902 is in the optical path of the MEMS device (e.g., as depicted in
Certain transparent conductors such as ITO are sensitive to high temperature processes, such that the maximum processing temperature of the MEMS device is limited after formation of the actuation electrode 902. For example, ITO degrades at temperatures around 350° C. and higher, increasing the resistivity of an actuation electrode 902 comprising ITO. As such, certain processes (e.g., chemical vapor deposition (CVD) greater than 350° C.) are not typically performed on structures comprising ITO. However, MEMS devices comprising an actuation electrode 902 between the deformable layer 1302 and the reflective element 914 may have an actuation electrode 902 comprising a variety of conductors that can withstand high temperature processing, which increases process flexibility for components of the MEMS device. For example, certain depositions (e.g., deposition of the support structures 202) can be performed at high temperatures. For another example, certain deposition processes may be CVD rather than physical vapor deposition (PVD) (e.g., sputter), which can enhance deposition conformality and uniformity.
The thickness of an actuation electrode 902 in the optical path is limited in order to avoid adversely impacting the optical properties of the MEMS device, but an actuation electrode 902 between the deformable layer 1302 and the reflective element 914 may have a variety of thicknesses because it is not in the optical path. Increasing the thickness of the actuation electrode 902 can, for example, advantageously increase conductivity, thereby reducing response time and/or power consumption of the MEMS device. Moreover, thick actuation electrodes 902 enable the use of alternative deposition methods (e.g., coating, inkjet printing, printable conductors), which can lower manufacturing costs.
In embodiments in which the actuation electrode 902 is in the optical path of the MEMS device such that it pulls the reflective element 914 towards the first reflective layer 904, the reflective element 914 generally contacts the top surface 905 of the substrate 1106 (e.g., the top surface 905 of an insulating layer 906 on the substrate 1106) because the top surface 905 of the substrate 1106 acts as a “stop” for movement of the movable element 2220. In embodiments in which the reflective surface 901 of the reflective element 914 and the top surface 905 of the substrate 1106 are flat (e.g., to enhance color gamut), stiction (static friction) between the surfaces may disadvantageously affect operation of MEMS devices in which they contact. Certain features, such as surface roughening and anti-stiction layers, may be used to reduce such stiction, but those features can adversely impact the optical performance of the MEMS device. However, an actuation electrode 902 between the deformable layer 1302 and the reflective element 914 allows configuration of the MEMS device such that a portion of the movable element 2220 contacts the actuation electrode 902 (i.e., the actuation electrode 902 acts as the stop for movement of the movable element 2220 rather than the top surface 905 of the substrate 1106). The interface where the portion of the movable element 2220 contacts the actuation electrode 902 can be advantageously adapted to reduce stiction without impacting optical performance because it is not in the optical path. For example, the surface topography of the insulating layer 2254 may be roughened to reduce the number of contact points or an anti-stiction layer may be formed on the actuation electrode 902.
Transparent actuation electrodes 902 are generally under the entire reflective surface 901 of the reflective element 914 (e.g., as depicted in
A MEMS device in which the capacitor comprises the actuation electrode 902 and either portions of a lower surface of the deformable layer 1302 or portions of an upper surface of the reflective element 914 (e.g., as depicted in
In certain embodiments, the MEMS device can be configured to produce black by contacting the insulating layer 906 having a thickness of between about 90 and 110 nm (e.g., about 100 nm) with the reflective surface 901 of the reflective element 914. However, high reflectivity broadband white, in which the distance between the first and second reflective layers of a MEMS device is negligible (e.g., less than about 100 Å), is not possible in embodiments in which the actuation electrode 902 is in the optical path because electrical shorts may occur between the actuation electrode 902 and the reflective element 914 when the insulating layer 906 is that thin.
In the embodiments illustrated in
In embodiments in which the MEMS device is configured such that the reflective element 914 and the first reflective layer 904 contact or nearly contact so as to produce broadband white, the reflective element 914 and the first reflective layer 904 are preferably at the same potential in order to decrease any electrostatic forces or electric field therebetween that may cause arcing. In certain embodiments, the reflective element 914 is in electrical communication with the first reflective layer 904 through the deformable layer 1302 such that they are at the same potential. In certain embodiments, the reflective element 914 is electrically insulated from the deformable layer 1302 (e.g., using a dielectric connecting element 2219) and the first reflective layer 904 is also electrically insulated, such that they are at the same potential. In order to reduce stiction between the reflective element 914 and the first reflective layer 904 in embodiments in which they contact, conductive features (e.g., bumps) may be applied to the first reflective layer 904 and/or the reflective surface 901, although such features may negatively impact optical performance of the MEMS device.
In certain embodiments in which actuation of the MEMS device causes the reflective element 914 to move away from the first reflective layer 904 (e.g., as depicted in
The amount of distance between the reflective element 914 and the top surface 905 of the substrate 1106 is proportional to the amount of fluid (e.g., air) in the cavity between the reflective element 914 and the top surface 905 of the substrate 1106. In certain embodiments of the MEMS device 2200 in which first portion of the movable element 2220 comprises the deformable layer 1302 and in which the reflective element 914 does not contact the top surface 905 of the substrate 1106 in the actuated state (e.g., because a lower surface of the deformable layer 1302 stops the movement of the movable element 2220), the distance between the reflective element 914 and the top surface 905 of the substrate 1106 becomes very small. For example, the distance is typically small in embodiments that can produce high reflectivity broadband white (e.g., because the distance is less than about 100 Å). Certain such small distances can affect the flow of the fluid (e.g., air) around the reflective element 914 during movement (e.g., actuation) because some fluid may not have sufficient space to move around the sides of the reflective element 914 and may instead may become compressed between the reflective element 914 and the top surface 905 of the substrate 1106. In certain embodiments, the apertures 2504 in the reflective element 914 provide an additional path for the fluid occupying the cavity between the reflective element 914 and the top surface 905 of the substrate 1106 to flow from below the reflective element 914 to above the reflective element 914 during movement (e.g., actuation). Thus, the at least one aperture 2504 can increase the speed of the MEMS device 2200. However, the portion of the reflective element 914 comprising the at least one aperture 2504 is not reflective, which reduces the fill factor of the MEMS device 2200.
In embodiments in which the reflective element 914 does not contact the top surface 905 of the substrate 1106, the reflective surface 901 of the reflective element 914 is preferably substantially smooth and flat, for example to increase color gamut. In some embodiments, the reflective surface 901 is made substantially smooth and flat by forming the reflective element 914 on a smooth and flat sacrificial layer 2502 (e.g., comprising photoresist) or by polishing a sacrificial layer 2502 (e.g., comprising molybdenum) prior to formation of the reflective element 914. The reflective surface 901 of the reflective element 914 may also be smooth and flat in embodiments in which the reflective element 914 contacts the top of the substrate 1106 (e.g., the top surface 905 of a 100 nm thick insulating layer 906 to create black or the top surface 905 of the first reflective layer 904 to create broadband white), although the possible effects of stiction are considered in such embodiments (e.g., by adding insulating or conductive bumps).
In some embodiments (e.g., as depicted in
In embodiments in which the movable element 2220 is configured to move towards the first reflective layer 904 upon actuation, an insulating layer 2254 may be formed on the top of the conductive portion 2252 of the actuation electrode 902 (e.g., as depicted in
In embodiments in which the movable element 2220 is configured to move away from the first reflective layer 904 upon actuation, an insulating layer 2254 may be formed on the bottom of the conductive portion 2252 of the actuation electrode 902 where contact is made with an upper surface of the reflective element 914. In certain such embodiments, the bottom surface of the actuation electrode 902 may be roughened to reduce the number of contact points in order to decrease stiction with the reflective element 914. Other layers (e.g., an anti-stiction layer) may also be formed on the bottom of the actuation electrode 902.
The support structure 2202 preferably comprises a rigid material. For example, in some embodiments, one or more of the layers 2252, 2254 of the actuation electrode 902 (e.g., as illustrated in
In embodiments in which an insulating or other layer has been formed on the top surface of the reflective element 914, the aperture 2510 may allow for removal of such layers without additional patterning. For example, in embodiments in which the movable element 2220 is configured to move away from the first reflective layer 904 upon actuation, and an insulating layer is deposited on an upper surface of the reflective element 914, the aperture 2510 may be used as a mask to remove the portion of the insulating layer therebelow (e.g., to allow electrical connection to a connecting element 2218). It will be appreciated that care should be taken to protect the reflective element 914 during etching of the actuation electrode 902 where appropriate (e.g., in embodiments in which the reflective element 914 is exposed during such formation).
In certain embodiments, along with any insulating layers 2254 as described above, the thicknesses of the second sacrificial layer 2506 defines the distance D2, and the thickness of the third sacrificial layer 2508 defines the distance D1. Thus, the thicknesses D1, D2 may be adjusted so as to cause the movable element 2220 to towards or away from the first reflective layer 904. The thicknesses of the sacrificial layers 2502, 2506, 2508 may also be configured such that a portion of the movable element 2220 does or does not contact the top of the substrate 1106 during the actuated or relaxed states.
In the embodiments illustrated in
When voltages are applied to the second actuation electrode 2808, electrostatic forces act on the movable element 2220. In response, the deformable layer 1302 flexes towards the second actuation electrode 2808. The reflective element 914 is mechanically coupled to the deformable layer 1302 such that, as the deformable layer 1302 moves towards the second actuation electrode 2808, the reflective element 914 moves a corresponding distance relative to and away from the first reflective layer 904. A stationary portion of the MEMS device acts as a stop for movement of the movable element 2220.
In certain embodiments (e.g., embodiments in which an upper surface of the reflective element 914 contacts the actuation electrode 902), the actuation electrode 902 comprises the stationary portion (e.g., as illustrated on the right side of
In certain alternative embodiments (e.g., in which an upper surface of the deformable layer 1302 acts as a stop), the second actuation electrode 2808 or an insulating layer 2806 comprises the stationary portion. In some embodiments, an insulating layer 2806 insulates the movable element 2220 from the second actuation electrode 2808. In some embodiments, an insulating layer formed on an upper surface of the deformable layer 1302 (not shown) insulates the movable element 2220 from the second actuation electrode 2808.
The movable element 2220 is responsive to voltages applied to the actuation electrode 902 by moving generally in a first direction, as described above. In embodiments in which the second actuation electrode 2808 provides the forces to move the movable element 2220 away from the first reflective layer 904, the actuation electrode 902 is configured such that the movable element 2220 moves towards the first reflective layer 904 when voltages are applied to the actuation electrode 902 (e.g., by positioning the actuation electrode 902 closer to the deformable element 1302 than the reflective element 914, by shielding the reflective element 914 with a conductive layer 2258, etc.).
The second actuation electrode 2808 preferably comprises a non-transparent conductive material, for example for the electrical properties described above. The second actuation electrode 2808 is positioned above the reflective surface 901 of the reflective element 914 such that the second actuation electrode 2808 is not in the optical path of the MEMS device, so it may comprise a non-transparent conductive material. As such, the MEMS devices 2800, 2805, 2810 are capable of producing high-reflectivity colors including broadband white.
An example embodiment of a method of manufacturing the MEMS devices of
In the embodiments illustrated in
When voltages are applied to the second actuation electrode 908, electrostatic forces act on the movable element 2220. In response, the deformable layer 1302 flexes towards the actuation electrode 908. The reflective element 914 is mechanically coupled to the deformable layer 1302 such that, as the deformable layer 1302 moves towards the actuation electrode 2808, the reflective element 914 moves a corresponding distance relative to and towards the first reflective layer 904. A stationary portion of the MEMS device acts as a stop for movement of the movable element 2220.
In certain embodiments (e.g., embodiments in which a lower surface of the deformable layer 1302 contacts the actuation electrode 902), the actuation electrode 902 comprises the stationary portion (e.g., as illustrated on the right side of
The movable element 2220 is responsive to voltages applied to the actuation electrode 902 by moving generally in a first direction, as described above. In embodiments in which the second actuation electrode 908 provides the forces to move the movable element 2220 towards the first reflective layer 904, the actuation electrode 902 is configured such that the movable element 2220 moves away from the first reflective layer 904 when voltages are applied to the actuation electrode 902 (e.g., by positioning the actuation electrode 902 closer to the reflective element 914 than the deformable element 1302, by shielding the deformable element 1302 with a conductive layer 2258, etc.).
An example embodiment of a method of manufacturing the MEMS devices of
Reduce Power Consumption
An additional benefit of reducing the resistance or capacitance of the circuit is a reduction in power consumption. For example, to charge and discharge an array of interferometric modulators, the column and row drivers use power to apply voltages. By reducing the capacitance of the individual interferometric modulators, the row and column drivers can apply a lower voltage when activating each interferometric modulator. In certain embodiments, a reduction in the actuation voltage is achieved by changing the mechanical stiffness of the interferometric modulator and/or affecting the strength of the electrostatic force within the interferometric modulator.
For example, geometric changes of the interferometric modulator can reduce the mechanical stiffness of the second electrode layer 1302. Exemplary geometric changes include increasing the spacing between adjacent support posts 202 or changing the shape of the second electrode layer 1302. In certain embodiments, increasing the nominal spacing between support posts 202 increases the flexibility of the second electrode layer 1302 attached thereto. This increase in flexibility allows the second electrode layer 1302 and the reflective surface 901 to more easily change states in response to the column or row driver applying a lower actuation voltage.
In certain embodiments, as shown in
The selection of the material for the second electrode layer 1302 can affect the actuation voltage. Selecting a more compliant material increases the flexibility of the second electrode layer 1302. In this way, in certain embodiments, the row and column drivers apply a lower actuation voltage and still achieve the desired reflective surface layer 901 displacement. In certain embodiments, the second electrode layer 1302 comprises a more compliant material such as aluminum to allow the reflective surface layer 901 to respond to a lower actuation voltage than does a second electrode layer 1302 comprising nickel. Other exemplary materials that could be used for the second electrode layer 1302 include, but are not limited to, Cr, Cu, composites made of oxides and metal (for example, Silicon Nitride encased by aluminum), and organic films reinforced by metal (for example, photoresist plated with any of the metal examples). The mechanical stiffness of the second electrode layer 1302 can be further decreased by reducing the thickness of the second electrode layer 1302. In certain embodiments, the second electrode layer 1302 has a thickness of about 500 angstroms.
Another technique in certain embodiments for reducing the actuation voltage is to change the strength of the electric field created between the first electrode layer 902 and the second electrode layer 1302. The strength of the electric field can be increased by patterning the first electrode layer 902 to reduce the amount of electrically active area. In this way, the area of the interferometric modulator which forms the electrically active portion is reduced. Patterning the electrode layer 902 by decreasing the electrically active area as illustrated in
The actuation voltage can be further reduced in certain embodiments by selecting materials for the one or more dielectric layers 906 that have higher dielectric constants. The relationship between dielectric constant, k, and actuation voltage, V, is:
The voltage, V, is inversely proportional to the square root of the dielectric constant, k. Thus, as the dielectric constant, k, is increased, it takes less voltage, V, to pull the second electrode layer 1302 towards the first electrode layer 902. Materials with higher dielectric constants increase the resulting electrostatic attraction between the first and second electrode layers 902, 1302.
One possible pixel configuration 602 in accordance with certain embodiments is shown in
The three different colors (red, green, and blue) may be achieved in certain embodiments by varying the distance between the mirror and the optical stack. When a voltage is applied to the modulators, they may all move a uniform distance towards the electrode or they may all move different distances toward the electrode. Indeed, all nine modulators may traverse the entire cavity and move to a “near” position that brings them into direct contact with the substrate 106. The dimensions of the cavities in the quiescent state are shown by the vertical dimensions 1500, 1600, and 1700, in
Interferometric modulators are minuscule, typically 25-60 microns on a side (400-1,000 dots per inch). Therefore, in certain embodiments, many interferometric modulators elements can be ganged and driven together as a pixel or sub-pixel in a monochrome, color, or grayscale display. For example, each interferometer modulator can correspond to a single display pixel in a monochrome display. For color or grayscale displays, the color or intensity of each interferometric modulator in certain embodiments is determined by the size of the air gap between the optical and mechanical layers. Multiple sub-elements having different intensities or colors form a grayscale or color pixel. To create a flat panel display, a large array of interferometric modulators are fabricated in the desired format (for example, 5″ full color VGA) and packaged.
The reflective surface 901 of modulator 1400a in certain embodiments may have back supports, a flex layer, and support post interfaces designed to cause the reflective surface 901 to settle at a distance 1500. The reflective surface 901 of modulator 1400d in certain embodiments may have back supports, a flex layer, and support post interfaces designed to cause the reflective surface layer to settle at a distance 1600 that is less than distance 1500. Finally, the reflective surface layer 901 of modulator 1400g in certain embodiments may have back supports, a flex layer and support post interfaces designed to cause the reflective surface layer to settle at a distance 1700 that is less than the distance 1600. In this way, controlling the mechanical properties and/or the physical restraints of the supports in certain embodiments results in three different cavity dimensions, and thus three different pixel colors are created.
Alternatively, the differing characteristics of the flex layer and supports could be manipulated to cause the reflective surface layer 901 to move different distances upon application of the same voltage. As yet another alternative, the modulators 1400a-1400i could all have the same structures, but differing voltages applied for differing colors.
While the above detailed description has shown, described, and pointed out novel features of the invention as applied to various embodiments, it will be understood that various omissions, substitutions, and changes in the form and details of the device or process illustrated may be made by those skilled in the art without departing from the spirit of the invention. Methods for incorporating the features described above with the interferometric modulators will be readily apparent to one having ordinary skill in the art. Further, one or more of these features may be adapted to work with any of the embodiments, as well as other configurations of the interferometric modulators. As will be recognized, the present invention may be embodied within a form that does not provide all of the features and benefits set forth herein, as some features may be used or practiced separately from others.
Chui, Clarence, Tung, Ming-Hau, Tung, Yeh-Jiun, Chiang, Chih-Wei, Kogut, Lior, Endisch, Denis
Patent | Priority | Assignee | Title |
7920319, | Jul 02 2007 | SNAPTRACK, INC | Electromechanical device with optical function separated from mechanical and electrical function |
7944599, | Sep 27 2004 | SNAPTRACK, INC | Electromechanical device with optical function separated from mechanical and electrical function |
8058549, | Oct 19 2007 | SNAPTRACK, INC | Photovoltaic devices with integrated color interferometric film stacks |
8068269, | Mar 27 2008 | SNAPTRACK, INC | Microelectromechanical device with spacing layer |
8081373, | Jul 31 2007 | SNAPTRACK, INC | Devices and methods for enhancing color shift of interferometric modulators |
8098416, | Jun 01 2006 | SNAPTRACK, INC | Analog interferometric modulator device with electrostatic actuation and release |
8098417, | May 09 2007 | SNAPTRACK, INC | Electromechanical system having a dielectric movable membrane |
8111262, | May 18 2007 | SNAPTRACK, INC | Interferometric modulator displays with reduced color sensitivity |
8270056, | Mar 23 2009 | SNAPTRACK, INC | Display device with openings between sub-pixels and method of making same |
8270062, | Sep 17 2009 | SNAPTRACK, INC | Display device with at least one movable stop element |
8289613, | Sep 27 2004 | SNAPTRACK, INC | Electromechanical device with optical function separated from mechanical and electrical function |
8335083, | Jul 20 2007 | Honeywell International Inc. | Apparatus and method for thermal management using vapor chamber |
8358266, | Sep 02 2008 | SNAPTRACK, INC | Light turning device with prismatic light turning features |
8368997, | Jul 02 2007 | SNAPTRACK, INC | Electromechanical device with optical function separated from mechanical and electrical function |
8488228, | Sep 28 2009 | SNAPTRACK, INC | Interferometric display with interferometric reflector |
8638491, | Sep 27 2004 | SNAPTRACK, INC | Device having a conductive light absorbing mask and method for fabricating same |
8646405, | Aug 21 2009 | SAMSUNG DISPLAY CO , LTD | Deposition mask and method of fabricating the same |
8659816, | Apr 25 2011 | SNAPTRACK, INC | Mechanical layer and methods of making the same |
8693084, | Mar 07 2008 | SNAPTRACK, INC | Interferometric modulator in transmission mode |
8736939, | Nov 04 2011 | SNAPTRACK, INC | Matching layer thin-films for an electromechanical systems reflective display device |
8736949, | Jul 31 2007 | SNAPTRACK, INC | Devices and methods for enhancing color shift of interferometric modulators |
8797628, | Oct 19 2007 | SNAPTRACK, INC | Display with integrated photovoltaic device |
8797632, | Aug 17 2010 | SNAPTRACK, INC | Actuation and calibration of charge neutral electrode of a display device |
8817357, | Apr 09 2010 | SNAPTRACK, INC | Mechanical layer and methods of forming the same |
8885244, | Sep 27 2004 | SNAPTRACK, INC | Display device |
8928967, | Apr 08 1998 | SNAPTRACK, INC | Method and device for modulating light |
8941631, | Nov 16 2007 | SNAPTRACK, INC | Simultaneous light collection and illumination on an active display |
8963159, | Apr 04 2011 | SNAPTRACK, INC | Pixel via and methods of forming the same |
8970939, | Sep 27 2004 | SNAPTRACK, INC | Method and device for multistate interferometric light modulation |
8971675, | Jan 13 2006 | SNAPTRACK, INC | Interconnect structure for MEMS device |
8979349, | May 29 2009 | SNAPTRACK, INC | Illumination devices and methods of fabrication thereof |
9001412, | Sep 27 2004 | SNAPTRACK, INC | Electromechanical device with optical function separated from mechanical and electrical function |
9057872, | Aug 31 2010 | SNAPTRACK, INC | Dielectric enhanced mirror for IMOD display |
9081188, | Nov 04 2011 | SNAPTRACK, INC | Matching layer thin-films for an electromechanical systems reflective display device |
9086564, | Sep 27 2004 | SNAPTRACK, INC | Conductive bus structure for interferometric modulator array |
9097885, | Sep 27 2004 | SNAPTRACK, INC | Device having a conductive light absorbing mask and method for fabricating same |
9110200, | Apr 16 2010 | Flex Lighting II, LLC | Illumination device comprising a film-based lightguide |
9110289, | Apr 08 1998 | SNAPTRACK, INC | Device for modulating light with multiple electrodes |
9121979, | May 29 2005 | SNAPTRACK, INC | Illumination devices and methods of fabrication thereof |
9134527, | Apr 04 2011 | SNAPTRACK, INC | Pixel via and methods of forming the same |
9372338, | Jan 17 2014 | SNAPTRACK, INC | Multi-state interferometric modulator with large stable range of motion |
Patent | Priority | Assignee | Title |
3728030, | |||
3955190, | Sep 11 1972 | Kabushiki Kaisha Suwa Seikosha | Electro-optical digital display |
3955880, | Jul 20 1973 | Organisation Europeenne de Recherches Spatiales | Infrared radiation modulator |
4403248, | Mar 04 1980 | U S PHILIPS CORPORATION, ACOR OF DE | Display device with deformable reflective medium |
4441791, | Sep 02 1980 | Texas Instruments Incorporated | Deformable mirror light modulator |
4786128, | Dec 02 1986 | QUANTUM DIAGNOSTICS, LTD | Device for modulating and reflecting electromagnetic radiation employing electro-optic layer having a variable index of refraction |
4859060, | Nov 26 1985 | 501 Sharp Kabushiki Kaisha | Variable interferometric device and a process for the production of the same |
4954789, | Sep 28 1989 | Texas Instruments Incorporated | Spatial light modulator |
4956619, | Jul 31 1984 | Texas Instruments Incorporated | Spatial light modulator |
4982184, | Jan 03 1989 | Lockheed Martin Corporation | Electrocrystallochromic display and element |
5022745, | Sep 07 1989 | Massachusetts Institute of Technology | Electrostatically deformable single crystal dielectrically coated mirror |
5028939, | Jun 23 1986 | Texas Instruments Incorporated | Spatial light modulator system |
5091983, | Jun 04 1987 | Optical modulation apparatus and measurement method | |
5096279, | Jul 31 1984 | Texas Instruments Incorporated | Spatial light modulator and method |
5315370, | Oct 23 1991 | Interferometric modulator for optical signal processing | |
5381232, | May 19 1992 | Akzo Nobel N.V. | Fabry-perot with device mirrors including a dielectric coating outside the resonant cavity |
5471341, | Jul 17 1991 | Optron Systems, Inc. | Membrane light modulating systems |
5526172, | Jul 27 1993 | Texas Instruments Incorporated | Microminiature, monolithic, variable electrical signal processor and apparatus including same |
5559358, | May 25 1993 | Honeywell INC | Opto-electro-mechanical device or filter, process for making, and sensors made therefrom |
5636052, | Jul 29 1994 | THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT | Direct view display based on a micromechanical modulation |
5646729, | Jan 13 1993 | Vaisala Oy | Single-channel gas concentration measurement method and apparatus using a short-resonator Fabry-Perot interferometer |
5646768, | Jul 29 1994 | Texas Instruments Incorporated | Support posts for micro-mechanical devices |
5661592, | Jun 07 1995 | Silicon Light Machines Corporation | Method of making and an apparatus for a flat diffraction grating light valve |
5665997, | Mar 31 1994 | Texas Instruments Incorporated | Grated landing area to eliminate sticking of micro-mechanical devices |
5710656, | Jul 30 1996 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Micromechanical optical modulator having a reduced-mass composite membrane |
5786927, | Mar 12 1997 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Gas-damped micromechanical structure |
5808781, | Feb 01 1996 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Method and apparatus for an improved micromechanical modulator |
5818095, | Aug 11 1992 | Texas Instruments Incorporated; TEXAS INSSTRUMENTS INCORRPORATED | High-yield spatial light modulator with light blocking layer |
5825528, | Dec 26 1995 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Phase-mismatched fabry-perot cavity micromechanical modulator |
5838484, | Aug 19 1996 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Micromechanical optical modulator with linear operating characteristic |
5867302, | Aug 07 1997 | Sandia Corporation | Bistable microelectromechanical actuator |
5986796, | Mar 17 1993 | SNAPTRACK, INC | Visible spectrum modulator arrays |
6028689, | Jan 24 1997 | The United States of America as represented by the Secretary of the Air | Multi-motion micromirror |
6040937, | May 05 1994 | SNAPTRACK, INC | Interferometric modulation |
6055090, | Apr 23 1986 | SNAPTRACK, INC | Interferometric modulation |
6097145, | Apr 27 1998 | Copytele, Inc. | Aerogel-based phase transition flat panel display |
6195196, | Mar 13 1998 | FUJIFILM Corporation | Array-type exposing device and flat type display incorporating light modulator and driving method thereof |
6262697, | Mar 20 1998 | Industrial Technology Research Institute | Display having viewable and conductive images |
6327071, | Oct 16 1998 | FUJIFILM Corporation | Drive methods of array-type light modulation element and flat-panel display |
6356378, | Jun 19 1995 | Texas Instruments Incorporated | Double substrate reflective spatial light modulator |
6384952, | Mar 27 1997 | MEMS OPTICAL, INC | Vertical comb drive actuated deformable mirror device and method |
6433917, | Nov 22 2000 | Disco Corporation | Light modulation device and system |
6438282, | Jan 20 1998 | Seiko Epson Corporation | Optical switching device and image display device |
6452712, | Dec 01 1995 | Seiko Epson Corporation | Method of manufacturing spatial light modulator and electronic device employing it |
6466354, | Sep 19 2000 | Silicon Light Machines Corporation | Method and apparatus for interferometric modulation of light |
6556338, | Nov 03 2000 | INTPAX, Inc. | MEMS based variable optical attenuator (MBVOA) |
6574033, | Feb 27 2002 | SNAPTRACK, INC | Microelectromechanical systems device and method for fabricating same |
6597490, | Sep 29 1995 | HANGER SOLUTIONS, LLC | Electrically tunable fabry-perot structure utilizing a deformable multi-layer mirror and method of making the same |
6608268, | Feb 05 2002 | MEMtronics, a division of Cogent Solutions, Inc.; MEMTRONICS, A DIVISION OF COGENT SOLUTIONS, INC | Proximity micro-electro-mechanical system |
6632698, | Aug 07 2001 | HEWLETT-PACKARD DEVELOPMENT COMPANY L P | Microelectromechanical device having a stiffened support beam, and methods of forming stiffened support beams in MEMS |
6650455, | May 05 1994 | SNAPTRACK, INC | Photonic mems and structures |
6657832, | Apr 26 2001 | Texas Instruments Incorporated | Mechanically assisted restoring force support for micromachined membranes |
6661561, | Mar 26 2001 | Kodak Graphic Communications Canada Company | High frequency deformable mirror device |
6674562, | May 05 1994 | SNAPTRACK, INC | Interferometric modulation of radiation |
6680792, | May 05 1994 | SNAPTRACK, INC | Interferometric modulation of radiation |
6698295, | Mar 31 2000 | Cubic Corporation | Microstructures comprising silicon nitride layer and thin conductive polysilicon layer |
6710908, | May 05 1994 | SNAPTRACK, INC | Controlling micro-electro-mechanical cavities |
6791735, | Jan 09 2002 | Lawrence Livermore National Security LLC | Differentially-driven MEMS spatial light modulator |
6794119, | Feb 12 2002 | SNAPTRACK, INC | Method for fabricating a structure for a microelectromechanical systems (MEMS) device |
6841081, | Jun 09 2003 | Taiwan Semiconductor Manufacturing Co. LTD | Method for manufacturing reflective spatial light modulator mirror devices |
6844959, | Nov 26 2002 | Texas Instruments Incorporated | Spatial light modulators with light absorbing areas |
6867896, | May 05 1994 | SNAPTRACK, INC | Interferometric modulation of radiation |
6870654, | May 26 2003 | SNAPTRACK, INC | Structure of a structure release and a method for manufacturing the same |
6882458, | Apr 21 2003 | SNAPTRACK, INC | Structure of an optical interference display cell |
6882461, | Feb 18 2004 | SNAPTRACK, INC | Micro electro mechanical system display cell and method for fabricating thereof |
6912022, | Dec 27 2002 | SNAPTRACK, INC | Optical interference color display and optical interference modulator |
6940630, | May 01 2003 | University of Florida Research Foundation, Inc. | Vertical displacement device |
6947200, | Jun 19 1995 | Texas Instruments Incorporated | Double substrate reflective spatial light modulator with self-limiting micro-mechanical elements |
6952303, | Aug 29 2003 | SNAPTRACK, INC | Interferometric modulation pixels and manufacturing method thereof |
6958847, | Jan 20 2004 | SNAPTRACK, INC | Structure of an optical interference display unit |
6980350, | Mar 10 2004 | SNAPTRACK, INC | Optical interference reflective element and repairing and manufacturing methods thereof |
6983135, | Nov 11 2002 | Marvell International, Ltd. | Mixer gain calibration method and apparatus |
7006272, | Sep 26 2003 | SNAPTRACK, INC | Color changeable pixel |
7008812, | May 30 2000 | Silicon Valley Bank; GOLD HILL VENTURE LENDING 03, LP; CYMATICS LABORATORIES CORPORATION | Manufacture of MEMS structures in sealed cavity using dry-release MEMS device encapsulation |
7053737, | Sep 21 2001 | Regents of the University of California, The | Stress bimorph MEMS switches and methods of making same |
7075700, | Jun 25 2004 | The Boeing Company | Mirror actuator position sensor systems and methods |
7119945, | Mar 03 2004 | SNAPTRACK, INC | Altering temporal response of microelectromechanical elements |
7123216, | May 05 1994 | SNAPTRACK, INC | Photonic MEMS and structures |
7126738, | May 01 1995 | SNAPTRACK, INC | Visible spectrum modulator arrays |
7126741, | Aug 12 2004 | Hewlett-Packard Development Company, L.P. | Light modulator assembly |
7130104, | Sep 27 2004 | SNAPTRACK, INC | Methods and devices for inhibiting tilting of a mirror in an interferometric modulator |
7184202, | Sep 27 2004 | SNAPTRACK, INC | Method and system for packaging a MEMS device |
7198873, | Nov 18 2003 | ASML NETHERLANDS B V | Lithographic processing optimization based on hypersampled correlations |
7221495, | Jun 24 2003 | SNAPTRACK, INC | Thin film precursor stack for MEMS manufacturing |
7236284, | Oct 05 1999 | SNAPTRACK, INC | Photonic MEMS and structures |
7289259, | Sep 27 2004 | SNAPTRACK, INC | Conductive bus structure for interferometric modulator array |
7372613, | Sep 27 2004 | SNAPTRACK, INC | Method and device for multistate interferometric light modulation |
7372619, | May 05 1994 | SNAPTRACK, INC | Display device having a movable structure for modulating light and method thereof |
20010003487, | |||
20010028503, | |||
20010043171, | |||
20020015215, | |||
20020024711, | |||
20020054424, | |||
20020070931, | |||
20020075555, | |||
20020126364, | |||
20020146200, | |||
20020149828, | |||
20030016428, | |||
20030029705, | |||
20030035196, | |||
20030043157, | |||
20030053078, | |||
20030072070, | |||
20030202265, | |||
20030202266, | |||
20040008396, | |||
20040008438, | |||
20040027671, | |||
20040027701, | |||
20040043552, | |||
20040051929, | |||
20040058532, | |||
20040075967, | |||
20040080035, | |||
20040100594, | |||
20040100677, | |||
20040125281, | |||
20040125282, | |||
20040145811, | |||
20040147198, | |||
20040175577, | |||
20040207897, | |||
20040209195, | |||
20040217919, | |||
20040218251, | |||
20040240032, | |||
20050002082, | |||
20050003667, | |||
20050024557, | |||
20050035699, | |||
20050036095, | |||
20050046919, | |||
20050046922, | |||
20050046948, | |||
20050078348, | |||
20050168849, | |||
20050195462, | |||
20050249966, | |||
20060007517, | |||
20060024880, | |||
20060065940, | |||
20060066935, | |||
20060067633, | |||
20060067651, | |||
20060076311, | |||
20060077155, | |||
20060077507, | |||
20060077508, | |||
20060220160, | |||
20060262380, | |||
20060268388, | |||
20060274074, | |||
20070040777, | |||
20070177247, | |||
20080013145, | |||
20080037093, | |||
20080080043, | |||
20080088904, | |||
20080088910, | |||
20080088911, | |||
20080088912, | |||
20080106782, | |||
20080247028, | |||
20090009845, | |||
EP1122577, | |||
EP1275997, | |||
EP1640763, | |||
FR2824643, | |||
JP2001221913, | |||
JP2002062490, | |||
JP2002221678, | |||
JP2003195201, | |||
JP2003340795, | |||
JP2004212638, | |||
JP2004212680, | |||
JP211999, | |||
JP4276721, | |||
WO3014789, | |||
WO3069413, | |||
WO2004026757, | |||
WO2005006364, | |||
WO2006036386, | |||
WO2008057228, | |||
WO9952006, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 21 2007 | CHUI, CLARENCE | IDC, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019510 | /0167 | |
Jun 21 2007 | ENDISCH, DENIS | IDC, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019510 | /0167 | |
Jun 21 2007 | TUNG, MING-HAU | IDC, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019510 | /0167 | |
Jun 21 2007 | TUNG, YEH-JIUN | IDC, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019510 | /0167 | |
Jun 22 2007 | CHIANG, CHIH-WEI | IDC, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019510 | /0167 | |
Jun 25 2007 | KOGUT, LIOR | IDC, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019510 | /0167 | |
Jul 02 2007 | IDC, LLC | (assignment on the face of the patent) | / | |||
Sep 25 2009 | IDC, LLC | Qualcomm Mems Technologies, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023435 | /0918 | |
Aug 30 2016 | Qualcomm Mems Technologies, Inc | SNAPTRACK, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 039891 | /0001 |
Date | Maintenance Fee Events |
Oct 31 2012 | ASPN: Payor Number Assigned. |
Mar 18 2013 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jun 16 2017 | REM: Maintenance Fee Reminder Mailed. |
Dec 04 2017 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Nov 03 2012 | 4 years fee payment window open |
May 03 2013 | 6 months grace period start (w surcharge) |
Nov 03 2013 | patent expiry (for year 4) |
Nov 03 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 03 2016 | 8 years fee payment window open |
May 03 2017 | 6 months grace period start (w surcharge) |
Nov 03 2017 | patent expiry (for year 8) |
Nov 03 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 03 2020 | 12 years fee payment window open |
May 03 2021 | 6 months grace period start (w surcharge) |
Nov 03 2021 | patent expiry (for year 12) |
Nov 03 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |