A neural stimulator includes an electrically non-conductive carrier and at least two electrically conductive electrodes disposed on opposite sides of the carrier. The electrodes on the opposite sides of the carrier are not electrically connected together. Instead, a signal source is connected to one of the electrodes on one side of the carrier and a return path to the signal source is connected to a corresponding electrode on the other side of the carrier. The corresponding electrode can, but need not be, directly opposite the electrode on the other side of the carrier. The electrodes can be rings, disks, other shapes or combinations thereof. Optionally, the carrier includes low-impedance shunts therethrough.
|
1. A neural stimulator, comprising:
a nonconductive carrier having a first side and a second side opposite the first side and an interior, wherein the carrier comprises at least two isolated shunt gates, wherein isolated means not in fluid communication with each other via the interior of the carrier, each shunt gate extending entirely through the carrier, from the first side to the second side of the carrier, for providing a low electrical resistance path from the first side to the second side of the carrier;
at least one first electrically conductive electrode disposed on the first side of the carrier; and
at least one second electrically conductive electrode disposed on the second side of the carrier, wherein the at least one first electrode is not electrically connected to the at least one second electrode.
26. A method for stimulating neural tissue, comprising:
coupling a signal source to a first electrically conductive electrode disposed on a first side of a nonconductive carrier having a second side opposite the first side and an interior, wherein the carrier comprises at least two isolated shunt gates, wherein isolated means not in fluid communication with each other via the interior of the carrier, each shunt gate extending entirely through the carrier, from the first side to the second side of the carrier, for providing a low electrical resistance path from the first side to the second side of the carrier; and
coupling the signal source to a second electrically conductive electrode located on the second side of the carrier wherein the first electrode is not electrically connected to the second electrode, thereby creating an electrical potential between the first electrode and the second electrode.
2. The neural stimulator defined by
4. The neural stimulator defined by
5. The neural stimulator defined by
6. The neural stimulator defined by
7. The neural stimulator defined by
8. The neural stimulator defined by
9. The neural stimulator defined by
10. The neural stimulator defined by
11. The neural stimulator defined by
12. The neural stimulator defined by
13. The neural stimulator defined by
14. The neural stimulator defined by
15. The neural stimulator defined by
16. The neural stimulator defined by
17. The neural stimulator defined by
18. The neural stimulator defined by
19. The neural stimulator defined by
the at least one first electrode comprises a plurality of first electrodes in a region of the first side of the carrier, the region including space between the plurality of first electrodes; and
the at least one second electrode comprises an electrically conductive surface on the second side of the carrier, the surface having an area at least as large as the region on the first side of the carrier.
20. The neural stimulator defined by
21. The neural stimulator defined by
22. The neural stimulator defined by
23. The neural stimulator defined by
24. The neural stimulator defined by
25. The neural stimulator defined by
27. The method defined by
28. The method defined by
29. The method defined by
30. The method defined by
31. The method defined by
32. The method defined by
|
The present invention relates to electrodes for neural stimulation and, more particularly, to such electrodes disposed on opposite sides of a carrier.
Electrical stimulation of neural tissue is used for several purposes, including pain control, diagnosis and neural rehabilitation. For example, a cochlear implant (CI) is a small electronic device, part of which is placed under the skin, behind the ear, of a profoundly deaf or severely hard of hearing person. The cochlear implant receives signals from a microphone and electrically stimulates auditory nerves of the wearer. Although hearing through a CI may be different than normal hearing, the wearer perceives sounds and another person can orally communicate with the wearer.
CI and other neural stimulation is accomplished by placing at least one electrode near neural tissue and sending an electrical signal to the electrode. The electrical signal is produced with reference to a second (ground) electrode. That is, the signal is delivered across the two electrodes. The second electrode may be placed near the neural tissue or some distance from the neural tissue. The neural tissue is typically stimulated with a bi-phasic pulse, i.e., first a positive pulse is sent to the electrode, followed almost immediately thereafter by a negative pulse.
Better results are obtained from better focused electrical stimulation. Neural tissues are typically very small. To achieve desired results, selected individual nerves should be stimulated. However, prior art neural stimulation apparatus is unable to deliver well-focused electrical stimulation to neural tissue.
A conventional longitudinal bipolar neural stimulation scheme includes two conducting electrodes arranged side-by-side on an insulated carrier. A signal is fed to a first of the two electrodes, and the other electrode acts as a ground. During the positive phase of the stimulation signal, current flows from one of the electrodes, through the stimulated tissue, into the other (ground) electrode. During the negative phase of the stimulation signal, the current flows in the opposite direction, i.e., out of the ground electrode, through the stimulated tissue, and into the first electrode. Consequently, each of the electrodes acts as a stimulation point, and the stimulation is not well focused.
A conventional longitudinal tripolar scheme includes two ground electrodes flanking a center electrode. In this case, the amount of current that flows through each of the two flanking electrodes is one-half the amount of current that flows through the center electrode. Tripolar schemes produce reasonably well focused stimulation, however they require three electrodes.
An embodiment of the present invention provides a neural stimulator that includes a nonconductive carrier. The carrier has a first side and a second side substantially opposite the first side. At least one first electrode is disposed on the first side of the carrier, and at least one second electrode disposed on the second side of the carrier. The at least one first electrode is not electrically connected to the at least one second electrode.
The carrier may have a circular, oval, rectangular or other cross-sectional shape.
Each of the at least one first electrode may correspond to one of the at least one second electrode. In this case, each of the at least one second electrode may be centered on a line that perpendicularly bisects the corresponding first electrode. Alternatively, each of the at least one second electrode may be not centered on a line that perpendicularly bisects the corresponding first electrode
The neural stimulator may also include a signal source connected to one of the at least one first electrode and to the corresponding second electrode.
The carrier may include at least one shunt gate therethrough. In this case, each shunt gate defines a low-impedance electrical path through the carrier. Some or all of the at least one shunt gate may define a bore through the carrier. Optionally or alternatively, some or all of the at least one shunt gate may include an electrically conductive material.
Some or all of the second electrode may include a ring electrode. Some or all of the ring electrode may be formed by a photolithographic process. Optionally or alternatively, some or all of the ring electrode may be formed by a electrodeposition process. Optionally or alternatively, some or all of the ring electrode may be formed by a laser ablation deposition process.
The at least one first electrode may include a plurality of electrodes arranged in an array. In this case, the at least one second electrode may include a plurality of electrodes, each of the plurality of electrodes including a ring electrode.
The carrier may include at least one shunt gate proximate each first electrode. In this case, each shunt gate defines a low-impedance electrical path through the carrier.
Optionally, each of the at least one first electrode includes at least one ear disposed below a surface of the carrier.
Optionally, the at least one first electrode includes a plurality of first electrodes in a region of the first side of the carrier. The region includes space between the plurality of first electrodes. The at least one second electrode includes an electrically conductive surface on the second side of the carrier. The surface has an area at least as large as the region on the first side of the carrier.
The invention will be more fully understood by referring to the following Detailed Description of Specific Embodiments in conjunction with the Drawings, of which:
In accordance with the present invention, methods and apparatus are disclosed for electrically stimulating neural tissue with focused stimulation signals. In one embodiment, one or more pairs of electrodes are disposed on an insulated carrier, such that one of each pair of the electrodes is disposed on one side of the carrier, and the other of the pair of electrodes is disposed on an opposite side of the carrier. An electrical stimulation signal is delivered across the pair of electrodes. Other embodiments, alternatives and options are described below, following a brief discussion of the prior art.
Arrows 108 and 110 indicate the general direction of current (I) flow. During another phase, the current flows are reversed. Consequently, neural tissue 112 is stimulated from two locations, namely electrodes 104 and 106, and the stimulation is not well focused. The amount of current (I) flowing through one of the electrodes 104 into or out of tissue adjacent the electrode 104 is equal to the amount of current (I) flowing through the other electrode 106 out of or into tissue adjacent the other electrode 106. In other words, equal currents flow through the two electrodes 104 and 106.
As shown in Section A-A, the carrier 402 can be round or oval in cross-sectional shape. Alternatively, as shown in Section A-A (Alternative), the carrier 402 can be rectangular in cross-sectional shape. In other embodiments (not shown), the carrier 402 can have other cross-sectional shapes. The thickness 412 of the carrier 402, i.e., the distance between the two electrodes 404 and 406, along with the cross-sectional shape of the carrier 402 can be selected to provide a stimulation field having desired characteristics. For example, a larger distance between the electrodes 404 and 406 requires a less powerful stimulation signal than a smaller separation distance; however, a larger separation often yields a less focused stimulation field.
As shown by the arrows in Section A-A and Section A-A (Alternative), one-half the current (i.e., I/2) flows on each side of the carrier 402. Consequently, the neural tissue 112 is stimulated from a single point, i.e., the electrode 404 facing the neural tissue 112. Typically, the stimulator 400 is positioned such that it is in a plane parallel to a plane of the neural tissue 112. Thus, the stimulating electrode 404 is in the parallel plane. The other electrode 406 is also in a plane parallel to the neural tissue 112, but the other electrode's 406 plane is located on the opposite side of the stimulating electrode 404. The plane of the other electrode 406 is referred to herein as “antineural,” i.e., on the opposite side from the plane of the stimulating electrode 404. I have discovered that disposing the return electrode 406 antineural focuses the stimulating signal.
As viewed from the neural tissue 112, and as seen in section B-B, the neural stimulator 400 can have any shape, such as round or rectangular.
The electrodes 404 and 406 and leads (not shown) can be fabricated using conventional photolithographic, electrodeposition, pulsed laser ablation deposition or other techniques. For example, platinum can be deposited on a conventional carrier.
Optionally, as shown in
The shunt gates 500 can be open passages, holes, grooves, slots or other openings (collectively herein referred to as “bores”) formed through or on the carrier 402. In this case, conductive body fluid or tissue fills the shunt gates 500. Alternatively, the carrier 402 can be made with shunt gates 500 formed of an electrically conductive or low impedance (collectively herein referred to as “low-impedance”) material, such as electrodeposited platinum columns or a conductive polymer, such as polypyrrole. Optionally, some of the shunt gates 500 are open passages and others are low impedance material in the carrier 402.
The electrical resistance (R) of the shunt gates 500 is calculated according to the equation:
R=(R0 L)/A
where R0 is the resistivity of the bodily fluid or tissue in the bores or the resistivity of the low-impedance material in the shunt gates 500; L is the length of each shunt gate 500 (typically, the thickness 412 of the carrier 402); and A is the cross-sectional or surface area of the shunt gates 500. A low resistance (R) can be achieved by using a large area (A) and/or a small length (L).
Although the shunt gates 500 shown in
In addition, the shunt gates need not be perpendicular to the surface of the carrier. For example, as shown in
Furthermore, the distances between the shunt gates 500 and the stimulating electrode 404 can be varied. That is, not all the shunt gate 500 need be disposed the same distance from the stimulating electrode 404. The number, shape(s), arrangement, angle(s) and placement(s) (relative to the stimulating electrode 402) of the shunt gates 500 can be selected to shape and orient the stimulation field, as desired. For example, the distance between the stimulating electrode 404 and the shunt gates 500 can be selected to generate a stimulation field having a desired shape and/or orientation. Alternatively or in addition, the shunt gates 500 can be positioned symmetrically or asymmetrically around the stimulating electrode 404. The thickness 412 of the carrier can be selected to achieve a desired path length between the stimulating electrode 404 and the return electrode 406. As long as the path length is relatively low, the stimulation field may be affected by the other geometric parameters described above.
The above-described neural stimulator 400 includes one stimulating electrode 404 and one return electrode 406. However, in other embodiments, exemplified by a neural stimulator 800 shown in
Typically, although not necessarily, each of the electrodes 802 is connected by a separate lead (not shown) to a signal source (not shown). In some embodiments, each electrode 802 has its own signal source. Optionally, a switching matrix or other circuit (not shown) is connected between one or more signal sources and the electrodes 802 to select which electrode(s) 802 is provided with a stimulating signal at a given time and, optionally, which signal source is connected to the electrode(s) 802. Thus, each of the electrodes 802 can be separately supplied with a stimulation signal, or not supplied with any signal. Consequently, as may be the case in a CI, individual areas of neural tissue can be stimulated by individual electrodes 802 or groups of electrodes 802. Optionally, groups of the electrodes 802 can be electrically connected together and, thus, receive a common stimulation signal.
In some embodiments, each of the stimulating electrodes 802 has a corresponding return electrode (not visible in
In some embodiments, each return electrode is centered on a line that extends perpendicularly through the center of the corresponding stimulating electrode 802. In other embodiments, the return electrodes are not co-centered with their corresponding stimulating electrodes 802. In yet other embodiments, a switching matrix or other circuit is used to change, from time to time, which return electrode corresponds to a given stimulating electrode 802.
In one embodiment, each return electrode is a conductive ring 900, as shown in
Each return electrode 900 is preferably centered on its corresponding stimulating electrode 802. Alternatively, as discussed above, the return electrodes need not be centered on their corresponding stimulating electrodes. Optionally, as discussed above, a switching matrix or other circuit is used to change, from time to time, which return electrode 900 corresponds to a given stimulating electrode.
Preferably, the total conducting surface area of each ring 900 that is exposed to tissue is approximately equal to the total conducting surface area of the corresponding stimulating electrode 802 that is exposed to tissue. The return electrodes 900 may be fabricated on the carrier 804 using photolithographic, electrodeposition, pulsed laser ablation deposition or other techniques.
In one embodiment, a single ring electrode 900 of which is shown in
Dout−Din≧D
where Dout is the outside diameter of the ring 900; Din is the inside diameter 1000 of the ring 900; and D is the diameter of the stimulating electrode 802.
In other embodiments, other sizes of stimulating electrodes 802 and/or other sizes of ring electrodes 900 can be used. For example, stimulating electrodes smaller than about 300μ in diameter may be used, and ring electrodes 900 having inside diameters 1000 of about 1 or 2 mm can be used.
Alternatively, groups of the return electrodes 900 can be electrically connected together to provide a common ground return electrode for a group of the stimulating electrodes 802. In one embodiment, a single conductive plane is used instead of individual return electrodes 900.
In yet another embodiment, a portion of which is shown in
As noted, the electrodes are made of conductive material held in a non-conductive carrier. Depending on the materials used and the sizes of the electrodes, some electrodes may include anchors or ears to secure the electrodes to the carrier. As shown in
In an array of one or more stimulating electrodes and one or more return electrodes disposed on opposite sides of a nonconductive carrier, it is possible to generate stimulation fields having various patterns, depending on the number of electrodes and to which pair of stimulating and return electrodes a stimulating signal is sent. For example, as shown in
TABLE 1
Combinations of Electrodes Connected to a Signal Source
Electrode(s)
Stimulation Pattern
Comments
1 (and a distant ground)
Monopolar
Prior art
2 (and a distant ground)
Monopolar
Prior art
3 (and a distant ground)
Monopolar
Prior art
4 (and a distant ground)
Monopolar
Prior art
1 and 4
Virtual Radial Quadrupolar
New
2 and 3
Virtual Radial Quadrupolar
New
1 and 2
Longitudinal Bipolar
Prior art
3 and 4
Longitudinal Bipolar
Prior art
1 and 3
Angled Bipolar
New
2 and 4
Angled Bipolar
New
As noted in Table 1, connecting a signal source to one of the electrodes 1, 2, 3 or 4 and to a distant ground electrode is conventional. (The “distant ground” referred to in Table 1 is not shown in the drawings.) Similarly, using two adjacent electrodes on the same side of a carrier, e.g., electrodes 1 and 2 or electrodes 3 and 4, is conventional.
However, as described above, connecting a signal source to two electrodes on opposite sides of the carrier, e.g., electrodes 1 and 4 or electrodes 2 and 3, is novel and provides a better focused stimulation field than in the prior art.
Furthermore, using a return electrode that is not directly behind a stimulating electrode, e.g., using electrodes 1 and 3 or electrodes 2 and 4, creates a stimulation field that is directed “off-axis,” i.e., not along an axis that perpendicularly bisects the stimulating electrode. In this regard, using a carrier that includes more than two return electrodes in the antineural plane, as shown in
Although the neural stimulators shown in
While the invention is described through the above-described exemplary embodiments, it will be understood by those of ordinary skill in the art that modifications to, and variations of, the illustrated embodiments may be made without departing from the inventive concepts disclosed herein. Moreover, while some embodiments are described in connection with various illustrative materials and fabrication techniques, one skilled in the art will recognize that the system may be embodied using a variety of other materials or fabrication techniques. Similarly, while some embodiments can be used in cochlear implants (CI), these and other embodiments can be used for other types of neural stimulation, such as cortical, spinal or bladder stimulation, for pain control, diagnosis, neural rehabilitation and other purposes. Accordingly, the invention should not be viewed as limited, except by the scope and spirit of the appended claims.
Patent | Priority | Assignee | Title |
10016600, | May 30 2013 | NEUROSTIM SOLUTIONS, LLC | Topical neurological stimulation |
10016602, | Mar 15 2013 | CIRTEC MEDICAL CORP | Spinal cord stimulator system |
10016605, | Mar 15 2013 | CIRTEC MEDICAL CORP | Spinal cord stimulator system |
10058697, | Aug 27 2013 | Advanced Bionics AG | Thermoformed electrode arrays |
10058698, | Aug 27 2013 | Advanced Bionics AG | Asymmetric cochlear implant electrodes and method |
10058699, | Aug 27 2013 | Advanced Bionics AG | Implantable leads with flag extensions |
10149977, | Mar 15 2013 | CIRTEC MEDICAL CORP | Spinal cord stimulator system |
10265526, | Mar 15 2013 | CIRTEC MEDICAL CORP | Spinal cord stimulator system |
10307591, | May 30 2013 | NEUROSTIM SOLUTIONS, LLC | Topical neurological stimulation |
10335597, | Mar 15 2013 | CIRTEC MEDICAL CORP | Spinal cord stimulator system |
10792089, | Mar 13 2013 | KARDIUM, INC.; KARDIUM, INC | Detecting improper energy transmission configuration in medical device system |
10799281, | Mar 13 2013 | KARDIUM, INC. | Detecting improper energy transmission configuration in medical device system |
10810614, | Mar 15 2013 | CIRTEC MEDICAL CORP | Spinal cord stimulator system |
10918853, | May 30 2013 | NEUROSTM SOLUTIONS, LLC | Topical neurological stimulation |
10946185, | May 30 2013 | NEUROSTIM SOLUTIONS LLC | Topical neurological stimulation |
10953225, | Nov 07 2017 | NEUROSTIM OAB, INC | Non-invasive nerve activator with adaptive circuit |
11077301, | Feb 21 2015 | NEUROSTIM OAB, INC | Topical nerve stimulator and sensor for bladder control |
11229789, | May 30 2013 | NEUROSTIM OAB, INC | Neuro activator with controller |
11291828, | May 30 2013 | NEUROSTIM SOLUTIONS LLC | Topical neurological stimulation |
11458311, | Jun 26 2019 | NEUROSTIM TECHNOLOGIES LLC | Non-invasive nerve activator patch with adaptive circuit |
11704688, | Mar 15 2013 | CIRTEC MEDICAL CORP. | Spinal cord stimulator system |
11730958, | Dec 16 2019 | NEUROSTIM SOLUTIONS, LLC | Non-invasive nerve activator with boosted charge delivery |
8834545, | Jul 22 2011 | NUROTONE MEDICAL LTD | Optical-stimulation cochlear implant with electrode(s) at the apical end for electrical stimulation of apical spiral ganglion cells of the cochlea |
9101768, | Mar 15 2013 | CIRTEC MEDICAL CORP | Spinal cord stimulator system |
9308369, | Mar 15 2013 | CIRTEC MEDICAL CORP | Spinal cord stimulator system |
9440076, | Mar 15 2013 | CIRTEC MEDICAL CORP | Spinal cord stimulator system |
9492665, | Mar 15 2013 | CIRTEC MEDICAL CORP | Spinal cord stimulator system |
9550062, | Mar 15 2013 | CIRTEC MEDICAL CORP | Spinal cord stimulator system |
9623246, | Mar 15 2013 | CIRTEC MEDICAL CORP | Spinal cord stimulator system |
9872986, | Mar 15 2013 | CIRTEC MEDICAL CORP | Spinal cord stimulator system |
9872997, | Mar 15 2013 | CIRTEC MEDICAL CORP | Spinal cord stimulator system |
9878170, | Mar 15 2013 | CIRTEC MEDICAL CORP | Spinal cord stimulator system |
9887574, | Mar 15 2013 | CIRTEC MEDICAL CORP | Spinal cord stimulator system |
9956409, | Mar 15 2013 | CIRTEC MEDICAL CORP | Spinal cord stimulator system |
Patent | Priority | Assignee | Title |
4837049, | Jun 17 1986 | Alfred E. Mann Foundation for Scientific Research | Method of making an electrode array |
5000194, | Aug 25 1988 | Cochlear Corporation | Array of bipolar electrodes |
5037497, | Aug 30 1988 | Cochlear Corporation | Method of fabricating an array of recessed radially oriented bipolar electrodes |
5123422, | Apr 08 1988 | COMPANY SAID SOCIETE ANONYME MXM, THE, LES MIMOSAS - | Electrode-carrier devices able to be implanted in the cochlea so as to electrically stimulate the nervus acusticus |
5649970, | Aug 18 1995 | Advanced Bionics AG | Edge-effect electrodes for inducing spatially controlled distributions of electrical potentials in volume conductive media |
6374143, | Aug 18 1999 | MED-EL ELEKTRO-MEDIZINISCHE GERATE GESELLSCHAFT M B H | Modiolar hugging electrode array |
6493590, | Feb 09 2000 | ADVANCED NEUROMODULATION SYSTEMS, INC | Flexible band electrodes for medical leads |
7047082, | Sep 16 1999 | ADVANCED NEUROMODULATION SYSTEMS, INC | Neurostimulating lead |
7051419, | Sep 16 1999 | ADVANCED NEUROMODULATION SYSTEMS, INC | Neurostimulating lead |
7107104, | May 30 2003 | Medtronic, Inc | Implantable cortical neural lead and method |
7146222, | Apr 15 2002 | NeuroPace, Inc | Reinforced sensing and stimulation leads and use in detection systems |
7214189, | Sep 02 2004 | PROTEUS DIGITAL HEALTH, INC | Methods and apparatus for tissue activation and monitoring |
7369901, | Feb 11 2004 | Pacesetter, Inc | Myocardial lead and lead system |
20030097121, | |||
20040059392, | |||
20050222659, | |||
20060247748, | |||
20070027514, | |||
20070027515, | |||
20080009927, | |||
20080071313, | |||
WO9730670, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 14 2006 | MED-EL Elektromedizinische Geraete GmbH | (assignment on the face of the patent) | / | |||
Aug 16 2006 | JOLLY, CLAUDE | MED-EL Elektromedizinische Geraete GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018152 | /0523 |
Date | Maintenance Fee Events |
Sep 25 2013 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 26 2017 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Oct 12 2021 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Apr 27 2013 | 4 years fee payment window open |
Oct 27 2013 | 6 months grace period start (w surcharge) |
Apr 27 2014 | patent expiry (for year 4) |
Apr 27 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 27 2017 | 8 years fee payment window open |
Oct 27 2017 | 6 months grace period start (w surcharge) |
Apr 27 2018 | patent expiry (for year 8) |
Apr 27 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 27 2021 | 12 years fee payment window open |
Oct 27 2021 | 6 months grace period start (w surcharge) |
Apr 27 2022 | patent expiry (for year 12) |
Apr 27 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |