Some embodiments of the invention provide a configurable integrated circuit (“IC”). The configurable IC includes a set of configurable logic circuits for configurably performing a set of functions. The configurable IC also includes a set of configurable routing circuits for routing signals to and from the configurable circuits. During several operational cycles of the configurable IC, a set of data registers are defined by the configurable routing circuits. These data registers may be used wherever a flip-flop can be used.
|
20. An electronics system comprising:
a configurable integrated circuit (“IC”) comprising:
a plurality of configurable logic circuits each for configurably performing a set of functions; and
a plurality of routing circuits for routing signals to and from said configurable circuits;
wherein a plurality of data registers are defined by the routing circuits during a plurality of operational cycles of the configurable IC;
wherein the configurable routing circuits comprise a plurality of configurable interconnect/storage circuit, each configurable interconnect/storage circuit (i) communicatively coupling circuits of the configurable IC when configured as an interconnect circuit and (ii) storing data when configured as a storage circuit;
wherein a first configurable interconnect/storage circuit and a second configurable interconnect/storage circuit are communicatively coupled to form a single data register.
8. A configurable integrated circuit (“IC”) comprising:
a plurality of configurable logic circuits each for configurably performing a set of functions; and
a plurality of configurable routing circuits for configurably routing signals to and from said configurable circuits;
wherein a plurality of data registers are defined by the configurable routing circuits during a plurality of operational cycles of the configurable IC;
wherein the configurable routing circuits comprise a plurality of configurable interconnect/storage circuit, each configurable interconnect/storage circuit (i) communicatively coupling circuits of the configurable IC when configured as an interconnect circuit and (ii) storing data when configured as a storage circuit;
wherein a first configurable interconnect/storage circuit and a second configurable interconnect/storage circuit are communicatively coupled to form a single data register.
12. An electronics system comprising:
a configurable integrated circuit (“IC”) comprising:
a plurality of configurable logic circuits each for configurably performing a set of functions; and
a plurality of routing circuits for routing signals to and from said configurable circuits;
wherein a plurality of data registers are defined by the routing circuits during a plurality of operational cycles of the configurable IC;
wherein the configurable routing circuits comprise a plurality of configurable interconnect/storage circuits, each configurable interconnect/storage circuit (i) communicatively coupling circuits of the configurable IC when configured as an interconnect circuit and (ii) storing data when configured as a storage circuit,
wherein an output of a first interconnect/storage circuit and an output of a second interconnect/storage circuit are connected to two inputs of a switching circuit to form a double-edge triggered flip flop.
1. A configurable integrated circuit (“IC”) comprising:
a plurality of configurable logic circuits each for configurably performing a set of functions; and
a plurality of configurable routing circuits for configurably routing signals to and from said configurable circuits;
wherein a plurality of data registers are defined by the configurable routing circuits during a plurality of operational cycles of the configurable IC;
wherein the configurable routing circuits comprise a plurality of configurable interconnect/storage circuits, each configurable interconnect/storage circuit (i) communicatively coupling circuits of the configurable IC when configured as an interconnect circuit and (ii) storing data when configured as a storage circuit,
wherein an output of a first interconnect/storage circuit and an output of a second interconnect/storage circuit are connected to two inputs of a switching circuit to form a double-edge triggered flip flop.
2. The configurable IC of
wherein a plurality of configurable logic circuits form a circuit arrangement;
wherein a plurality of said data registers serve as input/output registers that exchange data with circuits outside of the circuit arrangement.
3. The configurable IC of
4. The configurable IC of
5. The configurable IC of
wherein at least one of said data registers is defined between a first configurable logic circuit and a second configurable logic circuit;
wherein said at least one data register receives a signal from the first configurable logic circuit, holds the signal for a period of time, and sends the signal to the second configurable logic circuit.
6. The configurable IC of
7. The configurable IC of
9. The configurable IC of
10. The configurable IC of
11. The configurable IC of
13. The electronics system of
wherein a plurality of configurable logic circuits form a circuit arrangement;
wherein a plurality of said data registers serve as input/output registers that exchange data with circuits outside of the circuit arrangement.
14. The electronics system of
wherein at least one of said data registers is defined between a first configurable logic circuit and a second configurable logic circuit;
wherein said at least one data register receives a signal from the first configurable logic circuit, holds the signal for a period of time, and sends the signal to the second configurable logic circuit.
15. The electronics system of
16. The electronics system of
17. The electronics system of
18. The electronics system of
19. The electronics system of
21. The electronics system of
22. The electronics system of
23. The electronics system of
|
This Application is related to the following applications with the same filing date: U.S. patent application Ser. No. 11/293,856, filed Dec. 1, 2005; and U.S. patent application Ser. No. 11/292,936, filed Dec. 1, 2005.
The present invention is directed towards configurable IC with interconnect circuits that also perform storage operations.
The use of configurable integrated circuits (“IC's”) has dramatically increased in recent years. One example of a configurable IC is a field programmable gate array (“FPGA”). An FPGA is a field programmable IC that often has logic circuits, interconnect circuits, and input/output (I/O) circuits. The logic circuits (also called logic blocks) are typically arranged as an internal array of circuits. These logic circuits are typically connected together through numerous interconnect circuits (also called interconnects). The logic and interconnect circuits are often surrounded by the I/O circuits. Like some other configurable IC's, the logic circuits and interconnect circuits of an FPGA are configurable.
In some cases, the IC 300 includes numerous logic circuits 305 and interconnect circuits 310 (e.g., hundreds, thousands, hundreds of thousands, etc. of such circuits). Each logic circuit 305 includes additional logic and interconnect circuits. Specifically,
As shown in
At times, the use of user registers to store such data is suboptimal, as it typically requires data to be passed at a clock's rising edge or a clock's falling edge. In other words, registers often do not provide flexible control over the data passing between the various circuits of the configurable IC. In addition, the placement of a register or a latch in the logic circuit increases the signal delay through the logic circuit, as it requires the use of at least one multiplexer 330 to select between the output of a register/latch 325 and the output of a LUT 320.
Accordingly, there is a need for a configurable IC that has a more flexible approach for storing data and passing the data. More generally, there is a need for more flexible storage mechanisms in configurable IC's.
Some embodiments of the invention provide a configurable integrated circuit (“IC”). The configurable IC includes a set of configurable logic circuits for configurably performing a set of functions. The configurable IC also includes a set of configurable routing circuits for routing signals to and from the configurable circuits. During several operational cycles of the configurable IC, a set of data registers are defined by the configurable routing circuits. These data registers may be used wherever a flip-flop can be used.
Some embodiments provide a reconfigurable IC. This reconfigurable IC includes a set of reconfigurable circuits for reconfigurably performing a set of operations in more than one reconfiguration cycle. The reconfigurable IC also includes a set of reconfigurable circuits that perform a storage operation during one reconfiguration cycle and perform a non-storage operation during a second reconfiguration cycle. At least two of these reconfigurable circuits are communicatively coupled to operate as a data register during at least two reconfiguration cycles.
Some embodiments provide a method of designing a configurable IC. The method includes receiving a first design that has at least one controllable circuit that is initialized by a first type of initialization signal. This first design also has at least one controllable circuit that is initialized by a second type of initialization signal. The method defines a second design based on the first design. The method defines this second design by replacing all controllable circuits that are initialized by the first type of initialization signal with functionally equivalent controllable circuits. Each of these functionally equivalent controllable circuits includes a particular controllable circuit that is initialized by the second type initialization signal.
The novel features of the invention are set forth in the appended claims. However, for purpose of explanation, several embodiments of the invention are set forth in the following figures.
In the following description, numerous details are set forth for purpose of explanation. However, one of ordinary skill in the art will realize that the invention may be practiced without the use of these specific details. For instance, not all embodiments of the invention need to be practiced with the specific number of bits and/or specific devices (e.g., multiplexers) referred to below. In other instances, well-known structures and devices are shown in block diagram form in order not to obscure the description of the invention with unnecessary detail.
Some embodiments of the invention provide a configurable integrated circuit (“IC”). The configurable IC includes a set of configurable logic circuits for configurably performing a set of functions. The configurable IC also includes a set of configurable routing circuits for routing signals to and from the configurable circuits. During several operational cycles of the configurable IC, a set of data registers are defined by the configurable routing circuits. These data registers may be used wherever a flip-flop can be used.
Some embodiments provide a reconfigurable IC. This reconfigurable IC includes a set of reconfigurable circuits for reconfigurably performing a set of operations in more than one reconfiguration cycle. The reconfigurable IC also includes a set of reconfigurable circuits that perform a storage operation during one reconfiguration cycle and perform a non-storage operation during a second reconfiguration cycle. At least two of these reconfigurable circuits are communicatively coupled to operate as a data register during at least two reconfiguration cycles.
Some embodiments provide a method of designing a configurable IC. The method includes receiving a first design that has at least one controllable circuit that is initialized by a first type of initialization signal. This first design also has at least one controllable circuit that is initialized by a second type of initialization signal. The method defines a second design based on the first design. The method defines this second design by replacing all controllable circuits that are initialized by the first type of initialization signal with functionally equivalent controllable circuits. Each of these functionally equivalent controllable circuits includes a particular controllable circuit that is initialized by the second type initialization signal.
Several more detailed embodiments of the invention are described in sections below. Before describing these embodiments further, an overview of latches and user registers are given in Section II below. This discussion is followed by the discussion in Section III of the configurable IC architecture that is used by some embodiments to implement user registers using interconnect/storage circuits. Next, Section IV describes implementation of user registers in a reconfigurable IC. Next, Section V presents several examples of different uses of user registers. Section VI describes replacing each set (or reset) user register with its functionally equivalent reset (or set) registers. Last, Section VII describes an electronics system that has an IC which implements some of the embodiments of the invention.
I. Terms and Concepts
A. Latches
A latch is one type of a storage element.
B. Registers
A register (also referred to as user register or data register) is a circuit that receives an input data, holds the data for a period of time, and posts the data at its output for a period of time. A user register operates synchronously with a clock. To do this, a register might receive a clock signal. However, this is not an absolute condition. In fact, several registers described below are controlled by enable signaling that are set to cause the registers operation to be synchronous with a clock signal. The enable signals can be driven from different sources. For instance, the enable signal may be generated by circuit logic, driven directly or indirectly by the clock, or may be taken from configuration values stored in a set of storage elements (e.g., SRAM cells).
Assuming that the latches 705 and 710 are enable-high latches, the register 700 operates as follows. Initially, when the clock signal 720 is low, the master latch 705 is open, while the slave latch 710 is closed. When the clock signal 720 then goes high, the slave latch 710 opens and the master latch 705 closes. This, in turn, causes the slave latch 710 to output the signal that was appearing at the input line 730 of the master latch right before the master latch closed. Next, when the clock signal 720 transitions low, the slave latch 710 closes before the master latch 705 opens. This causes the slave latch 710 to hold the value that it was outputting before the clock transitioned low, during the period that the clock remains low. This value (that is being held by the slave latch 710) is the value that the master latch 705 was receiving before the prior low-to-high transition of the clock signal 720.
C. Configurable IC's
A configurable IC is an IC that has configurable circuits. A configurable IC might include configurable computational circuit (e.g., configurable logic circuits) and configurable routing circuits for routing the signals to and from the configurable computation units. In addition to configurable circuits, a configurable IC also typically includes non-configurable circuits (e.g., non-configurable logic circuits, interconnect circuits, memories, etc.).
A configurable circuit is a circuit that can “configurably” perform a set of operations. Specifically, a configurable circuit receives “configuration data” that specifies the operation that the configurable circuit has to perform in the set of operations that it can perform. In some embodiments, configuration data is generated outside of the configurable IC. In these embodiments, a set of software tools typically converts a high-level IC design (e.g., a circuit representation or a hardware description language design) into a set of configuration data that can configure the configurable IC (or more accurately, the configurable IC's configurable circuits) to implement the IC design.
Examples of configurable circuits include configurable interconnect circuits and configurable logic circuits. A logic circuit is a circuit that can perform a function on a set of input data that it receives. A configurable logic circuit is a logic circuit that can be configured to perform different functions on its input data set.
A configurable interconnect circuit is a circuit that can configurably connect an input set to an output set in a variety of ways. An interconnect circuit can connect two terminals or pass a signal from one terminal to another by establishing an electrical path between the terminals. Alternatively, an interconnect circuit can establish a connection or pass a signal between two terminals by having the value of a signal that appears at one terminal appear at the other terminal. In connecting two terminals or passing a signal between two terminals, an interconnect circuit in some embodiments might invert the signal (i.e., might have the signal appearing at one terminal inverted by the time it appears at the other terminal). In other words, the interconnect circuit of some embodiments implements a logic inversion operation in conjunction to its connection operation. Other embodiments, however, do not build such an inversion operation in some or all of their interconnect circuits.
Some embodiments provide reconfigurable ICs. Reconfigurable IC's are one type of configurable IC's. Reconfigurable IC's are configurable IC's that can reconfigure during runtime. In other words, a reconfigurable IC is an IC that has reconfigurable logic circuits and/or reconfigurable interconnect circuits, where the reconfigurable logic and/or interconnect circuits are configurable logic and/or interconnect circuits that can “reconfigure” more than once at runtime. A configurable logic or interconnect circuit reconfigures when it receives a different set of configuration data. Some embodiments of the invention are implemented in reconfigurable IC's that are sub-cycle reconfigurable (i.e., can reconfigure circuits on a sub-cycle basis).
In some embodiments, runtime reconfigurability means reconfiguring without resetting the reconfigurable IC. Resetting a reconfigurable IC entails in some cases resetting the values stored in the state elements of the IC, where state elements are elements like latches, registers, and non-configuration memories (e.g., memories that store the user signals as opposed to the memories that store the configuration data of the configurable circuits). In some embodiments, runtime reconfigurability means reconfiguring after the reconfigurable IC has started processing of the user data. Also, in some embodiments, runtime reconfigurability means reconfiguring after the reconfigurable IC has powered up. These definitions of runtime reconfigurability are not mutually exclusive. Configurable and reconfigurable ICs are described in detail in U.S. patent application Ser. No. 11/081,859, “Configurable IC with Interconnect Circuits that also Perform Storage Operations”, filed on Mar. 15, 2005.
II. Architecture
In some embodiments, the logic circuits are look-up tables (LUTs) while the interconnect circuits are multiplexers. Also, in some embodiments, the LUTs and the multiplexers are sub-cycle reconfigurable circuits, as described in U.S. Patent Application “Configurable IC with Routing Circuits with Offset Connections”, Ser. No. 11/082,193, filed on Mar. 15, 2005. In some of these embodiments, the configurable IC stores multiple sets of configuration data for a sub-cycle reconfigurable circuit, so that reconfigurable circuit can use a different set of configuration data in different sub-cycles. Other configurable tiles can include other types of circuits, such as memory arrays instead of logic circuits.
In
In
Even though the embodiments described below are described with reference to this specific architecture, one of ordinary skill in the art would realize that other embodiments might be implemented in configurable ICs with other architecture that utilize features of this architecture differently. For instance, some embodiments might use HMUXs differently (for example, they might not just use HMUXs as input select multiplexers but might use them as a part of routing multiplexers or other types of interconnects). Other embodiments might use other types of logic circuits other than LUTs and/or might use more complex LUTs such as 4-input or 5-input LUTs. Moreover, the interconnects in the other embodiments might be multiplexers of a different size. Yet, in some other embodiments, the interconnects might not be multiplexers but might be other types of interconnects.
III. User Registers Implemented with Storage Elements of Interconnect Circuits
Some embodiments are configurable ICs that have storage elements. In some of these embodiments, some or all of the storage elements are located at the interconnect circuits. The storage elements (a) might be located within the interconnect circuit, (b) might be placed at the output of the interconnect circuit, or (c) can be built in the output stage of the interconnect circuit. As described below, some embodiments build the storage elements at the output of the interconnect circuits.
In some embodiments, an RMUX is a complementary pass logic (CPL) implemented 8-to-1 multiplexer. In a CPL implementation of a circuit, a complementary pair of signals represents each logic signal. In other words, the circuit receives true and complement sets of input signals and provides true and complement sets of output signals. In some embodiments all RMUXs have latches built in their output stages. In other embodiments, only some of the RMUXs (e.g., the ones with the smallest number of inputs) have latches built in their output stages. To implement the latch function of an RMUX, the two (true and complement) outputs of the 8-to-1 multiplexer are cross coupled with two NMOS transistors that receive a latch enable signal at their gates. This implementation of an RMUX is further described in the above mentioned U.S. patent application Ser. No. 11/081,859.
Having the storage elements at some or all of the interconnect circuits is highly advantageous. For instance, such interconnect/storage elements obviate the need to route data computed by a first logic circuits to a second logic circuit that stores the computed data before routing the data to a third logic circuit that will use the data. Instead, such computed data can be stored at an interconnect circuit that is at an optimal location along the routing path between the first and third logic circuits. In reconfigurable ICs, such flexibility in routing data is highly advantageous when such data needs to pass between logic circuits that operate in different sub-cycles.
In the architecture illustrated in
As described above, in some embodiments some or all of the interconnect circuits are routing multiplexers with latches. These routing multiplexers may be utilized to implement edge-triggered flip-flops. For instance,
As illustrated in
In order to store data and pass data to each other, the two interconnect/storage elements shown in
Similarly,
As described above, some embodiments utilize RMUXs to implement user registers. There are several advantages to this approach. First, RMUXs are the interconnect circuitry and are available throughout the IC fabric, and therefore, the user registers are readily available anywhere. Second, the user register output is intrinsically part of the interconnect path; there are no extra outputs, and no extra multiplexers are needed to build the user registers. Third, no edge-triggered clock needs to be distributed. Fourth, extra features such as enable and clear are implemented only when needed. Several methods of implementing enable and clear for user registers are described below. Fifth, master/slave latches are easily implemented with the RMUXs. Sixth, the need for RMUXs and user registers can be exchanged. Seventh, setup and hold times are part of the interconnect delay.
IV. User Registers in a Reconfigurable IC
A. User Registers Operating on a Sub-Cycle Faster than the User Design Clock
In some embodiments, a reconfigurable IC is configured in such a way that some user registers may operate on a sub-cycle that is different than the user design clock. As described below, the physical location of a user register may change from one sub-cycle to another without an impact to the user design.
As previously shown in
A person of ordinary skills in the art would recognize that other arrangements of RMUX to implement a user register are possible. For instance, in the example above where there are four sub-cycles per one user design clock cycle, a user register can be implemented using three RMUXs as illustrated in
B. User Registers Operating on a Sub-Cycle as Fast as the User Design Clock
One of the significant benefits of using RMUXs to implement user registers is that there is no need to distribute a distinct clock for edge-triggered devices. As a result, the effective update of a master/slave RMUX pair can happen only every other sub-cycle. This is not a problem when the sub-cycle clock runs faster than the user clock, but it presents a problem for portions of the design that run at a sub-cycle that is as fast as the user clock. In this latter case, in order to have state updated at the user clock rate, a state device that triggers on either the positive or the negative virtual edge is required. Some embodiments implement such a double-edge triggered user register using RMUXs.
C. User Registers Implemented with Logical RMUX Locations
As described above, an RMUX (such as 1605) may hold a value over several sub-cycles. In some embodiments, the location of such an RMUX in a reconfigurable IC may be a logical location. For instance, the reconfigurable IC may be programmed in such a way that instead of one RMUX acting as master RMUX to hold a value over three sub-cycles and then passing it to the slave RMUX in the fourth sub-cycle, the master RMUX may be a specific RMUX in a sub-cycle and another RMUX in the next sub-cycle. Specifically, the IC may be reconfigured in the next sub-cycle in such a way that the master RMUX is an RMUX for a different portion of the user design. The RMUX previously acting as master RMUX will be freed to do other unrelated operations.
The IC may be reconfigured several times to use different physical RMUXs as logical master RMUX before passing the value of the user register to the slave RMUX. The slave RMUX may be similarly programmed to be a specific physical RMUX during some sub-cycles and to be different physical RMUXs during other sub-cycles. In other words, while as far as the user design is concerned, the logical (or operational) site of a master (or slave) RMUX is the same during different sub-cycles, the physical site of the master (or slave) RMUX may change.
V. Examples of Different Uses for User Registers
As described above, user registers can be implemented to operate as either edge-triggered (i.e., single edge-triggered) or double-edge triggered flip-flops. Therefore, the user registers can be utilized wherever a flip-flop can be used. This section presents several specific examples of the use of user registers. The user registers, for example, may be used for retiming purposes. This retiming may be inherent to a pipeline defined within the user design, or the retiming may be done when mapping the user design to configurable logic and routing circuits of the configurable IC. The user registers may also be used to perform I/O operations.
Some embodiments utilize user registers to facilitate pipelining. Pipelining is a way of performing multiple sets of operations. To do pipelining, each set of operations is broken into subset operations. Different subset operations of each set are overlapped as they are performed. One such example is implementing a finite impulse response (FIR) filter. A FIR filter produces an output, Y, that is the weighted sum of the current and past values of an input, X. The value for the nth sample of Y can be expressed by the following equation (A):
In some embodiments, user registers implemented from RMUXs are used as a part of I/O circuitry.
The above examples illustrate a few uses for user registers. As described above, however, a user register can be utilized where a flip-flop can be used. Therefore, a person of ordinary skill in the art should realize that the use of user registers is not limited to the above examples and many other applications of user registers are feasible.
A. Synthesis Process
IC design tools often include a synthesis tool which receives a description of the user design as input and generates the circuit design to implement the user design. Different synthesis tools accept different formats such as circuit diagrams, source code, Very High Speed Integrated Circuit Hardware Description Language (VHDL), Verilog Hardware Description Language, etc., for their input. In order to optimize the circuit design generated during synthesis, some embodiments replace certain design elements with their functionally equivalent design elements during synthesis.
B. Configurable ICs with only Set Line or Reset Line
As indicated above, some embodiments replace all design elements that have set or reset with their equivalents in a way that either all design elements have set or all have reset inputs. One such design element is a user register.
Similarly,
As described in more detail above, some embodiments replace every design element that requires a certain type of control such as a reset (or set), with a functionally equivalent design element that performs the same function using a different control such as set (or reset).
Substituting design elements to have only set or reset lines has several advantages. For instance, for design fabrics that actually have set and reset lines, it eliminates the need to have both lines distributed throughout the design fabric. Also, having either set or reset functions eliminates the need for implementing a configuration bit to indicate to design elements what to do when a set/reset signal is supplied. Having only set or reset also reduces the need to initialize state elements to define whether a register is a set or a reset register. Some embodiments perform an automatic power up reset. Additional saving in logic circuits may be realized by connecting the reset (or inverted set) signals to the power up reset if permitted by the user.
VII. Electronics System
The bus 3410 collectively represents all system, peripheral, and chipset interconnects (including bus and non-bus interconnect structures) that communicatively connect the numerous internal devices of the system 3400. For instance, the bus 3410 communicatively connects the IC 3410 with the read-only memory 3420, the system memory 3415, and the permanent storage device 3425.
From these various memory units, the IC 3405 receives data for processing and configuration data for configuring the IC's configurable logic and/or interconnect circuits. When the IC 3405 has a processor, the IC also retrieves from the various memory units instructions to execute. The non-volatile memory 3420 stores static data and instructions that are needed by the IC 3410 and other modules of the system 3400. The storage device 3425, on the other hand, is read-and-write memory device. This device is a non-volatile memory unit that stores instruction and/or data even when the system 3400 is off. Like the storage device 3425, the system memory 3415 is a read-and-write memory device. However, unlike storage device 3425, the system memory is a volatile read-and-write memory, such as a random access memory. The system memory stores some of the instructions and/or data that the IC needs at runtime.
The bus 3410 also connects to the input and output devices 3430 and 3435. The input devices enable the user to enter information into the system 3400. The input devices 3430 can include touch-sensitive screens, keys, buttons, keyboards, cursor-controllers, microphone, etc. The output devices 3435 display the output of the system 3400.
Finally, as shown in
While the invention has been described with reference to numerous specific details, one of ordinary skill in the art will recognize that the invention can be embodied in other specific forms without departing from the spirit of the invention. Thus, one of ordinary skill in the art would understand that the invention is not to be limited by the foregoing illustrative details, but rather is to be defined by the appended claims.
Patent | Priority | Assignee | Title |
10320390, | Nov 17 2016 | GOOGLE LLC | Field programmable gate array including coupled lookup tables |
10560102, | Nov 17 2016 | GOOGLE LLC | Field programmable gate array including coupled lookup tables |
10868539, | Nov 17 2016 | GOOGLE LLC | Field programmable gate array including coupled lookup tables |
7898291, | Dec 01 2004 | Altera Corporation | Operational time extension |
7971172, | Nov 07 2005 | Altera Corporation | IC that efficiently replicates a function to save logic and routing resources |
8004908, | Sep 19 2007 | DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT | Double edge triggered flip-flop circuit |
8089300, | Dec 01 2005 | TAHOE RESEARCH, LTD | Users registers implemented with routing circuits in a configurable IC |
8093922, | Mar 20 2007 | Altera Corporation | Configurable IC having a routing fabric with storage elements |
8117436, | Apr 19 2006 | Trustees of Princeton University | Hybrid nanotube/CMOS dynamically reconfigurable architecture and an integrated design optimization method and system therefor |
8456190, | Sep 17 2008 | Altera Corporation | Controllable storage elements for an IC |
8664974, | Dec 01 2004 | Altera Corporation | Operational time extension |
8667441, | Nov 16 2010 | GLOBALFOUNDRIES U S INC | Clock optimization with local clock buffer control optimization |
8674721, | Sep 17 2008 | Altera Corporation | Controllable storage elements for an IC |
8674723, | Dec 01 2005 | TAHOE RESEARCH, LTD | User registers implemented with routing circuits in a configurable IC |
8723549, | Mar 20 2007 | Altera Corporation | Configurable IC having a routing fabric with storage elements |
8725483, | Jan 19 2011 | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | Minimizing the maximum required link capacity for three-dimensional interconnect routing |
8756547, | Jun 26 2008 | Altera Corporation | Timing operations in an IC with configurable circuits |
8850163, | Jul 25 2011 | International Business Machines Corporation | Automatically routing super-compute interconnects |
8856495, | Jul 25 2011 | International Business Machines Corporation | Automatically routing super-compute interconnects |
8863067, | Feb 06 2008 | Altera Corporation | Sequential delay analysis by placement engines |
9018977, | Dec 01 2005 | TAHOE RESEARCH, LTD | User registers implemented with routing circuits in a configurable IC |
9099195, | Apr 19 2006 | The Trustees of Princeton University | Hybrid nanotube/CMOS dynamically reconfigurable architecture and system therefore |
9134750, | Sep 14 2012 | Samsung Electronics Co., Ltd. | Embedded multimedia card (eMMC), eMMC system, and methods of operation |
9461650, | Dec 01 2005 | TAHOE RESEARCH, LTD | User registers implemented with routing circuits in a configurable IC |
9490814, | Mar 20 2007 | Altera Corporation | Configurable IC having a routing fabric with storage elements |
Patent | Priority | Assignee | Title |
4594661, | Feb 22 1982 | International Business Machines Corp. | Microword control system utilizing multiplexed programmable logic arrays |
4711024, | Oct 30 1981 | Honeywell Information Systems Inc. | Method for making testable electronic assemblies |
4873459, | Sep 19 1986 | Actel Corporation | Programmable interconnect architecture |
4980577, | Jun 18 1987 | Advanced Micro Devices, Inc. | Dual triggered edge-sensitive asynchrounous flip-flop |
5191241, | Aug 01 1990 | Actel Corporation | Programmable interconnect architecture |
5245575, | Sep 07 1990 | NEC Corporation | Register circuit for copying contents of one register into another register |
5260610, | Sep 03 1991 | ALTERA CORPORATION A CORPORATION OF DELAWARE | Programmable logic element interconnections for programmable logic array integrated circuits |
5325329, | Dec 03 1991 | Renesas Electronics Corporation | Dual port memory effecting transfer of data between a serial register and an arbitrary memory block |
5349250, | Sep 02 1993 | XILINX, Inc. | Logic structure and circuit for fast carry |
5357153, | Jan 28 1993 | Xilinx, Inc | Macrocell with product-term cascade and improved flip flop utilization |
5365125, | Jul 23 1992 | XILINX, Inc.; Xilinx, Inc | Logic cell for field programmable gate array having optional internal feedback and optional cascade |
5369622, | Apr 20 1993 | Micron Technology, Inc | Memory with isolated digit lines |
5426378, | Apr 20 1994 | XILINX, Inc.; Xilinx, Inc | Programmable logic device which stores more than one configuration and means for switching configurations |
5452239, | Jan 29 1993 | Cadence Design Systems, INC | Method of removing gated clocks from the clock nets of a netlist for timing sensitive implementation of the netlist in a hardware emulation system |
5521835, | Mar 27 1992 | XILINX, Inc. | Method for programming an FPLD using a library-based technology mapping algorithm |
5532958, | Jun 25 1990 | Dallas Semiconductor Corp. | Dual storage cell memory |
5552721, | Jun 05 1995 | International Business Machines Corporation | Method and system for enhanced drive in programmmable gate arrays |
5600263, | Aug 18 1995 | XILINX, Inc.; Xilinx, Inc | Configuration modes for a time multiplexed programmable logic device |
5610829, | Mar 27 1992 | XILINX, Inc. | Method for programming an FPLD using a library-based technology mapping algorithm |
5629637, | Aug 18 1995 | XILINX, Inc.; Xilinx, Inc | Method of time multiplexing a programmable logic device |
5631578, | Jun 02 1995 | GLOBALFOUNDRIES Inc | Programmable array interconnect network |
5640107, | Oct 24 1995 | Northrop Grumman Systems Corporation | Method for in-circuit programming of a field-programmable gate array configuration memory |
5646544, | Jun 05 1995 | International Business Machines Corporation | System and method for dynamically reconfiguring a programmable gate array |
5646545, | Aug 18 1995 | XILINX, Inc.; Xilinx, Inc | Time multiplexed programmable logic device |
5656950, | Oct 26 1995 | XILINX, Inc.; Xilinx, Inc | Interconnect lines including tri-directional buffer circuits |
5659484, | Mar 29 1993 | Xilinx, Inc | Frequency driven layout and method for field programmable gate arrays |
5682107, | Apr 01 1994 | XILINX, Inc. | FPGA architecture with repeatable tiles including routing matrices and logic matrices |
5692147, | Jun 07 1995 | International Business Machines Corporation | Memory mapping method and apparatus to fold sparsely populated structures into densely populated memory columns or rows by selectively transposing X and Y address portions, and programmable gate array applications thereof |
5694057, | Jun 05 1995 | International Business Machines Corporation | System for enhanced drive in programmable gate arrays |
5701441, | Aug 18 1995 | XILINX, Inc.; Xilinx, Inc | Computer-implemented method of optimizing a design in a time multiplexed programmable logic device |
5719889, | Dec 20 1995 | International Business Machines Corporation | Programmable parity checking and comparison circuit |
5732246, | Jun 07 1995 | International Business Machines Corporation | Programmable array interconnect latch |
5737235, | May 02 1995 | Xilinx, Inc | FPGA with parallel and serial user interfaces |
5745422, | Nov 12 1996 | International Business Machines Corporation | Cross-coupled bitline segments for generalized data propagation |
5745734, | Sep 29 1995 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Method and system for programming a gate array using a compressed configuration bit stream |
5761483, | Aug 18 1995 | XILINX, Inc.; Xilinx, Inc | Optimizing and operating a time multiplexed programmable logic device |
5764954, | Aug 23 1995 | International Business Machines Corporation | Method and system for optimizing a critical path in a field programmable gate array configuration |
5768178, | Jun 30 1995 | Micron Technology, Inc. | Data transfer circuit in a memory device |
5777360, | Nov 02 1994 | Bell Semiconductor, LLC | Hexagonal field programmable gate array architecture |
5796268, | Oct 02 1996 | SAMSUNG ELECTRONICS CO , LTD ; CECIL H KAPLINSKY BYPASS TRUST DATED NOVEMBER 11, 1999, THE; VESSELINA KAPLINSKY MARITAL TRUST DATED NOVEMBER 11, 1999, THE | Programmable logic device with partial switch matrix and bypass mechanism |
5802003, | Dec 20 1995 | International Business Machines Corporation | System for implementing write, initialization, and reset in a memory array using a single cell write port |
5815726, | Nov 04 1994 | ALTERA CORPORATION, A CORP OF DELAWARE | Coarse-grained look-up table architecture |
5825662, | Aug 18 1995 | XILINX, Inc. | Computer-implemented method of optimizing a time multiplexed programmable logic device |
5835751, | Jan 31 1992 | Cadence Design Systems, INC | Structure and method for providing reconfigurable emulation circuit |
5847577, | Feb 24 1995 | XILINX, Inc.; Xilinx, Inc | DRAM memory cell for programmable logic devices |
5889411, | Feb 26 1997 | XILINX, Inc.; Xilinx, Inc | FPGA having logic element carry chains capable of generating wide XOR functions |
5914616, | Feb 26 1997 | XILINX, Inc.; Xilinx, Inc | FPGA repeatable interconnect structure with hierarchical interconnect lines |
5914906, | Dec 20 1995 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Field programmable memory array |
5942913, | Mar 20 1997 | XILINX, Inc.; Xilinx, Inc | FPGA repeatable interconnect structure with bidirectional and unidirectional interconnect lines |
5944813, | Aug 03 1993 | XILINX, Inc. | FPGA input output buffer with registered tristate enable |
6002991, | Aug 30 1996 | XILINX, Inc. | Method and apparatus for measuring localized voltages on programmable integrated circuits |
6023421, | Dec 20 1995 | GLOBALFOUNDRIES Inc | Selective connectivity between memory sub-arrays and a hierarchical bit line structure in a memory array |
6038192, | Dec 20 1995 | MARVELL INTERNATIONAL LTD | Memory cells for field programmable memory array |
6038392, | May 27 1998 | NEC Corporation | Implementation of boolean satisfiability with non-chronological backtracking in reconfigurable hardware |
6044031, | Dec 20 1995 | MARVELL INTERNATIONAL LTD | Programmable bit line drive modes for memory arrays |
6054873, | Dec 05 1996 | International Business Machines Corporation | Interconnect structure between heterogeneous core regions in a programmable array |
6069490, | Dec 02 1997 | XILINX, Inc.; Xilinx, Inc | Routing architecture using a direct connect routing mesh |
6075745, | Dec 20 1995 | MARVELL INTERNATIONAL LTD | Field programmable memory array |
6084429, | Apr 24 1998 | XILINX, Inc.; Xilinx, Inc | PLD having a window pane architecture with segmented and staggered interconnect wiring between logic block arrays |
6086628, | Feb 24 1997 | THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT | Power-related hardware-software co-synthesis of heterogeneous distributed embedded systems |
6086631, | Apr 08 1998 | XILINX, Inc.; Xilinx, Inc | Post-placement residual overlap removal method for core-based PLD programming process |
6091263, | Dec 12 1997 | XILINX, Inc.; Xilinx, Inc | Rapidly reconfigurable FPGA having a multiple region architecture with reconfiguration caches useable as data RAM |
6091645, | Dec 20 1995 | GLOBALFOUNDRIES Inc | Programmable read ports and write ports for I/O buses in a field programmable memory array |
6107821, | Feb 08 1999 | XILINX, Inc.; Xilinx, Inc | On-chip logic analysis and method for using the same |
6108805, | May 29 1996 | Bell Semiconductor, LLC | Domino scan architecture and domino scan flip-flop for the testing of domino and hybrid CMOS circuits |
6110223, | Oct 28 1996 | Altera Corporation | Graphic editor for block diagram level design of circuits |
6118707, | Dec 20 1995 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Method of operating a field programmable memory array with a field programmable gate array |
6130854, | Dec 20 1995 | MARVELL INTERNATIONAL LTD | Programmable address decoder for field programmable memory array |
6134154, | Apr 03 1998 | Renesas Electronics Corporation | Semiconductor memory device with several access enabled using single port memory cell |
6140836, | Mar 03 1997 | Automotive Systems Laboratory, Inc | Self-timed pipelined datapath system and asynchronous signal control circuit |
6140839, | May 13 1998 | Computational field programmable architecture | |
6150838, | Feb 25 1999 | XILINX, Inc.; Xilinx, Inc | FPGA configurable logic block with multi-purpose logic/memory circuit |
6152612, | Jun 09 1997 | Synopsys, Inc | System and method for system level and circuit level modeling and design simulation using C++ |
6163168, | Dec 09 1998 | Lattice Semiconductor Corporation | Efficient interconnect network for use in FPGA device having variable grain architecture |
6172521, | Apr 11 1997 | NEC Corporation | Programmable logic IC having memories for previously storing a plurality of configuration data and a method of reconfigurating same |
6173379, | May 14 1996 | Intel Corporation | Memory device for a microprocessor register file having a power management scheme and method for copying information between memory sub-cells in a single clock cycle |
6175247, | Apr 10 1998 | HANGER SOLUTIONS, LLC | Context switchable field programmable gate array with public-private addressable sharing of intermediate data |
6184707, | Oct 07 1998 | Altera Corporation; Quickturn Design Systems, Inc. | Look-up table based logic element with complete permutability of the inputs to the secondary signals |
6184709, | Apr 09 1996 | XILINX, Inc.; Xilinx, Inc | Programmable logic device having a composable memory array overlaying a CLB array |
6205076, | Mar 27 1998 | Fujitsu Limited | Destructive read type memory circuit, restoring circuit for the same and sense amplifier |
6229337, | Jun 15 1999 | ANALOG TECHNOLOGY, INC | High-density programmable logic device with flexible local connections and multiplexer based global interconnections |
6233191, | Dec 20 1995 | GLOBALFOUNDRIES Inc | Field programmable memory array |
6255849, | Feb 04 2000 | XILINX, Inc.; Xilinx, Inc | On-chip self-modification for PLDs |
6275064, | Dec 22 1997 | Lattice Semiconductor Corporation | Symmetrical, extended and fast direct connections between variable grain blocks in FPGA integrated circuits |
6292019, | May 07 1999 | Xilinx Inc. | Programmable logic device having configurable logic blocks with user-accessible input multiplexers |
6326807, | Mar 21 1997 | Altera Corporation | Programmable logic architecture incorporating a content addressable embedded array block |
6346824, | Apr 09 1996 | XILINX, Inc. | Dedicated function fabric for use in field programmable gate arrays |
6348813, | Jun 06 1999 | Lattice Semiconductor Corporation | Scalable architecture for high density CPLD's having two-level hierarchy of routing resources |
6381732, | Jan 14 1999 | XILINX, Inc. | FPGA customizable to accept selected macros |
6404224, | Dec 19 1995 | Fujitsu Limited | Chain-connected shift register and programmable logic circuit whose logic function is changeable in real time |
6411128, | Dec 10 1999 | Longitude Licensing Limited | Logical circuit for serializing and outputting a plurality of signal bits simultaneously read from a memory cell array or the like |
6430736, | Feb 26 1999 | XILINX, Inc.; Xilinx, Inc | Method and apparatus for evolving configuration bitstreams |
6441642, | Feb 20 2001 | MONTEREY RESEARCH, LLC | Multiplexers for efficient PLD logic blocks |
6466051, | Feb 20 2001 | MONTEREY RESEARCH, LLC | Multiplexers for efficient PLD logic blocks |
6469540, | Jun 15 2000 | NEC Corporation | Reconfigurable device having programmable interconnect network suitable for implementing data paths |
6469553, | Jan 08 1999 | Altera Corporation | Phase-locked loop circuitry for programmable logic devices |
6480954, | Aug 18 1995 | Xilinx Inc. | Method of time multiplexing a programmable logic device |
6487709, | Feb 09 2000 | XILINX, Inc.; Xilinx, Inc | Run-time routing for programmable logic devices |
6490707, | Jul 13 2000 | XILINX, Inc.; Xilinx, Inc | Method for converting programmable logic devices into standard cell devices |
6496918, | Apr 11 1996 | Massachusetts Institute of Technology | Intermediate-grain reconfigurable processing device |
6515509, | Jul 13 2000 | XILINX, Inc.; Xilinx, Inc | Programmable logic device structures in standard cell devices |
6526559, | Apr 13 2001 | SRA INTERNATIONAL, INC | Method for creating circuit redundancy in programmable logic devices |
6529040, | May 05 2000 | XILINX, Inc.; Xilinx, Inc | FPGA lookup table with speed read decoder |
6545501, | |||
6545505, | |||
6590417, | Apr 03 2001 | MONTEREY RESEARCH, LLC | Cascadable bus based crossbar switch in a programmable logic device |
6593771, | Dec 10 2001 | GOOGLE LLC | Method and system for use of a field programmable interconnect within an ASIC for configuring the ASIC |
6601227, | Jun 27 2001 | XILINX, Inc.; Xilinx, Inc | Method for making large-scale ASIC using pre-engineered long distance routing structure |
6603330, | Oct 26 2000 | MALLARD IP LLC | Configuring digital functions in a digital configurable macro architecture |
6614703, | Jan 13 2000 | Texas Instruments Incorporated | Method and system for configuring integrated systems on a chip |
6629308, | Jul 13 2000 | XILINX, Inc.; Xilinx, Inc | Method for managing database models for reduced programmable logic device components |
6636070, | Oct 16 1997 | Driver circuitry for programmable logic devices with hierarchical interconnection resources | |
6642744, | Mar 10 2000 | Intel Corporation | Customizable and programmable cell array |
6642763, | Dec 19 2001 | Intel Corporation | Long setup flip-flop for improved synchronization capabilities |
6650142, | Aug 13 2002 | Lattice Semiconductor Corporation | Enhanced CPLD macrocell module having selectable bypass of steering-based resource allocation and methods of use |
6667635, | Sep 10 2002 | XILINX, Inc. | FPGA lookup table with transmission gate structure for reliable low-voltage operation |
6668361, | Dec 10 2001 | GOOGLE LLC | Method and system for use of a field programmable function within a chip to enable configurable I/O signal timing characteristics |
6674303, | Dec 14 2001 | Lattice Semiconductor Corporation | Programmable input/output cell with bidirectional and shift register capabilities |
6675309, | Jul 13 2000 | XILINX, Inc.; Xilinx, Inc | Method for controlling timing in reduced programmable logic devices |
6686769, | Dec 14 2001 | Altera Corporation | Programmable I/O element circuit for high speed logic devices |
6691301, | Jan 29 2001 | The MathWorks, Inc | System, method and article of manufacture for signal constructs in a programming language capable of programming hardware architectures |
6701494, | May 01 2002 | COMMSCOPE DSL SYSTEMS LLC | Method of using testbench tests to avoid task collisions in hardware description language |
6703861, | Aug 03 1993 | Actel Corporation | Architecture and interconnect scheme for programmable logic circuits |
6710623, | Apr 03 2001 | MONTEREY RESEARCH, LLC | Cascadable bus based crossbar switching in a programmable logic device |
6714041, | Aug 30 2002 | XILINX, Inc. | Programming on-the-fly (OTF) |
6732068, | May 30 1997 | Cadence Design Systems, INC | Memory circuit for use in hardware emulation system |
6806730, | Dec 10 2001 | GLOBALFOUNDRIES U S INC | Method and system for use of an embedded field programmable gate array interconnect for flexible I/O connectivity |
6807660, | Oct 01 2002 | ANSYS, Inc | Vectorless instantaneous current estimation |
6809979, | Mar 04 2003 | Fernandez & Associates, LLP; FERNANDEZ & ASSOCIATE, LLP | Complete refresh scheme for 3T dynamic random access memory cells |
6810442, | Aug 31 1998 | Cadence Design Systems, INC | Memory mapping system and method |
6829756, | Sep 23 2002 | XILINX, Inc. | Programmable logic device with time-multiplexed interconnect |
6831479, | May 03 2000 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Circuit for reducing pin count of a semiconductor chip and method for configuring the chip |
6838902, | May 28 2003 | MICROSEMI SOC CORP | Synchronous first-in/first-out block memory for a field programmable gate array |
6851101, | Jun 20 2002 | XILINX, Inc. | Method for computing and using future costing data in signal routing |
6861868, | Dec 14 2001 | Lattice Semiconductor Corp. | High speed interface for a programmable interconnect circuit |
6882182, | Sep 23 2003 | XILINX, Inc. | Tunable clock distribution system for reducing power dissipation |
6894527, | May 12 2003 | XILINX, Inc. | Evolved circuits for bitstream protection |
6920627, | Dec 13 2002 | XILINX, Inc.; Xilinx, Inc | Reconfiguration of a programmable logic device using internal control |
6924663, | Dec 28 2001 | Fujitsu Semiconductor Limited | Programmable logic device with ferroelectric configuration memories |
6927601, | Nov 21 2002 | Altera Corporation | Flexible macrocell interconnect |
6937535, | Oct 29 2002 | Hynix Semiconductor Inc. | Semiconductor memory device with reduced data access time |
6956399, | Feb 05 2004 | XILINX, Inc. | High-speed lookup table circuits and methods for programmable logic devices |
6992505, | Mar 09 2004 | XILINX, Inc. | Structures and methods of implementing a pass gate multiplexer with pseudo-differential input signals |
6998872, | Jun 02 2004 | XILINX, Inc. | Lookup table circuit optionally configurable as two or more smaller lookup tables with independent inputs |
7010667, | Feb 11 1998 | Pact XPP Technologies AG | Internal bus system for DFPS and units with two- or multi-dimensional programmable cell architectures, for managing large volumes of data with a high interconnection complexity |
7028281, | Jul 12 2002 | Lattice Semiconductor Corporation | FPGA with register-intensive architecture |
7073158, | May 17 2002 | PIXEL VELOCITY INCORPORATED | Automated system for designing and developing field programmable gate arrays |
7075333, | Aug 24 2004 | XILINX, Inc. | Programmable circuit optionally configurable as a lookup table or a wide multiplexer |
7084666, | Oct 21 2002 | CALLAHAN CELLULAR L L C ; YAKIMISHU CO LTD , LLC | Programmable interconnect structures |
7088134, | Nov 06 2003 | Lattice Semiconductor Corporation | Programmable logic device with flexible memory allocation and routing |
7088136, | Nov 06 2003 | Altera Corporation | Programmable logic device latch circuits |
7107568, | Oct 07 2002 | SAMSUNG ELECTRONICS CO , LTD | System and method for reducing wire delay or congestion during synthesis of hardware solvers |
7109752, | Feb 14 2004 | TAHOE RESEARCH, LTD | Configurable circuits, IC's, and systems |
7112992, | Oct 21 2002 | Altera Corporation | Configuration shift register |
7113421, | Sep 15 2004 | Renesas Electronics Corporation | Semiconductor integrated circuit device |
7116131, | Sep 15 2004 | XILINX, Inc. | High performance programmable logic devices utilizing dynamic circuitry |
7126372, | Apr 30 2004 | XILINX, Inc. | Reconfiguration port for dynamic reconfiguration—sub-frame access for reconfiguration |
7126856, | Sep 02 2000 | Actel Corporation | Method and apparatus of memory clearing with monitoring RAM memory cells in a field programmable gated array |
7129746, | Jul 31 2003 | MICROSEMI SOC CORP | System-on-a-chip integrated circuit including dual-function analog and digital inputs |
7129747, | Oct 15 2004 | XILINX, Inc. | CPLD with fast logic sharing between function blocks |
7138827, | Sep 23 2002 | XILINX, Inc. | Programmable logic device with time-multiplexed interconnect |
7154298, | Dec 14 2001 | Lattice Semiconductor Corporation | Block-oriented architecture for a programmable interconnect circuit |
7154299, | Apr 05 2002 | HD SILICON SOLUTIONS LLC | Architecture for programmable logic device |
7193440, | Feb 14 2004 | TAHOE RESEARCH, LTD | Configurable circuits, IC's, and systems |
7212448, | Jul 19 2005 | XILINX, Inc. | Method and apparatus for multiple context and high reliability operation of programmable logic devices |
7224182, | Mar 15 2005 | Altera Corporation | Hybrid configurable circuit for a configurable IC |
7236009, | Dec 01 2004 | Altera Corporation | Operational time extension |
7242216, | Nov 08 2004 | Altera Corporation | Embedding memory between tile arrangement of a configurable IC |
7295037, | Nov 08 2004 | Altera Corporation | Configurable IC with routing circuits with offset connections |
7342415, | Nov 08 2004 | Altera Corporation | Configurable IC with interconnect circuits that also perform storage operations |
7372297, | Nov 07 2005 | Altera Corporation | Hybrid interconnect/logic circuits enabling efficient replication of a function in several sub-cycles to save logic and routing resources |
7489162, | Dec 01 2005 | TAHOE RESEARCH, LTD | Users registers in a reconfigurable IC |
7514957, | Mar 20 2007 | Altera Corporation | Configurable IC having a routing fabric with storage elements |
7521959, | Mar 20 2007 | Altera Corporation | Configurable IC having a routing fabric with storage elements |
7525344, | Mar 20 2007 | Altera Corporation | Configurable IC having a routing fabric with storage elements |
7545167, | Nov 08 2004 | Altera Corporation | Configurable IC with interconnect circuits that also perform storage operations |
7587698, | Dec 01 2004 | Altera Corporation | Operational time extension |
20010007428, | |||
20020008541, | |||
20020010853, | |||
20020113619, | |||
20020125910, | |||
20020125914, | |||
20020161568, | |||
20020163357, | |||
20030042931, | |||
20030080777, | |||
20030110430, | |||
20040010767, | |||
20040044849, | |||
20040103265, | |||
20040124881, | |||
20040178818, | |||
20040196066, | |||
20040233758, | |||
20050134308, | |||
20050193359, | |||
20060220678, | |||
20060220716, | |||
20060225002, | |||
20060250168, | |||
20070075737, | |||
20070143577, | |||
20070257700, | |||
20070257702, | |||
20070285124, | |||
20080100339, | |||
20080180131, | |||
20080231314, | |||
20080231315, | |||
20080231318, | |||
WO2008115243, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 01 2005 | Tabula, Inc. | (assignment on the face of the patent) | / | |||
Jan 24 2006 | REDGRAVE, JASON | Tabula, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017243 | /0934 | |
Apr 27 2015 | Tabula, Inc | TABULA ASSIGNMENT FOR THE BENEFIT OF CREDITORS , LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035783 | /0055 | |
Jun 22 2015 | TABULA ASSIGNMENT FOR THE BENEFIT OF CREDITORS , LLC | Altera Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036050 | /0792 | |
Jul 08 2022 | Altera Corporation | Intel Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 060778 | /0032 | |
Jul 18 2022 | Intel Corporation | TAHOE RESEARCH, LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 061827 | /0686 |
Date | Maintenance Fee Events |
Aug 21 2013 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Aug 18 2017 | STOL: Pat Hldr no Longer Claims Small Ent Stat |
Aug 31 2017 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Sep 01 2021 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 16 2013 | 4 years fee payment window open |
Sep 16 2013 | 6 months grace period start (w surcharge) |
Mar 16 2014 | patent expiry (for year 4) |
Mar 16 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 16 2017 | 8 years fee payment window open |
Sep 16 2017 | 6 months grace period start (w surcharge) |
Mar 16 2018 | patent expiry (for year 8) |
Mar 16 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 16 2021 | 12 years fee payment window open |
Sep 16 2021 | 6 months grace period start (w surcharge) |
Mar 16 2022 | patent expiry (for year 12) |
Mar 16 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |