The present invention relates to a process for converting fischer-Tropsch wax to high quality lube basestocks using a molecular sieve beta catalyst followed by a unidimensional intermediate pore molecular sieve with near circular pore structures having an average diameter of 0.50 nm to 0.65 nm wherein the difference between the maximum diameter and the minimum is ≦0.05 nm. Both catalysts comprise one or more group VIII metals. For example, a cascaded two-bed catalyst system consisting of a first bed Pt/beta catalyst followed by a second bed Pt/ZSM-48 catalyst is highly selective for wax isomerization and lube hydrodewaxing with minimal gas formation.
|
1. A process for converting a fischer-Tropsch wax having at least about 95% n-paraffins to an isoparaffinic lube basestock, consisting of:
first, passing the fischer-Tropsch wax and a hydrogen co-feed over a first catalyst selected from the group consisting of a beta catalyst consisting of a Zeolite beta and one or more group VIII metals, to form an intermediate product; and
second, passing the intermediate product over a second catalyst selected from the group consisting of a unidimensional molecular sieve catalyst consisting of a ZSM-48 unidimensional intermediate pore molecular sieve and one or more group VIII metals;
to form the isoparaffinic lube basestock in a yield which is about 10% higher at a given pour point than that obtained using the unidimensional molecular sieve alone or obtained using the unidimensional molecular sieve catalyst first and the beta catalyst second.
2. A process according to
the beta catalyst is kept at a temperature of 400 to 700° F. (204 to 371° C.);
the unidimensional molecular sieve catalyst is kept at a temperature of 500 to 800° F. (260 to 427° C.);
the wax is passed over the beta catalyst at a feed liquid hourly space velocity of 0.1 to 10 h−1;
the intermediate product is passed over the ZSM-48 unidimensional molecular sieve catalyst at a feed liquid hourly space velocity of 0.1 to 10 h−1; and
the process further comprises less than about 1,500 psig (102 atm) hydrogen, wherein the hydrogen is circulated at 100 to 10,000 scf/bbl (18 to 1780 n.L.L−1).
3. A process according to
the beta catalyst is kept at a temperature of 500-600° F. (260 to 316° C.);
the ZSM-48 unidimensional molecular sieve catalyst is kept at a temperature of 600-700° F. (316 to 371° C.);
the wax is passed over the beta catalyst at a feed liquid hourly space velocity of 0.5 to 2 h−1;
the intermediate product is passed over the ZSM-48 unidimensional molecular sieve catalyst at a feed liquid hourly space velocity of 0.5 to 2 h−1; and
the process further comprises less than about 1,500 psig (102 atm) hydrogen, wherein the hydrogen is circulated at 1,000 to 6,000 scf/bbl (178 to 1068 n.L.L−1).
4. A process according to
5. A process according to
the Zeolite beta has an Alpha value less than about 15 prior to loading with the group VIII metal;
the Zeolite beta is loaded with about 0.5 wt % to about 1 wt % of the group VIII metal, based on the total weight of the Zeolite beta;
the ZSM-48 is loaded with about 0.5 wt % to about 1 wt % of the group VIII metal, based on the total weight of the ZSM-48; and
the group VIII metal is at least one member selected from the group consisting of Pt and Pd.
6. A process according to
the beta catalyst is Pt/beta; and
the Pt/ZSM-48 and the Pt/beta are in a cascaded two-bed catalyst system comprising a first bed followed by a second bed, wherein the first bed comprises the Pt/beta catalyst and the second bed comprises the Pt/ZSM-48 catalyst.
7. A process according to
the temperature of the first bed and the temperature of the second bed are controlled independently; and
the intermediate product is cascaded directly to the second bed.
8. The process of
|
The present invention relates to a process for converting Fischer-Tropsch wax to lube basestocks. More particularly, the present invention relates to converting Fischer-Tropsch waxes to lubes using a dual molecular sieve catalysts system.
There is significant economic incentive to convert Fischer-Tropsch (F-T) wax to high quality lube basestocks, especially base oils with properties and performance comparable to, or better than, those of polyalphaolefins (PAO). The upgrading of Fischer-Tropsch wax greatly relies on advanced wax isomerization technology that transforms linear paraffins to multi-branched isoparaffins with minimal cracking.
Processes for converting Fischer-Tropsch wax to paraffinic lube base-stocks are known. A typical process is a two-stage process that hydroisomerizes Fischer-Tropsch wax to a waxy isoparaffins mixture in the first step, followed by either solvent dewaxing or catalytic dewaxing the waxy isoparaffins mixture in the second step to remove residual wax and achieve a target lube pour point.
The hydroisomerization catalysts disclosed previously, such as Pt supported on amorphous aluminosilicate or Zeolite Beta (Beta), normally possess large pores that allow the formation of branch structures during paraffin isomerization. Examples of other large pore molecular sieves include ZSM-3, ZSM-12, ZSM-20, MCM-37, MCM-68, ECR-5, SAPO-5, SAPO-37 and USY. However, these large pore catalysts are not selective enough to preferentially convert normal and lightly branched paraffin waxes in the presence of multi-branched isoparaffin molecules. As a result, the isoparaffin products derived from Fischer-Tropsch wax often contain residual wax that needs to be dewaxed in order to meet target lube cloud points or pour points. The cloud point of a lube is the temperature at which the first trace of wax stalls to separate, causing the lube to become turbid or cloudy (e.g., ASTM D2500). The pour point of a lube is the temperature at which lube and wax crystallize together as a whole and will not flow when poured (e.g., ASTM D97). Dewaxing can be achieved by additionally using either a solvent dewaxing process or a catalytic dewaxing process.
Most selective dewaxing catalysts used in a catalytic dewaxing process have relatively small pore structures and catalyze lube pour point reduction by selectively cracking normal and lightly branched paraffin waxes. Such dewaxing catalysts usually have low paraffin isomerization selectivity.
Few catalysts have been reported to be efficient in catalyzing both hydroisomerization and dewaxing of paraffin wax to low pour point lubes. One example of such catalysts is a noble metal, such as Pt, supported on SAPO-11. It was previously assumed that oval-shaped pore structures are common feature of isomerization and dewaxing catalysts. See, for example U.S. Pat. No. 5,246,566.
There remains a need therefore and a higher isomerization selectivity to achieve a low enough pour point with minimal molecular weight changes.
The present invention relates to a process for converting Fischer-Tropsch wax to high quality lube basestocks by contacting the wax with a molecular sieve catalyst (e.g., Zeolite Beta) followed by a unidimensional molecular sieve catalyst with a near circular pore structure having an average diameter of 0.50 nm to 0.65 nm wherein the difference between the maximum diameter and the minimum is ≦0.05 nm (e.g., ZSM-48). Both catalysts comprise one or more Group VIII metals (i.e., Fe, Ru, Os, Co, Rh, Ir, Pd, Pt, Ni).
The invention provides high isomerization and dewaxing selectivity of a F-T wax with a molecular sieve catalyst followed by a unidimensional catalyst molecular sieve with near circular pore structure having an average diameter of 0.50-0.65 nm (5.0-6.5 angstroms) wherein the maximum diameter-minimum diameter ≦0.05 nm (0.5 angstroms), to form a lubricant. Group VIII metals on the two catalysts are preferred and platinum is the most preferred. The invention improves lube basestock products and their properties (e.g., pour point, cloud point).
There is a synergy between the two catalysts. It is believed that the first catalyst (e.g., Zeolite Beta) improves yield and pour point by creating the first few branches while the second catalyst (i.e., a unidimensional molecular sieve catalyst) does most of the dewaxing with minimal cracking. This method can easily improve yield of high viscosity index (VI) lubes at a target pour point by 10% over prior methods.
Preferably, F-T wax feed is first passed over a single Zeolite Beta catalyst. The resulting intermediate product is then passed over a unidimensional molecular sieve catalyst to form the final lube. These first and second stages can be separated or preferably are integrated process steps (e.g., cascaded).
Zeolite Beta catalysts are 12 ring acidic silica/alumina zeolites with or without boron (replacing some of the aluminum atoms). Zeolite Y (USY), though less preferred than Beta, is also contemplated in the scope of the invention. Pre-sulfided Zeolite Beta is preferred when some residual sulfur in the product is acceptable.
Zeolite Betas used in the invention preferably have an Alpha value below 15, more preferably below 10, at least prior to metal loading. Alpha is an acidity metric that is an approximate indication of the catalytic cracking activity of the catalyst compared to a standard catalyst. Alpha is a relative rate constant (rate of normal hexane conversion per volume of catalyst per unit time). Alpha is based on the activity of the highly active silica-alumina cracking catalyst taken as an Alpha of 1 in U.S. Pat. No. 3,354,078 (incorporated by reference) and measured at 538° C. as described in the Journal of Catalysis, vol. 4, p. 527 (1965); vol. 6, p. 278 (1966); and vol. 61, p. 395 (1980). The use of Fischer Tropsch waxes and waxy raffinates requires a low Alpha value of the Zeolite Beta catalyst due to minimal nitrogen content in the feeds. In comparison, catalysts with high Alpha values are used for cracking. Alpha values may be reduced by steaming.
The Beta catalyst (e.g., Pt/Beta), when contacting the feed, is most preferably kept at temperatures of 400-700° F. (204-371° C.), more preferably at 500-650° F. (260-343° C.), and most preferably at 520-580° F. (271-304° C.).
The unidimensional molecular sieve catalyst with near-circular pore structures does most of the dewaxing. The pores are smaller than in large pore molecular sieves thereby excluding bulkier (e.g., highly branched) molecules. Unidimentional means that the pores are essentially parallel to each other.
The pores of the second catalyst have an average diameter of 0.50 nm to 0.65 nm wherein the difference between a minimum diameter and a maximum diameter is ≦0.05 nm. The pores may not always have a perfect geometric circular or elliptical cross-section. The minimum diameter and maximum diameter are generally only measurements of an ellipse of an cross-sectional area equal to the cross-sectional area of an average pore. The average pore diameter can be defined by finding the center of the pore cross-section, and measuring the minimum diameter and the maximum diameter across the center, and calculating the average of the two diameters.
The preferred unidimensional molecular sieve catalyst is an intermediate pore molecular sieve catalyst of which the preferred version is ZSM-48. U.S. Pat. No. 5,075,269 describes the procedures for making ZSM-48 and is incorporated by reference herein. ZSM-48 is roughly 65% zeolite crystal and 35% alumina. Of the crystals, at least 90%, preferably at least 95%, and most preferably 98-99% are ideal crystals. The ZSM-48 is preferably in the protonated form though some sodium is acceptable. ZSM-48 is more robust than other catalysts with similar functions. However, ZSM-48 is preferably used with ultraclean feeds such as F-T wax to avoid deactivation.
In the second stage of the process, the unidimensional intermediate pore molecular sieve catalyst (e.g., Pt/ZSM-48) is preferably kept at 500-800° F. (260-427° C.), more preferably at 600-700° F. (316-371° C.), and most preferably at 630-660° F. (332-349° C.). ZSM-48 catalysts used in the invention preferably have an Alpha value of about 10 to about 50 prior to metal loading.
The temperature of each catalyst is preferably controlled independently. Temperature choice partly depends on the feed liquid hourly space velocity of which 0.1-20 h−1 is preferred, 0.5-5 h−1 is more preferred, and 0.5-2 h−1 is most preferred.
The contact time for both catalysts is preferably similar to each other. It is understood that the space velocity can be different. The pressure for both catalysts is preferably similar to each other. Hydrogen cofeed flow rate is 100-10,000 scf/bbl (17.8-1,780 n.L.L−1), more preferably 1,000-6,000 scf/bbl (178-1,068 n.L.L−1), and more preferably 1,500-3,000 scf/bbl (267-534 n.L.L−1).
Each catalyst comprises 0.01-5 wt % of at least one Group VIII metal (i.e., Fe, Ru, Os, Co, Rh, Ir, Pd, Pt, Ni). Platinum and palladium are most preferred. Platinum or palladium blended with each other or other group VIII metals follow in preference. Nickel may also be blended with group VIII precious metals and is included in the scope of the invention whenever group VIII blends, alloys, or mixtures are mentioned. Preferred metal loading on both catalysts are 0.1-1 wt % with approximately 0.6 wt % most preferred.
The feed is preferably F-T wax with a melting point over 50° C., less than 7,000 ppm sulfur, and less than 50 ppm nitrogen. The nitrogen is preferably significantly less than 50 ppm if hydrogen pressure is greater than 500 psig (34 atm).
The feed is converted by the Zeolite Beta catalyst to form an intermediate product which is then preferably passed directly from the Beta catalyst to the unidimensional intermediate pore molecular sieve catalyst. In a preferred embodiment of the invention, a cascaded two-bed catalyst system consisting of a first bed Pt/Beta (i.e., platinum on Zeolite Beta) catalyst followed by a second bed Pt/ZSM-48 catalyst allows a highly selective process for wax isomerization and lube hydrodewaxing with minimal gas formation. In cascading, the intermediate product preferably directly passes from the first bed to the second bed without inter-stage separation. Optionally, light byproducts (e.g., methane, ethane) can be removed between the Beta and unidimensional intermediate pore molecular sieve catalysts.
Feeds usually have at least about 95% n-paraffins and a boiling point distribution of at least 500-1300° F. (260-704° C.). Preferred feed contains C24-C60 with tail having a T5 of about 700° F. (371° C.) and a T95 of about 1100° F. (593° C.) with less than 1,000 ppm and preferably less than 200 ppm sulfur or nitrogen. More branching in feed structures facilitates the present invention and improves its yield. U.S. Pat. No. 6,090,989 describes typical branching indices and is incorporated by reference. The feed is preferably mixed with hydrogen and preheated before contacting it with the Beta catalyst. Preferably, at least 95% of the wax is in liquid form before contacting it with the Beta catalyst.
The preferred measurements, as taught by the specification, are described in this paragraph. Where there are two values, the value in parenthesis are approximate metric conversions of the first value. The weight percent of paraffins may be measured by high-resolution 1H-NMR, for example, by the method described in ASTM standard D5292, in combination with GC-MS. This approach may also be used to determine the weight percentage of unsaturates, alcohols, oxygenates, and other organic components. The iso- to normal-paraffin ratio may be measured by performing gas chromatography (GC) or GC-MS in combination with 13C-NMR. Sulfur may be measured by XRF (X-Ray Fluorescence), as described, for example, in ASTM standard D2622. Nitrogen may be measured by syringe/inlet oxidative combustion with chemiluminescence detection, for example, by the method described in ASTM standard D4629. Aromatics may be measured as described below. As taught by the specification, olefins may be measured by using a Bromine index determined by coulemetric analysis, for example, by using ASTM standard D2710. The weight percent of total oxygen may be measured by neutron activation in combination with high-resolution 1H-NMR. If necessary, the total oxygen content may be placed on a water-free basis by measuring water content. For samples having a water content known to be less than about 200 ppm by weight, one may use known derivitization methods (e.g., by using calcium carbide to form acetylene) followed by GC-MS. For samples having a water content known to be greater than about 200 ppm by weight, one may use the Karl-Fischer method, for example, by the method described in ASTM standard D4928. The total alcohol content may be determined by high-resolution 1H-NMR, and the percentage present primarily as C12-C24 primary alcohols may be determined by GC-MS. Cetane number may be determined by using, for example, ASTM standard D613. The level of aromatics may be determined by using high-resolution 1H-NMR, for example, by using ASTM standard D5292. Dioxygenates are measured by using infrared (IR) absorbance spectroscopy.
Branching characteristics of iso-paraffins may be measured by a combination of high-resolution 13C-NMR and GC with high-resolution MS.
A cascaded two-bed catalyst system consisting of a first stage Pt/Beta catalyst immediately followed by a second stage of Pt/ZSM-48 catalyst is shown to be highly active and selective for F-T wax hydroisomerization and dewaxing. A combination of Pt/ZSM-48 followed by Pt/Beta and stand-alone Pt/ZSM-48 were less effective. The use of the Beta catalyst in front of Pt/ZSM-48 has minimal effects on lube viscosity-pour point or viscosity index-pour point correlation. The isomerization of SASOL™ C80 F-T wax resulted in high lube yield and only small amount of gas over a wide range of processing severity. Detailed preferred operating conditions, material balance data, tube yields and properties are summarized in Table 1. TBP x % indicates temperature below which x wt % of hydrocarbon samples boils. The total product distribution at various processing severity is shown in
TABLE 1
Hydroisomerization of SASOL ™ C80 Fischer-Tropsch Wax Catalyzed by a Cascaded
Pt/Beta Followed by Pt/ZSM-48 (1.0 h−1 LHSV for Each Catalyst)
Run Number 401-
3-34
3-37
3-38
3-41
3-50
3-53
3-55
Time on Stream, Days
47.7
50.7
51.7
56.1
70.1
73.7
77.2
Beta Temperature, ° F.
580
560
540
560
540
520
520
Beta Temperature, ° C.
approximate
304
293
282
293
282
271
271
ZSM-48 Temperature, ° F.
630
660
660
640
640
660
650
ZSM-48 Temperature, ° C.
approximate
332
349
349
338
338
349
343
Pressure, psig
1000
1000
1000
1000
1000
1000
1000
(Pressure, atm)
approximate
68
68
68
68
68
68
68
H2 Cofeeding Rate, scf/bbl
5477
5188
5228
4965
5610
5790
5332
(H2 Cofeeding Rate, n.L.L−1)
approximate
975
923
931
884
999
1031
949
700° F.+ (371° C.+) Conversion, wt %
22.0
60.9
65.3
28.6
38.2
75.2
48.8
H2 Consumption, scf/bbl
110
392
435
150
211
511
286
(H2 Consumption, n.L.L−1)
approximate
18
70
77
27
38
91
51
Product Yield, wt % on Feed
C1—C4 Gas
1.4
5.5
6.0
2.1
2.4
7.7
4.0
C5−330° F. (166° C.) Naphtha
5.5
21.3
24.6
7.3
11.3
27.8
14.0
330-700° F. Diesel (166-371° C.)
15.2
34.8
35.5
19.5
24.9
40.6
31.4
700° F.+ Lube (371° C.+)
78.0
39.1
34.7
71.4
61.8
24.8
51.2
Total Hydrocarbon
100.2
100.7
100.8
100.3
100.4
100.9
100.5
700° F.+ (371° C.+) Lube Properties
Feed
KV @ 40° C., cSt
35.0
33.6
35.9
29.7
30.2
25.6
23.5
KV @ 100° C., cSt
9.4
7.20
6.49
6.71
6.32
6.35
5.20
5.16
Viscosity Index
175.5
149.8
145.9
171.2
168.9
138.1
157.1
Pour Point, ° C.
82
3
−45
−51
−12
−21
−65
−33
Cloud Point, ° C.
25
−16
−51
12
9
−65
—
TBP 5%, ° F.
780
754
781
697
717
681
639
TBP 5%, ° C.
approximate
416
401
416
366
380
360
337
TBP 50%, ° F.
926
896
903
915
907
852
855
TBP 50%, ° C.
approximate
497
480
484
491
486
455
457
TBP 95%, ° F.
1056
1030
1030
1056
1051
1024
1014
TBP 95%, ° C.
approximate
569
554
554
569
566
551
546
MB Closure, wt %
99.1
97.1
98.5
97.5
98.2
99.8
99.4
To obtain desirable wax isomerization results, a mild (e.g., 500-630° F. (260-332° C.)) first bed Pt/Beta temperature should be employed during lube hydroprocessing. The mild Pt/Beta temperature should be employed with varying Pt/ZSM-48 temperature to achieve a target lube pour point. At a constant Pt/ZSM-48 (second bed) temperature, a high Pt/Beta temperature was found to have negative effects on (i.e., increase) lube pour point. To achieve maximal lube yield, low operating pressure (<2,000 psi (136 atm) hydrogen pressure) should be used.
A cascaded Pt/ZSM-48 followed by Pt/Beta and stand-alone Pt/ZSM-48 were also evaluated and it was found that both catalyst systems were less selective in isomerizing and dewaxing C80 F-T wax to 700° F.+ (371° C.+) lube basestocks (Tables 2 and 3). Comparison of lube yields for the three catalyst systems tested is illustrated in
TABLE 2
Hydroisomerization of SASOL ™ C80
Fischer-Tropsch Wax Catalyzed by Pt/ZSM-48
Run Number, 401-
3-27
3-28
3-29
3-30
3-31
Time on Stream, Days
35.6
37.0
38.0
39.0
40.9
Temperature, ° F.
665
660
655
650
645
Temperature, ° C.
approximate
352
349
352
343
341
Pressure, psig
1000
1000
1000
1000
1000
(Pressure, atm)
approximate
68
68
68
68
68
LHSV, hr−1
1.0
1.0
1.0
1.0
1.0
WHSV, hr−1
1.4
1.5
1.5
1.4
1.4
H2 Cofeeding Rate, scf/bbl
5656
5643
5603
5674
5657
(H2 Cofeeding Rate, n.L.L−1)
approximate
1007
1004
997
1010
1007
700° F.+ (371° C.+) Conversion, wt %
78.0
70.6
60.0
49.9
44.2
H2 Consumption, scf/bbl
544
473
377
306
261
(H2 Consumption, n.L.L−1)
approximate
97
84
67
54
46
Product Yield, wt % on Feed
C1—C4 Gas
8.3
6.8
5.4
4.4
3.5
C5−330° F. (C5-166° C.) Naphtha
30.0
26.1
19.6
15.6
13.7
330-700° F. (166-371° C.) Diesel
40.8
38.6
35.7
30.4
27.5
700° F.+ (371° C.+) Lube
22.0
29.4
40.0
50.1
55.8
Total Hydrocarbon
101.0
100.9
100.7
100.6
100.5
700° F.+ (371° C.+) Lube Properties
Feed
KV @ 40° C., cSt
14.8
34.8
31.2
32.9
34.0
KV @ 100° C., cSt
9.4
3.65
6.59
6.29
6.66
6.90
Viscosity Index
135.5
147.4
156.9
163.8
168.6
Pour Point, ° C.
82
−54
−48
−33
−24
−12
TBP 5%, ° F.
570
778
753
766
770
(TBP 5%, ° C.)
approximate
299
414
400
407
410
TBP 50%, ° F.
783
899
906
918
918
(TBP 50%, ° C.)
approximate
417
482
485
492
492
TBP 95%, ° F.
998
997
1007
1014
1057
(TBP 95%, ° C.)
approximate
537
536
542
546
569
MB Closure, wt %
99.6
98.8
98.8
97.9
97.1
TABLE 3
Hydroisomerization of SASOL ™ C80 Fischer-Tropsch Wax Catalyzed by a Cascaded Pt/ZSM-48
Followed by Pt/Beta (1.0 h−1 LHSV for Each Catalyst)
Run Number, 401-
3-3
3-11
3-16
3-20
3-22
3-24
Time on Stream, Days
3.6
15.1
21.6
26.5
28.6
31.1
ZSM-48 Temperature, ° F.
660
660
640
655
645
640
(ZSM-48 Temperature, ° C.)
approximate
349
349
338
346
341
338
Beta Temperature, ° F.
560
560
540
560
560
560
(Beta Temperature, ° C.)
approximate
293
293
282
293
293
293
Pressure, psig
1000
1000
1000
1000
1000
1000
(Pressure, atm)
approximate
68
68
68
68
68
68
H2 Cofeeding Rate, scf/bbl
5786
6150
5575
5528
5607
5619
(H2 Cofeeding Rate, n.L.L−1)
approximate
1030
1095
992
984
5607
1000
700° F.+ (371° C.) Conversion, wt %
83.5
79.4
34.6
60.7
47.7
40.4
H2 Consumption, scf/bbl
499
516
205
377
270
225
(H2 Consumption, n.L.L−1)
approximate
89
92
36
67
48
40
Product Yield, wt % on Feed
C1—C4 Gas
4.0
6.2
3.2
5.7
3.4
2.8
C5-330° F. (C5-166° C.) Naphtha
33.4
31.2
9.6
18.2
13.2
11.4
330-700° F. (166-371° C.) Diesel
47.0
42.9
22.1
37.5
31.6
26.6
700° F.+ (371° C.+) Lube
16.5
20.6
65.4
39.3
52.3
59.6
Total Hydrocarbon
100.9
101.0
100.4
100.7
100.5
100.4
700° F.+ (371° C.+) Lube Properties
Feed
KV @ 40° C., cSt
34.7
24.8
34.0
28.1
28.8
28.3
KV @ 100° C., cSt
9.4
6.31
5.06
6.91
5.77
5.98
6.00
Viscosity Index
133.5
136.0
168.7
153.4
159.8
165.2
Pour Point, ° C.
82
−60
−54
0
−33
−21
−9
Cloud Point, ° C.
−60
−54
13
0
−10
4
TBP 5%, ° F.
754
702
783
723
719
716
(TBP 5%, ° C.)
approximate
401
372
417
384
382
380
TBP 50%, ° F.
875
840
922
877
879
895
(TBP 50%, ° C.)
approximate
468
449
494
469
471
479
TBP 95%, ° F.
1004
1006
1062
1030
1019
1028
(TBP 95%, ° C.)
approximate
540
541
572
554
548
553
MB Closure, wt %
97.6
95.6
98.2
98.5
98.0
98.1
Approximately 5° F. (2.8° C.) less Pt/ZSM-48 temperature is required to achieve a target pour point when a cascaded Pt/Beta and Pt/ZSM-48 was used instead of stand-alone Pt/ZSM-48 (Tables 1 and 2). This resultant reduction of Pt/ZSM-48 severity should reduce the cracking activity of the catalyst and is assumed to be a primary contributor to the yield benefit for the dual catalyst system. The addition of Pt/Beta had minimal effects on the range of Pt/ZSM-48 operating temperature, which was also observed for the catalyst system Pt/ZSM-48 followed by Pt/Beta (Tables 2 and 3).
The viscosity and viscosity index of the nominal 700° F.+(371° C.+) C80 wax isomerates vs. hydroprocessing severity are plotted in
As shown in
The viscosity index of the Pt/Beta-Pt/ZSM-48 F-T lubes is similar to that of the Pt/ZSM-48 isomerates except at an extremely low pour point (
The spread between the lube cloud and pour points for Pt/Beta-Pt/ZSM-48 and Pt/ZSM-48-Pt/Beta is typically less than 30° C. (Tables 1 and 3). In general, the spread between the lube cloud and pour points narrows with decreasing pour point.
A combination of Pt/Beta followed by Pt/ZSM-48 exhibited an unusual relationship between reaction temperature and lube product pour point during the wax hydroisomerization (Table 4). At constant Pt/Beta temperature, the lube pour point decreases with increasing Pt/ZSM-48 temperature. However, at constant Pt/ZSM-48 temperature, the lube pour point increases with increasing Pt/Beta temperature.
TABLE 4
Hydroisomerization of SASOL ™ C80 F-T Wax to Lubes
Catalyzed by Pt/Beta Followed by Pt/ZSM-48
(Conditions: 1000 psig (68 atm), 1.0 h−1 LHSV for Each Catalyst)
Beta Temp. (° F.)
560
560
560
520
540
560
580
Beta Temp.
293
293
293
271
282
293
304
(approx. ° C.)
ZSM-48 Temp.
630
645
660
660
645
645
645
(° F.)
ZSM-48 Temp.
332
341
349
349
341
341
341
(approx. ° C.)
Lube Properties
Pour Point, ° C.
15
−15
−45
−65
−18
−15
−9
KV @ 100° C., cSt
7.60
7.16
6.49
5.20
6.62
7.16
6.01
Viscosity Index
179.2
167.8
149.8
138.1
165.2
167.8
173.4
Since degree of branching of the Pt/Beta isomerates is anticipated to increase at high Beta temperature, this experimental result indicates that Pt/ZSM-48 is more effective in isomerizing and dewaxing less branched isoparaffins, and thus is shape selective. In case that a feed contains both lightly is branched and highly branched isoparaffins, it is likely that the ZSM-48 catalyst would preferentially convert/isoimerize the lightly branched molecules. This explains why Pt/ZSM-48 is an efficient catalyst for reducing lube pour point.
The shape selectivity of the catalyst is presumably due to its relatively small pore structure (0.53×0.56 nm, unidimensional) capable of differentiating different isoparaffins. The ability of ZSM-48 to preferentially convert normal paraffins or lightly branched paraffins and exclude highly branched isoparaffins reduces undesirable reactions such as cracking (leading to low lube yield) and excessive further isomerization (leading to low VI) of low pour, highly branched isomers. This is consistent with the low cracking activity, high lube yield, minimal viscosity loss, and high lube VI observed for Pt/ZSM-48 in isomerizing and dewaxing various waxy feeds including F-T waxes.
The correlation between reaction temperature and lube pour point was found to be normal for Pt/ZSM-48 followed by Pt/Beta (Table 5). The lube pour point decreases either with increasing Pt/ZSM-48 temperature and constant Pt/Beta temperature or with constant Pt/ZSM-48 temperature and increasing Pt/Beta temperature. This is not unexpected since the large pore Beta should be less selective than ZSM-48 in reacting with various branched isoparaffins, and would convert even highly branched paraffin isomers via cracking and additional isomerization.
TABLE 5
Hydroisomerization of SASOL ™ C80 F-T Wax to Lubes
Catalyzed by Pt/ZSM-48 Followed by Pt/Beta
(Conditions: 1000 psig (68 atm), 1.0 h−1 LHSV for Each Catalyst)
ZSM-48 Temp. (° F.)
640
640
640
640
655
660
ZSM-48 Temp. (approx.
338
338
338
338
346
349
° C.)
Beta Temp. (° F.)
530
560
590
560
560
560
Beta Temp. (approx. ° C.)
277
293
310
293
293
293
Lube Properties
Pour Point, ° C.
0
−18
−45
−18
−33
−54
KV @ 100° C., cSt
6.92
5.97
5.16
5.97
5.77
5.06
Viscosity Index
169.4
158.0
138.4
158.0
153.4
136.0
Pt/Beta-Pt/ZSM-48 system has superior isomerization selectivity and low cracking activity, and gives lower yields of light gases, naphtha, and diesel than Pt/ZSM-48-Pt/Beta and Pt/ZSM-48 alone (
The following examples will serve to illustrate the invention.
Feedstock. The hydrotreated SASOL™ PARAFLINT™ C80 Fischer-Tropsch wax feed was obtained from Moore and Munger, Inc., (Shelton, Conn.) and used as received without additional pretreatment. The C80 wax was a mixture of predominantly linear paraffins with very low content of olefins and oxygenates. SASOL™ has been marketing three commercial grades of F-T waxes: PARAFLINT™ H1, a 700° F.+(371° C.+) full range Fischer-Tropsch wax; PARAFLINT™ C80 and C105, 700-1100° F. (371-593° C.) and 1100° F.+(593° C.+) distillate fractions, respectively. The molecular weight distribution (in terms of boiling point) of the waxes is illustrated briefly in Table 6.
TABLE 6
Molecular Weight Distribution of SASOL ™ Fischer-Tropsch Waxes
F-T Wax Feed
H1
C80
C105
Pour Point, ° C.
99
82
106
IBP-700° F. (<C24), wt %
0
3
0
700-1100° F. (C24-C60), wt %
44
89
20
1100° F.+ (>C60), wt %
56
8
80
Preparation of Pt/Beta Catalyst. Pt/Beta catalyst was prepared by extruding a water-containing mull mix or paste containing 65 parts of Zeolite Beta with 35 pails of alumina (dry basis). After drying, the Zeolite Beta containing catalyst was calcined under nitrogen at 900° F. (482° C.) and exchanged at ambient temperature with a sufficient quantity of ammonium nitrate to remove residual sodium in the zeolite channels. The extrudate was then washed with de-ionized water and calcined in air at 1000° F. (538° C.). After air calcination, the 65% Zeolite Beta/35% Alumina extrudate was steamed at 1020° F. (549° C.) to reduce the Alpha value of the calcined catalyst to less than 10. The steamed, 65% low acidity Beta/35% Alumina catalyst was ion exchanged with a tetra-ammine platinum chloride solution under ion exchange conditions to uniformly produce a catalyst containing 0.6% Pt. After washing with de-ionized water to remove residual chlorides, the catalyst was dried at 250° F. (121° C.) followed by a final air calcination at 680° F. (360° C.).
Preparation of Pt/ZSM-48 Catalyst. Pt/ZSM-48 catalyst was prepared by extruding a water-containing mull mix or paste containing 65 pails of ZSM-48 with 35 pails of alumina (dry basis). After drying, the ZSM-48 containing catalyst was calcined under nitrogen at 900° F. (482° C.) and exchanged at ambient temperature with a sufficient quantity of ammonium nitrate to remove residual sodium in the zeolite channels. The extrudate was then washed with deionized water and calcined in air at 1000° F. (538° C.). After air calcination, the 65% ZSM-48/35% Alumina catalyst was impregnated with a tetraammine platinum nitrate solution under incipient wetness conditions to uniformly produce a catalyst containing 0.6% Pt. Finally, the catalyst was dried at 250° F. (121° C.) followed by air calcination at 680° F. (360° C.).
Wax Hydroprocessing. The wax hydroisomerization experiments were performed using a micro-unit equipped with two three-zone furnaces and two down-flow trickle-bed tubular reactors (½″ ID) in cascade (with option to bypass the second reactor). The unit was carefully heat-traced to avoid freezing of the high melting point C80 wax. To reduce feed bypassing and lower zeolite pore diffusion resistance, the catalysts extrudates were crushed and sized to 60-80 mesh. The reactors 1 and 2 were then loaded with 15 cc of the 60-80 mesh Pt/ZSM-48 catalyst and the 60-80 mesh Pt/Beta catalyst, respectively. 5 cc of 80-120 mesh sand was also added to both catalyst beds during catalyst loading to fill the void spaces. After pressure testing of the unit, the catalysts were dried and reduced at 400° F. (204° C.) for one hour under 1 atmosphere (atm.), 255 cc/min hydrogen flow. At the end of this period, the flow of pure hydrogen was stopped and flow of H2S (2% in hydrogen) was initiated at 100 cc/min. After H2S breakthrough, the reactors 1 and 2 were gradually heated to 700° F. (371° C.) and maintained at 700° F. (371° C.) for 1 h (hour). After the completion of catalyst pre-sulfiding, the gas flow was switched back to pure hydrogen at 255 cc/minute rate, and the two reactors were cooled down.
Hydroisomerization of the C80 Fischer-Tropsch wax over a cascaded Pt/ZSM-48 followed by Pt/Beta was conducted at 1.0 h−1 LHSV for each catalyst and 1000 psig (68 atm) with 5500 scf (979 n.L.L−1) hydrogen/bbl circulation rate. The wax isomerization experiments were started first by saturating the catalyst beds with the feed at 400° F. (204° C.) then heating the reactors to the initial operating temperatures. Material balances were carried out overnight for 16-24 h. Reactor temperatures were then gradually changed to vary pour point.
Performance of stand-alone Pt/ZSM-48 was evaluated by cooling and bypassing the Pt/Beta catalyst in the second reactor. The experiments were conducted under identical process conditions (1.0 LHSV, 1000 psig (68 atm), 5500 scf/bbl (979 n.L.L−1) H2) and according to similar procedures used for testing the cascade Pt/ZSM-48 and Pt/Beta combination.
Performance of Pt/Beta followed by Pt/ZSM-48 was evaluated after switching the two reactors, i.e. order of Pt/ZSM-48 and Pt/Beta catalysts. Process conditions and experimental procedures similar to those for testing the cascaded Pt/ZSM-48 and Pt/Beta combination were employed.
Product Separation and Analysis. Off-gas samples were analyzed by GC using a 60 m DB-1 (0.25 mm ID) capillary column with FID detection. Total liquid products (TLP's) were weighed and analyzed by simulated distillation (Simdis, such as D2887) using high temperature GC. TLP's were distilled into IBP-330° F. (IBP-166° C.) naphtha, 330-700° F. (166-371° C.) distillate, and 700° F.+(371° C.+) lube fractions. The 700° F.+(371° C.+) lube fractions were again analyzed by Simdis to ensure accuracy of the actual distillation operations. The pour point and cloud point of 700° F.+(371° C.+) lubes were measured by D97 and D2500 methods, and their viscosities were determined at both 40° C. and 100° C. according to D445-3 and D445-5 methods, respectively.
Hoglen, Larry E., Jiang, Zhaozhong, Helton, Terry Eugene, Partridge, Randall David
Patent | Priority | Assignee | Title |
11198114, | Dec 16 2016 | SHELL USA, INC | Catalyst system for dewaxing |
Patent | Priority | Assignee | Title |
2250410, | |||
3711399, | |||
4097364, | Jun 13 1975 | Chevron Research Company | Hydrocracking in the presence of water and a low hydrogen partial pressure |
4181597, | Jul 03 1972 | Mobil Oil Corporation | Method of stabilizing lube oils |
4335019, | Jan 13 1981 | Mobil Oil Corporation | Preparation of natural ferrierite hydrocracking catalyst and hydrocarbon conversion with catalyst |
4377469, | Sep 30 1981 | Mobil Oil Corporation | Maintaining catalytic activity of sodium aluminosilicates |
4388177, | Jan 13 1981 | Mobil Oil Corporation | Preparation of natural ferrierite hydrocracking catalyst and hydrocarbon conversion with catalyst |
4402866, | Dec 16 1981 | Mobil Oil Corporation | Aging resistance shape selective catalyst with enhanced activity |
4431516, | Nov 13 1981 | Standard Oil Company (Indiana) | Hydrocracking process |
4431517, | Nov 13 1981 | Standard Oil Company (Indiana) | Process for mild hydrocracking of hydrocarbon feeds |
4431519, | Oct 13 1982 | Mobil Oil Corporation | Method for catalytically dewaxing oils |
4431527, | Nov 13 1981 | Standard Oil Company (Indiana) | Process for hydrogen treating high nitrogen content hydrocarbon feeds |
4436614, | Oct 08 1982 | Chevron Research Company | Process for dewaxing and desulfurizing oils |
4460698, | Nov 13 1981 | Standard Oil Company (Indiana) | Hydrocarbon conversion catalyst |
4483764, | Nov 13 1981 | Standard Oil Company (Indiana) | Hydrocarbon conversion process |
4490242, | Aug 07 1981 | MOBIL OIL CORPORATION, A NY CORP | Two-stage hydrocarbon dewaxing hydrotreating process |
4510045, | May 28 1982 | Mobil Oil Corporation | Hydrocarbon dewaxing process using steam-activated alkali metal zeolite catalyst |
4568449, | Aug 16 1982 | UOP | Hydrotreating catalyst and process |
4594146, | Feb 08 1982 | Mobil Oil Corporation | Conversion with zeolite catalysts prepared by steam treatment |
4599162, | Dec 21 1984 | Mobil Oil Corporation | Cascade hydrodewaxing process |
4601993, | May 25 1984 | Mobil Oil Corporation | Catalyst composition dewaxing of lubricating oils |
4610778, | Apr 01 1983 | Mobil Oil Corporation | Two-stage hydrocarbon dewaxing process |
4622130, | Dec 09 1985 | Shell Oil Company | Economic combinative solvent and catalytic dewaxing process employing methylisopropyl ketone as the solvent and a silicate-based catalyst |
4636299, | Dec 24 1984 | Standard Oil Company (Indiana) | Process for the manufacture of lubricating oils |
4684756, | May 01 1986 | Mobil Oil Corporation | Process for upgrading wax from Fischer-Tropsch synthesis |
4767522, | Nov 28 1984 | Mobil Oil Corporation | Distillate dewaxing process with mixed zeolites |
4784747, | Mar 22 1982 | Mobil Oil Corporation | Catalysts over steam activated zeolite catalyst |
4810357, | May 03 1984 | Mobil Oil Corporation | Catalytic dewaxing of light and heavy oils in dual parallel reactors |
4911821, | Nov 01 1985 | Mobil Oil Corporation | Lubricant production process employing sequential dewaxing and solvent extraction |
4919788, | Dec 21 1984 | Mobil Oil Corporation | Lubricant production process |
4975177, | Nov 01 1985 | Mobil Oil Corporation | High viscosity index lubricants |
5017535, | Jun 20 1990 | AKZO N V , ARNHEM, THE NETHERLANDS, A CORP OF THE NETHERLANDS | Process for the preparation of a presulfided and sulfided catalyst |
5037528, | Nov 01 1985 | Mobil Oil Corporation | Lubricant production process with product viscosity control |
5059299, | Dec 18 1987 | Exxon Research and Engineering Company | Method for isomerizing wax to lube base oils |
5075269, | Nov 09 1987 | EXXONMOBIL RESEARCH & ENGINEERING CO | Production of high viscosity index lubricating oil stock |
5135638, | Feb 17 1989 | CHEVRON RESEARCH AND TECHNOLOGY COMPANY, SAN FRANCISCO, CA A DE CORP | Wax isomerization using catalyst of specific pore geometry |
5146022, | Aug 23 1990 | Mobil Oil Corporation | High VI synthetic lubricants from cracked slack wax |
5208403, | Jan 09 1992 | Mobil Oil Corporation | High VI lubricant blends from slack wax |
5232579, | Jun 14 1991 | EXXONMOBIL RESEARCH & ENGINEERING CO | Catalytic cracking process utilizing a zeolite beta catalyst synthesized with a chelating agent |
5246566, | Feb 17 1989 | Chevron Research and Technology Company | Wax isomerization using catalyst of specific pore geometry |
5275719, | Jun 08 1992 | EXXONMOBIL RESEARCH & ENGINEERING CO | Production of high viscosity index lubricants |
5276229, | Aug 23 1990 | Mobil Oil Corp. | High VI synthetic lubricants from thermally cracked slack wax |
5288395, | Jul 24 1991 | EXXONMOBIL RESEARCH & ENGINEERING CO | Production of high viscosity index lubricants |
5358628, | Jul 05 1990 | EXXONMOBIL RESEARCH & ENGINEERING CO | Production of high viscosity index lubricants |
5498821, | Oct 13 1994 | EXXON RESEARCH & ENGINEERING CO | Carbon dioxide addition in hydrocracking/hydroisomerization processes to control methane production |
5516736, | Mar 12 1992 | Mobil Oil Corp. | Selectivating zeolites with organosiliceous agents |
5643440, | Feb 12 1993 | EXXONMOBIL RESEARCH & ENGINEERING CO | Production of high viscosity index lubricants |
5689031, | Oct 17 1995 | EXXON RESEARCH & ENGINEERING CO | Synthetic diesel fuel and process for its production |
5730858, | Apr 01 1996 | FINA RESEARCH, S A | Process for converting wax-containing hydrocarbon feedstocks into high-grade middle distillate products |
5911874, | Jun 28 1996 | Exxon Research and Engineering Co.; EXXON RESEARCH & ENGINEERNG COMPANY | Raffinate hydroconversion process |
5935417, | Dec 17 1996 | EXXON RESEARCH & ENGINEERING CO | Hydroconversion process for making lubricating oil basestocks |
5951848, | Oct 31 1996 | Mobil Oil Corporation | Process for highly shape selective dewaxing which retards catalyst aging |
5976351, | Mar 28 1996 | EXXONMOBIL RESEARCH & ENGINEERING CO | Wax hydroisomerization process employing a boron-free catalyst |
5993644, | Jul 16 1996 | CHEVRON U S A INC | Base stock lube oil manufacturing process |
6013171, | Feb 03 1998 | Exxon Research and Engineering Co. | Catalytic dewaxing with trivalent rare earth metal ion exchanged ferrierite |
6051129, | Jul 24 1998 | CHEVRON U S A INC | Process for reducing haze point in bright stock |
6080301, | Sep 04 1998 | ExxonMobil Research and Engineering Company | Premium synthetic lubricant base stock having at least 95% non-cyclic isoparaffins |
6090989, | Oct 20 1997 | Mobil Oil Corporation | Isoparaffinic lube basestock compositions |
6096189, | Dec 17 1996 | EXXON RESEARCH & ENGINEERING CO | Hydroconversion process for making lubricating oil basestocks |
6099719, | Dec 17 1996 | EXXON MOBILE RESEARCH & ENGINEERING CO | Hydroconversion process for making lubicating oil basestocks |
6103101, | Oct 01 1993 | Petroleo Brasileiro S.A.-Petrobras | Process for producing lube base oils of high viscosity index and diesel oil of high cetaned number |
6136181, | Jul 15 1996 | Chevron U.S.A. Inc. | Hydroconversion sulfur-containing lube feedstock using a sulfur resistant catalyst |
6179994, | Sep 04 1998 | Exxon Research and Engineering Company | Isoparaffinic base stocks by dewaxing fischer-tropsch wax hydroisomerate over Pt/H-mordenite |
6190532, | Jul 13 1998 | EXXONMOBIL RESEARCH & ENGINEERING CO | Production of high viscosity index lubricants |
6231749, | May 15 1998 | EXXONMOBIL RESEARCH & ENGINEERING CO | Production of high viscosity index lubricants |
6264826, | Jul 16 1996 | Chevron U.S.A Inc. | Base stock lube oil manufacturing process |
6294077, | Feb 02 2000 | Mobil Oil Corporation | Production of high viscosity lubricating oil stock with improved ZSM-5 catalyst |
6310265, | Nov 01 1999 | EXXONMOBIL RESEARCH & ENGINEERING CO | Isomerization of paraffins |
6322692, | Dec 17 1996 | EXXONMOBIL RESEARCH & ENGINEERING CO | Hydroconversion process for making lubricating oil basestocks |
6337010, | Aug 02 1999 | Chevron U.S.A. Inc. | Process scheme for producing lubricating base oil with low pressure dewaxing and high pressure hydrofinishing |
6420618, | Sep 04 1998 | ExxonMobil Research and Engineering Company | Premium synthetic lubricant base stock (Law734) having at least 95% noncyclic isoparaffins |
6652735, | Apr 26 2001 | ExxonMobil Research and Engineering Company | Process for isomerization dewaxing of hydrocarbon streams |
6663768, | Mar 06 1998 | Chevron U.S.A. Inc.; CHEVRON U S A INC | Preparing a HGH viscosity index, low branch index dewaxed |
20010004972, | |||
20010006154, | |||
20020003102, | |||
20020192156, | |||
20030168379, | |||
EP140468, | |||
EP147873, | |||
EP225053, | |||
EP324528, | |||
EP635557, | |||
EP707057, | |||
EP776959, | |||
EP909304, | |||
FR2805542, | |||
FR2805543, | |||
GB1582789, | |||
GB2109402, | |||
GB2311789, | |||
GB772478, | |||
SU1696391, | |||
WO107538, | |||
WO118156, | |||
WO164339, | |||
WO248283, | |||
WO248291, | |||
WO288279, | |||
WO299014, | |||
WO9607715, | |||
WO9718278, | |||
WO9920720, | |||
WO9941336, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 08 2002 | ExxonMobil Research and Engineering Company | (assignment on the face of the patent) | / | |||
Nov 22 2002 | JIANG, ZHAOZHONG | EXXONMOBIL RESEARCH & ENGINEERING CO | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013935 | /0713 | |
Nov 25 2002 | HOGLEN, LARRY E | EXXONMOBIL RESEARCH & ENGINEERING CO | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013935 | /0713 | |
Dec 01 2002 | HELTON, TERRY E | EXXONMOBIL RESEARCH & ENGINEERING CO | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013935 | /0713 | |
Dec 17 2002 | PARTRIDGE, RANDALL D | EXXONMOBIL RESEARCH & ENGINEERING CO | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013935 | /0713 |
Date | Maintenance Fee Events |
Dec 06 2013 | REM: Maintenance Fee Reminder Mailed. |
Apr 27 2014 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Apr 27 2013 | 4 years fee payment window open |
Oct 27 2013 | 6 months grace period start (w surcharge) |
Apr 27 2014 | patent expiry (for year 4) |
Apr 27 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 27 2017 | 8 years fee payment window open |
Oct 27 2017 | 6 months grace period start (w surcharge) |
Apr 27 2018 | patent expiry (for year 8) |
Apr 27 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 27 2021 | 12 years fee payment window open |
Oct 27 2021 | 6 months grace period start (w surcharge) |
Apr 27 2022 | patent expiry (for year 12) |
Apr 27 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |