Radially expanding a tubular such as a liner or casing, especially in a downward direction. The apparatus includes at least one driver device such as a piston that is typically fluid-actuated, and an expander device is attached to the or each driver device. Actuation of the or each driver device causes movement of the expander device to expand the tubular. One or more anchoring devices, which may be radially offset, are used to substantially prevent the tubular from moving during expansion thereof.
|
10. A device for radially expanding a tubular in a wellbore, comprising:
an expansion cone fixed in a longitudinal position relative to a support member; and
an anchor that is resettable down hole and is disposed on an outside surface of the support member, wherein the support member is moveable relative to the anchor.
1. A device for radially expanding a tubular in a wellbore, comprising:
a conveying pipe;
an expansion cone coupled to the conveying pipe, wherein the expansion cone is movable relative to the conveying pipe; and
an anchor that is resettable downhole, coupled to the conveying pipe, and fixed in a longitudinal position relative to the conveying pipe.
20. An assembly for radially expanding a tubular in a wellbore, comprising:
an expansion cone fixed in a longitudinal position relative to a support member; and
a resettable anchor disposed on an outside surface of a support member, wherein the support member is moveable relative to the anchor and defines a piston that is in communication with fluid supplied to an inside of the support member, and the support member is movable relative to the anchor in order to move the cone, and wherein the support member defines at least one additional piston in series with the piston.
19. An assembly for radially expanding a tubular in a wellbore, comprising:
a conveying pipe;
an expansion cone coupled to the conveying pipe, wherein the expansion cone is movable relative to the conveying pipe;
a resettable anchor coupled to the conveying pipe and fixed in a longitudinal position relative to the conveying pipe; and
a support member upon which the cone is attached, wherein the support member defines a piston that is in communication with fluid supplied through the conveying pipe, and the support member is movable relative to the conveying pipe in order to move the cone, and wherein the support member defines at least one additional piston in series with the piston.
2. The device of
3. The device of
4. The device of
5. The device of
6. The device of
7. The device of
8. The device of
9. The device of
11. The device of
12. The device of
13. The device of
14. The device of
16. The device of
17. The device of
18. The device of
|
This application is a continuation of U.S. patent application Ser. No. 11/682,746, filed Mar. 6, 2007, now U.S. Pat. No. 7,401,650, which is a continuation of U.S. patent application Ser. No. 10/475,626, filed Mar. 22, 2004, now U.S. Pat. No. 7,185,701, which claims benefit of PCT International Application No. PCT/GB02/01848, filed Apr. 19, 2002, which claims benefit of British Application Serial No. 0109711.2, filed on Apr. 20, 2001. Each of the aforementioned related patent applications is herein incorporated by reference in its entirety.
1. Field of the Invention
The present invention relates to apparatus and methods that are particularly, but not exclusively, suited for radially expanding tubulars in a borehole or wellbore. It will be noted that the term “borehole” will be used herein to refer also to a wellbore.
2. Description of the Related Art
It is known to use an expander device to expand at least a portion of a tubular member, such as a liner, casing or the like, to increase the inner and outer diameters of the member. Use of the term “tubular member” herein will be understood as being a reference to any of these and other variants that are capable of being radially expanded by the application of a radial expansion force, typically applied by the expander device, such as an expansion cone.
The expander device is typically pulled or pushed through the tubular member to impart a radial expansion force thereto in order to increase the inner and outer diameters of the member. Conventional expansion processes are generally referred to as “bottom-up” in that the process begins at a lower end of the tubular member and the cone is pushed or pulled upwards through the member to radially expand it. The terms “upper” and “lower” shall be used herein to refer to the orientation of a tubular member in a conventional borehole. The terms being construed accordingly where the borehole is deviated or a lateral borehole for example. “Lower” generally refers to the end of the member that is nearest the formation or pay zone.
The conventional bottom-up method has a number of disadvantages, and particularly there are problems if the expander device becomes stuck within the tubular member during the expansion process. The device can become stuck for a number of different reasons, for example due to restrictions or protrusions in the path of the device.
In addition to this, there are also problems with expanding tubular members that comprise one or more portions of member that are provided with perforations or slots (“perforated”), and one or more portions that are not provided with perforations or slots (“non-perforated”), because the force required to expand a perforated portion is substantially less than that required to expand a non-perforated portion. Thus, it is difficult to expand combinations of perforated and non-perforated tubular members using the same expander device and method.
Some methods of radial expansion use hydraulic force to propel the cone, where a fluid is pumped into the tubular member down through a conduit such as drill pipe to an area below the cone. The fluid pressure then acts on a lower surface of the cone to provide a propulsion mechanism. It will be appreciated that a portion of the liner to be expanded defines a pressure chamber that facilitates a build up of pressure below the cone to force it upwards and thus the motive power is applied not only to the cone, but also to the tubular member that is to be expanded. It is often the case that the tubular members are typically coupled together using screw threads and the pressure in the chamber can cause the threads between the portions of tubular members to fail. Additionally, the build up of pressure in the pressure chamber can cause structural failure of the member due to the pressure within it if the pressure exceeds the maximum pressure that the material of the member can withstand. If the material of the tubular bursts or the thread fails, the pressure within the pressure chamber is lost, and it is no longer possible to force the cone through the member using fluid pressure.
Also, in the case where the cone is propelled through the liner using fluid pressure, where the outer diameter of the tubular member decreases, the surface area of the cone on which the fluid pressure can act is reduced accordingly because the size of the expander device must be in proportion to the size of the tubular member to be expanded.
According to a first aspect of the present invention, there is provided apparatus for radially expanding a tubular, the apparatus comprising one or more driver devices coupled to an expander device, and one or more anchoring devices engageable with the tubular, wherein the driver device causes movement of the expander device through the tubular to radially expand it whilst the anchoring device prevents movement of the tubular during expansion.
In this embodiment, the or each anchoring device optionally provides a reaction force to the expansion force generated by the or each driver.
According to a second aspect of the present invention, there is provided apparatus for radially expanding a tubular, the apparatus comprising one or more driver devices coupled to an expander device, and one or more anchoring devices engageable with the tubular, wherein the or each driver device causes movement of the expander device through the tubular to radially expand it whilst the anchoring device provides a reaction force to the expansion force generated by the or each driver device.
In this embodiment, at least one anchoring device optionally prevents movement of the tubular during expansion.
According to a third aspect of the present invention, there is provided a method of expanding a tubular, the method comprising the step of actuating one or more driver devices to move an expander device within the tubular to radially expand the member.
Embodiments of the present invention shall now be described, by way of example only, with reference to the accompanying drawings, in which:
The invention also provides apparatus for radially expanding a tubular, the apparatus comprising one or more driver devices that are coupled to an expander device, where fluid collects in a fluid chamber and acts on the or each driver device to move the expander device.
The invention further provides a method of radially expanding a tubular, the method comprising the steps of applying pressurized fluid to one or more driver devices that are coupled to an expander device, where fluid collects in a fluid chamber and acts on the or each driver device to move the expander device.
This particular embodiment has advantages in that the pressurized fluid acts directly on the or each driver device and not on the tubular itself.
The or each driver device is typically a fluid-actuated device such as a piston. The piston(s) can be coupled to the expander device by any conventional means. Two or more pistons are typically provided. The pistons typically being coupled in series. Thus, additional expansion force can be provided by including additional pistons. The or each piston is typically formed by providing an annular shoulder on a sleeve. The expander device is typically coupled to the sleeve.
Optionally, one or more expander devices may be provided. Thus, the tubular can be radially expanded in a step-wise manner. That is, a first expander device radially expands the inner and outer diameters of the member by a certain percentage, a second expander device expands by a further percentage, and so on.
The sleeve is typically provided with ports that allow fluid from a bore of the sleeve to pass into a fluid chamber or piston area on one side of the or each piston. Thus, pressurized fluid can be delivered to the fluid chamber or piston area to move the or each piston.
The sleeve is typically provided with a ball seat. The ball seat allows the bore of the sleeve to be blocked so that fluid pressure can be applied to the pistons via the ports in the sleeve.
The fluid chamber or piston area is typically defined between the sleeve and an end member. Thus, pressurized fluid does not act directly on the tubular. This is advantageous as the fluid pressure required for expansion may cause the material of the tubular to stretch or burst. Additionally, the tubular may be a string of tubular members that are threadedly coupled together, and the fluid pressure may be detrimental to the threaded connections.
The or each anchoring device is typically a one-way anchoring device. The anchoring device(s) can be, for example, a BALLGRA™ manufactured by BSW Limited. The or each anchoring device is typically actuated by moving at least a portion of it in a first direction. The anchoring device is typically de-actuated by moving said portion in a second direction, typically opposite to the first direction.
The or each anchoring device typically comprises a plurality of ball bearings that engage in a taper. Movement of the taper in the first direction typically causes the balls to move radially outward to engage the tubular. Movement of the taper in the second direction typically allows the balls to move radially inward and thus disengage the tubular.
Two anchoring devices are typically provided. One of the anchoring devices is typically laterally offset with respect to the other anchoring device. A first anchoring device typically engages portions of the tubular that are unexpanded, and a second anchoring device typically engages portions of the tubular that have been radially expanded. Thus, at least one anchoring device can be used to grip the tubular and retain it on the apparatus as it is being run into the borehole and also during expansion of the member.
The apparatus is typically provided with a fluid path that allows trapped fluid to bypass the apparatus. Thus, fluids trapped at one end of the apparatus can bypass it to the other end of the apparatus.
The expander device typically comprises an expansion cone. The expansion cone can be of any conventional type and can be made of any conventional material (e.g. steel, steel alloy, tungsten carbide, etc.). The expander device is typically of a material that is harder than the tubular that it has to expand. It will be appreciated that only the portion(s) of the expander device that contacts the tubular need be of the harder material.
The apparatus typically includes a connector for coupling the apparatus to a string. The connector typically comprises a box connection, but any conventional connector may be used. The string typically comprises a drill string, coiled tubing string, production string, wireline, or the like.
The tubular typically comprises liner, casing, drill pipe, etc., but may be any downhole tubular that is of a ductile material and/or is capable of sustaining plastic and/or elastic deformation. The tubular may be a string of tubulars (e.g. a string of individual lengths of liner that have been coupled together).
The step of moving the piston(s) typically comprises applying fluid pressure thereto.
The method typically includes the additional step of gripping the tubular during expansion. The step of gripping the tubular typically comprises actuating one or more anchoring devices to grip the tubular.
The method optionally includes one, some or all of the additional steps of a) reducing the fluid pressure applied to the pistons; b) releasing the or each anchoring device; c) moving the expander device to an unexpanded portion of the tubular; d) actuating the or each anchoring device to grip the tubular; and e) increasing the fluid pressure applied to the pistons to move the expander device to expand the tubular.
The method optionally includes repeating steps a) to e) above until the entire length of the tubular is expanded.
Referring to the drawings, there is shown an exemplary embodiment of apparatus 10 that is particularly suited for radially expanding a tubular member 12 within a borehole (not shown).
The tubular member 12 that is to be expanded can be of any conventional type, but it is typically of a ductile material so that it is capable of being plastically and/or elastically expanded by the application of a radial expansion force. Tubular member 12 may comprise any downhole tubular such as drill pipe, liner, casing, or the like, and is typically of steel, although other ductile materials may also be used.
The apparatus 10 includes an expansion cone 14 that may be of any conventional design or type. For example, the cone 14 can be of steel or an alloy of steel, tungsten carbide, ceramic, or a combination of these materials. The expansion cone 14 is typically of a material that is harder than the material of the tubular member 12 that it has to expand. However, this is not essential as the cone 14 may be coated or otherwise provided with a harder material at the portions that contact the tubular 12 during expansion.
The expansion cone 14 is provided with an inclined face 14i that is typically annular and is inclined at an angle of around 20° with respect to the centre line C of the apparatus 10. The inclination of the inclined face 14i can vary from around 5° to 45°, but it is found that an angle of around 15° to 25° gives the best performance. This angle provides sufficient expansion without causing the material to rupture and without providing high frictional forces.
The expansion cone 14 is attached to a first tubular member 16 which in this particular embodiment comprises a portion of coil tubing, although drill pipe, etc. may be used. A first end 16a of the coil tubing is provided with a ball catcher in the form of a ball seat 18. The purpose of which is to block a bore 16b in the coil tubing 16 through which fluid may pass.
The coiled tubing 16 is attached to a second tubular member in the form of a sleeve 17 using a number of annular spacers 19a, 19b, 19c. The spacers 19b and 19c create a first conduit 52 therebetween, and the spacers 19a, 19b create a second conduit 56 therebetween. The spacer 19c is provided with a port 50 and spacer 19b is provided with a port 54, both ports 50, 54 allowing fluid to pass therethrough. The function of the ports 50, 54 and the conduits 52, 56 shall be described below.
Two laterally-extending annular shoulders are attached to the sleeve 17 and sealingly engage a cylindrical end member 24, the annular shoulders forming first and second pistons 20, 22, respectively. The cylindrical end member 24 includes a closed end portion 26 at a first end thereof. The engagement of the first and second pistons 20, 22 with the cylindrical end member 24 provides two piston areas 28, 30 in which fluid (e.g. water, brine, drill mud, etc.) can be pumped into via vents 32, 34 from the bore 16b. The annular shoulders forming the first and second pistons 20, 22 can be sealed to the cylindrical end member 24 using any conventional type of seal (e.g. O-rings, lip-type seals, or the like).
The two piston areas 28, 30 typically have an area of around 15 square inches, although this is generally dependent upon the dimensions of the apparatus 10 and the tubular member 12, and also the expansion force that is required.
A second end of the cylindrical end member 24 is attached to a first anchoring device 36. The first anchoring device 36 is typically a BALLGRA™ that is preferably a one-way anchoring device and is supplied by BSW Limited. The BALLGRA™ works on the principle of a plurality of balls that engage in a taper. Applying a load to the taper in a first direction acts to push the balls radially outwardly and thus they engage an inner surface 12i of the tubular 12 to retain it in position. The gripping motion of the BALLGRAB™ can be released by moving the taper in a second direction, typically opposite to the first direction, so that the balls disengage the inner surface 12i.
The weight of the tubular member 12 can be carried by the first anchoring device 36 as the apparatus 10 is being run into the borehole, but this is not the only function that it performs, as will be described. The first anchoring device 36 is typically a 7 inch (approximately 178 mm), 29 pounds per foot type, but the particular size and rating of the device 36 that is used generally depends upon the size, weight, and like characteristics of the tubular member 12.
The first anchoring device 36 is coupled via a plurality of circumferentially spaced-apart rods 38 (see
The conveying pipe 42 can be of any conventional type, such as drill pipe, coil tubing, or the like. The conveying pipe 42 is provided with a connection 44 (e.g. a conventional box connection) so that it can be coupled into a string of, for example drill pipe, coiled tubing, etc. (not shown). The string is used to convey the apparatus 10 and the tubular member 12.
The second anchoring device 40 is used to grip the tubular member 12 after it has been radially expanded and is typically located on a longitudinal axis that is laterally spaced-apart from the axis of the first anchoring device 36. This allows the second anchoring device 40 to engage the increased diameter of the member 12 once it has been radially expanded.
Referring now to
A ball 46 (typically a ¾ inch, approximately 19 mm ball) is dropped or pumped down the bore of the string to which the conveying pipe 42 is attached, and thereafter down through the bore 16b of the coil tubing 16 to engage the ball seat 18. The ball 46 therefore blocks the bore 16b in the conventional manner. Thereafter, the bore 16b is pressured-up by pumping fluid down through the bore 16b, typically to a pressure of around 5000 psi. The ball seat 18 can be provided with a safety-release mechanism (e.g. one or more shear pins) that will allow the pressure within bore 16b to be reduced in the event that the apparatus 10 fails. Any conventional safety-release mechanism can be used.
The pressurized fluid enters the piston areas 28, 30 through the vents 32, 34, respectively, and acts on the pistons 20, 22. The fluid pressure at the piston areas 28, 30 causes the coil tubing 16, sleeve 17, and thus the expansion cone 14 to move to the right in
During movement of the pistons 20, 22, slight tension is applied to the conveying pipe 42 via the drill pipe or the like to which the apparatus 10 is attached so that the first anchoring device 36 grips the tubular member 12 to retain it in position during the expansion process. Thus, the first anchoring device 36 can be used to grip the tubular member 12 as the apparatus 10 is run into the borehole and can also be used to grip and retain the tubular member 12 in place during at least a part of the expansion process.
Continued application of fluid pressure through the vents 32, 34 into the piston areas 28, 30 causes the pistons 20, 22 to move to the position shown in
Once the pistons 20, 22 have reached their first stroke, the slight upward force applied to the conveying pipe 42 is released so that the first anchoring device 36 disengages the inner surface 12i of the tubular member 12. Thereafter, the conveying pipe 42 and the anchoring device 36, 40 and end member 24 are moved to the right as shown in
The second anchoring device 40 is positioned laterally outwardly of the first anchoring device 36 so that it can engage the expanded portion 12e of the tubular member 12. Thus, the tubular member 12 can be gripped by both the first and second anchoring devices 36, 40, as shown in
With the apparatus 10 in the position shown in
This process is then repeated by releasing the tension on the conveying pipe 42 to release the first and second anchoring devices 36, 40 moving them downwards and then placing the conveying pipe 42 under tension again to engage the anchoring devices 36, 40 with the member 12. The pressure in the bore 16b is then increased to around 5000 psi to extend the pistons 20, 22 over their next stroke to expand a further portion of the tubular member 12.
The process described above with reference to
Apparatus 10 can be easily pulled out of the borehole once the member 12 has been radially expanded.
Embodiments of the present invention provide significant advantages over conventional methods of radially expanding a tubular member. In particular, certain embodiments provide a top-down expansion process where the expansion begins at an upper end of the member 12 and continues down through the member. Thus, if the apparatus 10 becomes stuck, it can be easily pulled out of the borehole without having to perform a fishing operation. The unexpanded portions of the tubular 12 are typically below the apparatus 10 and do not prevent retraction of the apparatus 10 from the borehole, unlike conventional bottom-up methods. This is particularly advantageous as the recovery of the stuck apparatus 10 is much simpler and quicker. Furthermore, it is less likely that the apparatus 10 cannot be retrieved from the borehole, and thus it is less likely that the borehole will be lost due to a stuck fish. The unexpanded portion can be milled away (e.g. using an over-mill) so that it does not adversely affect the recovery of hydrocarbons or a new or repaired apparatus can be used to expand the unexpanded portion if appropriate.
Also, conventional bottom-up methods of radial expansion generally require a pre-expanded portion in the tubular member 12 in which the expander device is located before the expansion process begins. It is not generally possible to fully expand the pre-expanded portion and, in some instances, the pre-expanded portion can restrict the recovery of hydrocarbons as it produces a restriction (i.e. a portion of reduced diameter) in the borehole. However, the entire length of the member 12 can be fully expanded with apparatus 10.
The purpose of the pre-expanded portion on conventional methods is typically to house the expansion cone as the apparatus is being run into the borehole. In certain embodiments of the invention, an end of the tubular member 12 rests against the expansion cone 14 as it is being run into the borehole, but this is not essential as the first anchoring device 36 can be used to grip the member 12 as apparatus 10 is run in. Thus, a pre-expanded portion is not required.
The apparatus 10 is a mechanical system that is driven hydraulically, but the material of the tubular member 12 that has to be expanded is not subjected to the expansion pressures during conventional hydraulic expansion as no fluid acts directly on the tubular member 12 itself, but only on the pistons 20, 22 and the cylindrical end member 24. Thus, the expansion force required to expand the tubular member 12 is effectively de-coupled from the force that operates the apparatus 10.
Also in conventional systems, the movement of the expansion cone 14 is coupled to the drill pipe or the like in that the drill pipe or the like is typically used to push or pull the expansion cone through the member that is to be expanded. However with the apparatus 10, the movement of the expansion cone 14 is substantially de-coupled from movement of the drill pipe, at least during movement of the cone 14 during expansion. This is because the movement of the pistons 20, 22 by hydraulic pressure causes movement of the expansion cone 14, Movement of the drill pipe or the like to which the conveying pipe 42 is coupled has no effect on the expansion process, other than to move certain portions of the apparatus 10 within the borehole.
If higher expansion forces are required, then additional pistons can be added to provide additional force to move the expansion cone 14 and thus provide additional expansion forces. The additional pistons can be added in series to provide additional expansion force. Thus, there is no restriction on the amount of expansion force that can be applied as further pistons can be added. The only restriction would be the overall length of the apparatus 10. This is particularly useful where the liner, casing, and cladding are made of chrome as this generally requires higher expansion forces. Also, the connectors between successive portions of liner and casing, etc. that are of chrome are critical, and as this material is typically very hard, it requires higher expansion forces.
The apparatus 10 can be used to expand small sizes of tubular member 12 (API grades) up to fairly large diameter members, and can also be used with lightweight pipe, with a relatively small wall thickness (of less that 5 mm), and on tubulars having a relatively large wall thicknesses.
Furthermore, the hydraulic fluid that is used to move the pistons 20, 22 can be recycled and is thus not lost into the formation. Conventional expansion methods using hydraulic or other motive powers can cause problems with “squeeze” where fluids in the borehole that are used to propel the expander device, force fluids in the borehole below the device back into the formation, which can cause damage to the formation and prevent it from producing hydrocarbons.
However, the hydraulic fluid that is used to drive the pistons 20, 22 is retained within the apparatus 10 by the hall 46, and thus will not adversely effect the formation or pay zone.
In addition to this, apparatus 10 is provided with a path through which fluid that may be trapped below the apparatus 10 (that is fluid that is to the right of the apparatus 10 in
Referring to
Additionally, the apparatus 10 can be used to circulate fluids before the ball 46 is dropped into the ball seat 18, and thus cement or other fluids can be circulated before the tubular member 12 is expanded. This is particularly advantageous as cement could be circulated into the annulus between the member 12 and the liner or open borehole that the member 12 is to engage, to secure the member 12 in place.
It will also be appreciated that a number of expansion cones 14 can be provided in series so that there is a step-wise expansion of the member 12. This is particularly useful where the member 12 is to be expanded to a significant extent, and the force required to expand it to this extent is significant and cannot be produced by a single expansion cone. Although the required force may be achieved by providing additional pistons (e.g. three or more), there may be a restriction in the overall length of the apparatus 10 that precludes this.
The apparatus 10 can be used to expand portions of tubular that are perforated and portions that are non-perforated. This is because the pressure applied to the pistons 20, 22 can be increased or decreased to provide for a higher or lower expansion force. Thus, apparatus 10 can be used to expand sand screens and strings of tubulars that include perforated and non-perforated portions.
Embodiments of the present invention provide advantages over conventional methods and apparatus in that the apparatus can be used with small sizes of tubulars. The force required to expand small tubulars can be high, and this high force cannot always be provided by conventional methods because the size of the tubular reduces the amount of force that can be applied, particularly where the cone is being moved by hydraulic pressure. However, embodiments of the present invention can overcome this because the expansion force can be increased by providing additional pistons.
Modifications and improvements may be made to the foregoing without departing from the scope of the present invention. For example, it will be appreciated that the term “borehole” can refer to any hole that is drilled to facilitate the recovery of hydrocarbons, water or the like.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3203451, | |||
3203483, | |||
3712376, | |||
3746092, | |||
3934836, | Jul 31 1974 | Stamco Division, The Monarch Machine Tool Company | Mandrel assembly |
3940227, | Jun 20 1974 | Expansible mandrel | |
4210991, | Sep 05 1978 | Westinghouse Electric Corp. | Hydraulic expansion swaging of tubes in tubesheet |
4212186, | Oct 25 1978 | Pipe expander | |
4415029, | Jul 23 1981 | Gearhart Industries, Inc. | Downhole well tool and anchoring assembly |
4712615, | Jul 01 1986 | MWL TOOL COMPANY, MIDLAND, TEXAS, A CORP OF DE | Liner hanger assembly with setting tool |
4754543, | Dec 18 1978 | Dayco Products, LLC | Method of making expandable and collapsible mandrel |
5070940, | Aug 06 1990 | Camco, Incorporated | Apparatus for deploying and energizing submergible electric motor downhole |
5070941, | Aug 30 1990 | Halliburton Company | Downhole force generator |
5112158, | Mar 25 1991 | Underground pipe replacement method and apparatus | |
5264162, | Jan 18 1991 | CARBONE LORRAINE NORTH AMERICA | Process for manufacturing porous tubes of high permeability made from carbon-carbon composite material, and their application |
5327765, | Apr 05 1993 | Alcoa Inc | Internal articulated mandrel for the stretch forming of elongated hollow metal sections |
5366012, | Jun 09 1992 | Shell Oil Company | Method of completing an uncased section of a borehole |
5392626, | Mar 16 1994 | McDermott Technology, Inc | Flexible hydraulic expansion mandrel |
5479699, | Feb 07 1994 | WESTINGHOUSE ELECTRIC CO LLC | Apparatus for expanding tubular members |
5640879, | Sep 25 1993 | Behr GmbH | Method and device for expanding metal tubes |
5667011, | Jan 16 1995 | Shell Oil Company | Method of creating a casing in a borehole |
5746557, | Jan 30 1996 | Hilti Aktiengesellchaft | Expansion dowel |
5752311, | Feb 07 1994 | WESTINGHOUSE ELECTRIC CO LLC | Method for expanding tubular members |
5785120, | Nov 14 1996 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Tubular patch |
5823031, | Nov 20 1996 | Tools for Bending, Inc. | Method and apparatus for bulge forming and bending tubes |
5887476, | Sep 25 1993 | Behr GmbH & Co. | Method and device for expanding metal tubes |
6012523, | Nov 24 1995 | Shell Oil Company | Downhole apparatus and method for expanding a tubing |
6021850, | Oct 03 1997 | Baker Hughes Incorporated | Downhole pipe expansion apparatus and method |
6029748, | Oct 03 1997 | Baker Hughes Incorporated | Method and apparatus for top to bottom expansion of tubulars |
6142230, | Nov 14 1996 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Wellbore tubular patch system |
6189631, | Nov 12 1998 | Drilling tool with extendable elements | |
6325148, | Dec 22 1999 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Tools and methods for use with expandable tubulars |
6334351, | Nov 08 1999 | Daido Tokushuko Kabushiki Kaisha | Metal pipe expander |
6478092, | Sep 11 2000 | Baker Hughes Incorporated | Well completion method and apparatus |
6722427, | Oct 23 2001 | Halliburton Energy Services, Inc | Wear-resistant, variable diameter expansion tool and expansion methods |
6789622, | Sep 06 1999 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Apparatus for and a method of anchoring an expandable conduit |
6860329, | Sep 06 1999 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Apparatus for and method of including a packer to facilitate anchoring a first conduit to a second conduit |
7185701, | Apr 20 2001 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Apparatus and method for radially expanding a tubular member |
7275601, | Nov 16 1998 | Enventure Global Technology, LLC | Radial expansion of tubular members |
7401650, | Apr 20 2001 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Apparatus and methods for radially expanding a tubular member |
WO3029609, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 06 2004 | MACKENZIE, ALAN | e2 Tech Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021457 | /0670 | |
Jul 22 2008 | e2 Tech Limited | (assignment on the face of the patent) | / | |||
Apr 28 2015 | e2 Tech Limited | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 058999 | /0718 |
Date | Maintenance Fee Events |
Aug 09 2010 | ASPN: Payor Number Assigned. |
Mar 13 2013 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jul 24 2017 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Sep 20 2021 | REM: Maintenance Fee Reminder Mailed. |
Mar 07 2022 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Feb 02 2013 | 4 years fee payment window open |
Aug 02 2013 | 6 months grace period start (w surcharge) |
Feb 02 2014 | patent expiry (for year 4) |
Feb 02 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 02 2017 | 8 years fee payment window open |
Aug 02 2017 | 6 months grace period start (w surcharge) |
Feb 02 2018 | patent expiry (for year 8) |
Feb 02 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 02 2021 | 12 years fee payment window open |
Aug 02 2021 | 6 months grace period start (w surcharge) |
Feb 02 2022 | patent expiry (for year 12) |
Feb 02 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |