A sensing method for a memory cell as described herein includes selecting a memory cell. A first bias applied to the memory cell induces a first response in the memory cell. A second bias applied to the memory cell induces a second response in the memory cell, the second bias different from the first bias. The method includes determining a data value stored in the memory cell based on a difference between the first and second responses and a predetermined reference.
|
1. A sensing method for a memory cell, the method comprising:
selecting a memory cell;
applying a first bias to the memory cell to induce a first response in the memory cell;
applying a second bias to the memory cell to induce a second response in the memory cell, the second bias different from the first bias; and
determining a data value stored in the memory cell based on a difference between the first and second responses and a predetermined reference.
10. A memory device comprising:
a memory cell;
circuitry to apply a first bias to the memory cell to induce a first response in the memory cell, and apply a second bias to the memory cell to induce a second response in the memory cell, the second bias different from the first bias; and
sense amplifier circuitry responsive to a difference between the first and second responses and a predetermined reference to generate an output signal indicating a data value stored in the memory cell.
2. The method of
the applying a first bias comprises applying a first voltage to the memory cell to induce a first current in the memory cell;
the applying a second bias comprises applying a second voltage to the memory cell to induce a second current in the memory cell, the second voltage different from the first voltage; and
the determining a data value stored in the memory cell comprises determining the data value based on a difference between the first and second currents and the predetermined reference.
3. The method of
setting a sensing node to a first sensing voltage based on the first current in the memory cell; and
setting the sensing node to a second sensing voltage based on the second current in the memory cell.
4. The method of
the setting a sensing node to a first sensing voltage comprises electrically coupling a series arrangement of a third voltage and a resistive load element to the sensing node, and proving a third current through the series arrangement dependent upon the first current in the memory cell; and
the setting a sensing node to a second sensing voltage comprises electrically coupling the series arrangement of the third voltage and the resistive load element to the sensing node, and providing a fourth current through the series arrangement dependent upon the second current in the memory cell.
5. The method of
the third current is proportional to the first current; and
the fourth current is proportional to the second current.
6. The method of
setting a voltage across a first capacitor dependent upon the first sensing voltage;
setting a voltage across a second capacitor dependent upon the second sensing voltage;
coupling a voltage to a first input of a sense amplifier based on a difference between the voltage across the first capacitor and the voltage across the second capacitor; and
generating an output signal of the sense amplifier based on a difference between the voltage of the first input of the sense amplifier and a predetermined reference voltage applied to a second input of the sense amplifier, the output signal indicating the data value stored in the memory cell.
7. The method of
8. The method of
the setting a voltage across a first capacitor comprises electrically coupling a first node of the first capacitor to the sensing node when the voltage on the sensing node is the first sensing voltage, and electrically coupling a second node of the first capacitor to a fourth voltage;
the setting a voltage across the second capacitor comprises electrically coupling a first node of the second capacitor to the sensing node when the voltage on the sensing node is the second sensing voltage, and electrically coupling a second node of the second capacitor to a fifth voltage; and
the coupling a voltage to a first input of a sense amplifier comprises:
electrically coupling the first node of the first capacitor to the first node of the second capacitor;
electrically coupling the second node of the second capacitor to a sixth voltage; and
electrically coupling the second node of the first capacitor to the first input of the sense amplifier.
11. The device of
the first bias comprises a first voltage applied to the memory cell to induce a first current in the memory cell;
the second bias comprises a second voltage applied to the memory cell to induce a second current in the memory cell; and
the sense amplifier circuitry responsive to a difference between the first and second currents and the predetermined reference to generate an output signal indicating the data value stored in the memory cell.
12. The device of
circuitry to provide a third current through the series arrangement dependent upon the first current in the memory cell to set the sensing node to a first sensing voltage, and to provide a fourth current through the series arrangement dependent upon the second current in the memory cell to set the sensing node to a second sensing voltage.
13. The device of
14. The device of
15. The device of
|
International Business Machines Corporation, a New York corporation, Macronix International Corporation, Ltd., a Taiwan corporation, and Infineon Technologies A.G., a German corporation, are parties to a Joint Research Agreement.
1. Field of the Invention
The present invention relates to read/sense circuitry for high density memory devices based on programmable resistive memory materials, including phase change materials like chalcogenide based materials and other materials, and to methods for operating such circuitry.
2. Description of Related Art
Programmable resistive memory materials such as phase change based memory materials, like chalcogenide based materials and similar materials, can be caused to change phase between an amorphous state and a crystalline state by application of electrical current at levels suitable for implementation in integrated circuits. The generally amorphous state is characterized by higher resistivity that the generally crystalline state, which can be sensed to indicate data. These properties have generated interest in using programmable resistive material to form nonvolatile memory circuits, which can be read and written with random access.
The change from the amorphous to the crystalline state, referred to as set or program herein, is generally a lower current operation in which current heats the material and causes transitions between the states. The change from a crystalline to a more highly amorphous state, referred to as reset herein, is generally a higher current operation, which includes a short high current density pulse to melt or breakdown the crystalline structure, after which the phase change material cools quickly, quenching the phase change process and allowing at least a portion of the phase change material to stabilize in the amorphous state.
In phase change memory, data is stored by causing transitions in an active region of the phase change material between amorphous and crystalline states.
The difference between the highest resistance R1 of the low resistance set state 100 and the lowest resistance R2 of the high resistance reset state 102 defines a read margin 101 used to distinguish cells in the set state 100 from those in the reset state 102. The data stored in a memory cell can be determined by determining whether the memory cell has a resistance corresponding to the low resistance state 100 or to the high resistance state 102, for example by measuring whether the resistance of the memory cell is above or below a threshold resistance value RSA 103 within the read margin 101. In order to reliably distinguish between the reset state 102 and the set state 100, it is important to maintain a relatively large read margin 101.
Prior art methods of determining resistance of the memory cell and thus the data value stored in the memory cell include comparing a voltage or current response of the memory cell to a reference. However, variations in materials, manufacturing processes, and also the operating environment lead to different programming characteristics including variations in the resistance of the memory material associated with each data value in an array of memory cells. These variations can make it difficult to accurately sense the resistive state of a memory cell by comparing the response of the memory cell to a reference, resulting in possible bit errors.
It is therefore desirable to provide sense circuitry supporting high-density devices which can accurately read the resistance state of a programmable resistive memory cell, and methods for operating such circuitry.
A sensing method for a memory cell as described herein includes selecting a memory cell. A first bias applied to the memory cell induces a first response in the memory cell. A second bias applied to the memory cell induces a second response in the memory cell, the second bias different from the first bias. The method includes determining a data value stored in the selected memory cell based on a difference between the first and second responses and a predetermined reference.
A memory device described herein includes a memory cell. The device includes circuitry to apply a first bias to the memory cell to induce a first response in the memory cell, and apply a second bias to the memory cell to induce a second response in the memory cell, the second bias different from the first bias. The device further includes sense amplifier circuitry responsive to a difference between the first and second responses and a predetermined reference to generate an output signal indicating a data value stored in the memory cell.
As described above, variations across an array can make it difficult to accurately sense the resistive state of a memory cell by comparing the response of the memory cell to a reference, resulting in possible bit errors. The present invention helps to solve this difficulty by a sensing method described herein which determines the data value stored based on a difference between the first and second responses and a predetermined reference.
Other aspects and advantages of the present invention can be seen on review of the drawings, the detailed description and the claims, which follow.
The following description of the invention will refer to specific structural embodiments and methods. It is understood that there is no intention to limit the invention to the specifically disclosed embodiments and methods but that the invention may be practiced using other features, elements, methods, and embodiments. Preferred embodiments are described to illustrate the present invention, not to limit its scope, which is defined by the claims. Those of ordinary skill in the art will recognize a variety of equivalent variations on the description that follows. Like elements in various embodiments are commonly referred to with like reference numerals.
A controller 250 implemented in this example using a bias arrangement state machine, controls the application of bias arrangement supply voltages 155, such as read, program, erase, erase verify and program verify voltages. Controller 250 may be implemented using special purpose logic circuitry as known in the art. In alternative embodiments, controller 250 comprises a general-purpose processor, which may be implemented on the same integrated circuit to execute a computer program to control the operations of the device. In yet other embodiments, a combination of special-purpose logic circuitry and a general-purpose processor may be utilized for implementation of controller 250.
As shown in
Sources of each of the access transistors of memory cells 330, 332, 334, and 336 are connected in common to source line 354 that terminates in a source line termination circuit 355, such as a ground terminal. In another embodiment the source lines of the access transistors are not electrically connected, but independently controllable. The source line termination circuit 355 may include bias circuits such as voltage sources and current sources, and decoding circuits for applying bias arrangements, other than ground, to the source line 254 in some embodiments.
A plurality of word lines 215 including word lines 356, 358 extend in parallel along a first direction. Word lines 356, 358 are in electrical communication with word line decoder 210. The gates of access transistors of memory cells 330, 334 are connected in common to word line 356, and the gates of access transistors of memory cells 332, 336 are connected in common to word line 358
A plurality of bit lines 225 including bit lines 360, 362 extend in parallel in a second direction. Memory elements 346, 348 couple the bit line 360 to the respective drains of the access transistors of memory cells 330, 332. Memory elements 350, 352 couple the bit line 362 to the respective drains of the access transistors of memory cells 334, 336.
Sense amplifier circuitry 230 may comprise a plurality of sense amplifiers (not directly shown), with each sense amplifier being connected to a corresponding bit line 360, 362 via the bit line decoder 220. Alternatively, the sense amplifier circuitry 230 may comprise a single sense amplifier and circuitry to selectively couple the sense amplifier to a corresponding bit line. Sense amplifier circuitry 230 is operable to detect the difference between a first current and a second current in a selected memory cell in response to a difference in voltage applied to the selected memory cell, the difference between the first current and the second current indicating the data value stored in the selected memory cell. Embodiments of sense amplifiers in sense amplifier circuitry are described in further detail below in conjunction with
It will be understood that the memory array 205 is not limited to the array configuration illustrated in
Embodiments of the memory cells include chalcogenide based phase change materials and other materials, for memory elements. Chalcogens include any of the four elements oxygen (O), sulfur (S), selenium (Se), and tellurium (Te), forming part of group VIA of the periodic table. Chalcogenides comprise compounds of a chalcogen with a more electropositive element or radical. Chalcogenide alloys comprise combinations of chalcogenides with other materials such as transition metals. A chalcogenide alloy usually contains one or more elements from group IVA of the periodic table of elements, such as germanium (Ge) and tin (Sn). Often, chalcogenide alloys include combinations including one or more of antimony (Sb), gallium (Ga), indium (In), and silver (Ag). Many phase change based memory materials have been described in technical literature, including alloys of: Ga/Sb, In/Sb, In/Se, Sb/Te, Ge/Te, Ge/Sb/Te, In/Sb/Te, Ga/Se/Te, Sn/Sb/Te, In/Sb/Ge, Ag/In/Sb/Te, Ge/Sn/Sb/Te, Ge/Sb/Se/Te and Te/Ge/Sb/S. In the family of Ge/Sb/Te alloys, a wide range of alloy compositions may be workable. The compositions can be characterized as TeaGebSb100−(a+b), where a and b represent atomic percentages that total 100% of the atoms of the constituent elements. One researcher has described the most useful alloys as having an average concentration of Te in the deposited materials well below 70%, typically below about 60% and ranged in general from as low as about 23% up to about 58% Te and most preferably about 48% to 58% Te. Concentrations of Ge were above about 5% and ranged from a low of about 8% to about 30% average in the material, remaining generally below 50%. Most preferably, concentrations of Ge ranged from about 8% to about 40%. The remainder of the principal constituent elements in this composition was Sb. (Ovshinsky '112 patent, cols 10-11.) Particular alloys evaluated by another researcher include Ge2Sb2Te5, GeSb2Te4 and GeSb4Te7. (Noboru Yamada, “Potential of Ge—Sb—Te Phase-Change Optical Disks for High-Data-Rate Recording”, SPIE v. 3109, pp. 28-37 (1997).) More generally, a transition metal such as chromium (Cr), iron (Fe), nickel (Ni), niobium (Nb), palladium (Pd), platinum (Pt) and mixtures or alloys thereof may be combined with Ge/Sb/Te to form a phase change alloy that has programmable resistive properties. Specific examples of memory materials that may be useful are given in Ovshinsky '112 at columns 11-13, which examples are hereby incorporated by reference.
Chalcogenides and other phase change materials are doped with impurities in some embodiments to modify conductivity, transition temperature, melting temperature, and other properties of memory elements using the doped chalcogenides. Representative impurities used for doping chalcogenides include nitrogen, silicon, oxygen, silicon dioxide, silicon nitride, copper, silver, gold, aluminum, aluminum oxide, tantalum, tantalum oxide, tantalum nitride, titanium and titanium oxide. See, e.g. U.S. Pat. No. 6,800,504, and U.S. Patent Application Publication No. US 2005/0029502.
Phase change materials can be changed from one phase state to another by application of electrical pulses. It has been observed that a shorter, higher amplitude pulse tends to change the phase change material to a generally amorphous state, and is referred to as a reset pulse. A longer, lower amplitude pulse tends to change the phase change material to a generally crystalline state, and is referred to as a program pulse. The energy in a shorter, higher amplitude pulse is high enough to allow for bonds of the crystalline structure to be broken and short enough to prevent the atoms from realigning into a crystalline state. Appropriate profiles for pulses can be determined empirically, without undue experimentation, specifically adapted to a particular phase change material and device structure.
The following are short summaries describing four types of resistive memory materials.
1. Chalcogenide Material
2. CMR (Colossal Magneto Resistance) Material
3. 2-element compound
Formation Method:
The post deposition annealing treatment with vacuum or N2 ambient or O2/N2 mixed ambient as sometimes needed to improve the oxygen distribution of metal oxide. The annealing temperature ranges 400 C to 600 C with an anneal time of less than 2 hours.
4. Polymer Material
Formation Method:
Referring again to
Reading or writing to a memory cell of array 205, therefore, can be achieved by applying a suitable voltage to one of word lines 358, 356 and coupling one of bit lines 360, 362 to a voltage source so that current flows through the selected memory element. For example, a current path 380 through a selected memory cell (in this example memory cell 332 and corresponding memory element 348 are selected) is established by applying voltages to the bit line 360, word line 358, and source line 354 sufficient to turn on the access transistor of memory cell 332 and induce current in path 380 to flow from the bit line 360 to the source line 354, or vice-versa. The level and duration of the voltages applied is dependent upon the operation performed, e.g. a reading operation or a writing operation.
In a reset (or erase) operation of memory cell 332 comprising phase change material, word line decoder 210 facilitates providing word line 358 with a suitable voltage pulse to turn on the access transistor of the memory cell 332. Bit line decoder 220 facilitates supplying a voltage pulse to bit line 360 of suitable amplitude and duration to induce a current to flow though memory element 348, the current raising the temperature of at least the active region above the transition temperature of the phase change material of the memory element 348 and also above the melting temperature to place at least the active region in a liquid state. The current is then terminated, for example by terminating the voltage pulses on the bit line 360 and on the word line 358, resulting in a relatively quick quenching time as the active region rapidly cools to stabilize to an amorphous phase. The reset operation can also comprise more than one pulse, for example using a pair of pulses.
In a set (or program) operation of the data stored in memory cell 332 comprising phase change material, word line decoder 210 facilitates providing word line 358 with a suitable voltage pulse to turn on the access transistor of the memory cell 332. Bit line decoder 220 facilitates supplying a voltage pulse to bit line 360 of suitable amplitude and duration to induce a current pulse sufficient to raise the temperature of a portion of the active region of the phase change material above the transition temperature and cause a transition of a portion of the active region from the amorphous phase into a crystalline phase, this transition lowering the resistance of the memory element 348 and setting the memory cell 332 to the desired state.
In a read (or sense) operation of the data stored in memory cell 332 comprising phase change material, word line decoder 210 facilitates providing word line 358 with a suitable voltage pulse to turn on the access transistor of the memory cell 332. Bit line decoder 220 facilitates supplying a voltage to bit line 360 of suitable amplitude and duration to induce current to flow in the memory element 348. The current on the bit line 360 and through the memory element 348 is dependent upon the resistance of, and therefore the data state associated with, the memory element 348 of the memory cell 332.
However, variations in materials, manufacturing processes, and also the operating environment will lead to variations in the resistance of memory elements across an array of memory cells storing a given data value. These variations will result in a distribution of current values associated with a given resistive state. Thus, if the current in a selected memory cell is compared to a reference current or voltage in another memory cell in the array or to a known reference resistance, the distribution of current values can make it difficult to accurately determine the resistive state, and therefore the data value, of the selected memory cell.
The present invention helps to solve this difficulty by a sensing method described herein which includes applying a first voltage pulse across a selected memory cell to induce a first current in the memory cell, and applying a second voltage pulse across the selected memory cell to induce a second current in the memory cell, the second voltage pulse different from the first voltage pulse. The data value stored in the selected memory cell is then determined based on a difference between the first and second currents.
As shown in
Due to the difference in the resistance in the reset state 400 and the programmed state 410, a given difference in applied voltage across the memory cell will result in a greater difference in current if the memory cell is in the programmed state 410 than if the memory cell is in the reset state 400.
A first voltage V1 applied across a selected memory cell induces a first current I1 in the memory cell. As can be seen in
Thus, for a given voltage difference ΔV=V2−V1 applied across the selected memory cell, the corresponding difference in current will be ΔI′=I2′−I1′ if the memory cell is in the reset state 400, while the difference in current will be ΔI″=I2″−I1″ if the memory cell is in the programmed state 410. Therefore, the resistive state of the selected memory cell can be determined based on whether the difference in current is ΔI″ or ΔI′.
In the simplified diagram of
Voltage clamping circuitry 610 is coupled to node 605 to provide a voltage (described in more detail with reference to
Referring to
Enable signal en2 turns on transmission gate 640 to couple node 660 to sensing node 650, enable signal en1 turns on transmission gate 641 to couple the series arrangement of a voltage Vbias1 and resistive load element Rload to the sensing node 650, resulting in a current ISIG provided by the voltage clamping circuitry 610 to the sense amplifier circuitry 620. In the illustrated embodiment Rload is shown as a resistor, although in some embodiments an active load such as a diode connected transistor can alternatively be used.
The magnitude of the current ISIG provided by the voltage clamping circuitry 610 is dependent upon the magnitude of the current IPCE and thus dependent upon the resistance of the memory element 348. In the illustrated embodiment the voltage clamping circuitry 610 includes operational amplifier 611 and transistor 612 such that the magnitudes of ISIG and IPCE are substantially equal, although it will be understood that the present invention is not limited as such. For example, in alternative embodiments the voltage clamping circuitry 610 may be implemented such that the magnitude of ISIG is a function of the magnitude of IPCE, for example being directly or inversely proportional.
The current ISIG sets a voltage on the sensing node 650, signal S1 is set to a high state to turn on transistor 642 and couple a first node 661 of capacitor C1 to the sensing node 650, and enable signal en3 turns on transmission gate 643 to couple a voltage Vbias2 to a second node 662 of the capacitor C1 to provide an equalization path, thereby setting a voltage of the capacitor C1 between nodes 662 and 661 which depends upon the voltage of the sensing node 650. In the illustrated embodiment voltage Vbias2 is the substantially the same as Vbias1, although other bias voltages including ground may alternatively be used.
Since the voltage on the sensing node 650 depends upon the resistance of the memory element 348, the voltage across the capacitor C1 between nodes 662 and 661 will also depend upon the resistance of the memory element 348.
Next, at time T2 a second current-voltage operational point of the selected memory cell 332 is determined. A bit line address signal is supplied to the bit line decoder 120 to couple the bit line 360 of the selected memory cell 332 to the node 605, a word line address signal is supplied to the word line 358 sufficient to turn on the access transistor 600, and voltage clamping circuitry 610 is responsive to a second clamping voltage Vclamp to provide a second voltage V2 to node 605, the second voltage V2 inducing a current IPCE through the memory cell 332 dependent upon the resistance of the memory element 348. If the memory element 348 is in the high resistance reset state 400 the current IPCE through the memory cell 332 will be a current I2′, while if the memory element 348 is in the low resistance set state 410 the current through the memory cell 332 will be a current I2″.
Enable signal en2 turns on transmission gate 640 to couple node 660 to sensing node 650, enable signal en1 turns on transmission gate 641 to couple the series arrangement of voltage Vbias1 and resistive load element Rload to the sensing node 650, resulting in a second current ISIG provided by the voltage clamping circuitry 610 to the sense amplifier circuitry 620.
The second current ISIG sets a voltage on the sensing node 650, signal S2 is set to a high state to turn on transistor 644 and couple a first node 663 of capacitor C2 to the sensing node 650, and enable signal en4 turns on transmission gate 645 to couple a voltage Vbias3 to a second node 664 of the capacitor C2 to provide an equalization path, thereby setting a voltage across the capacitor C2 between nodes 664 and 663 which depends upon the voltage of the sensing node 650. In the illustrated embodiment voltage Vbias3 is substantially equal to Vbias1, although other bias voltages including ground may alternatively be used.
As described above the voltage on the sensing node 650 during the determination of the first and second operational points of the memory cell 332 is dependent upon the current IPCE in the memory cell 332. Since the difference in resistance in the programmed state 410 and the reset state 400 results in a greater difference in current IPCE if the memory cell 332 is in the programmed state 410 (ΔI″) than if the memory cell 332 is in the reset state 400 (ΔI′), this difference between ΔI″ and ΔI′ will result in a corresponding difference in the voltage of the sensing node 650 of the first and second operational points depending upon the resistance state of the memory cell 332. Therefore, the resulting difference in the voltage of the capacitor C1 between nodes 662 and 661 and the voltage of the capacitor C2 between nodes 664 and 663 can be sensed to indicate the data value stored in the selected memory cell 332.
At time T3 signal S1 and signal S2 are set to a high state to couple node 661 of capacitor C1 to node 663 of capacitor C2, enable signal en5 turns on transmission gate 646 to couple node 664 of capacitor C2 to a reference voltage Vbias4, and enable signal en5 turns on transmission gate 647 to couple node 662 to a first input 681 of a sense amplifier 680. Vbias4 is a predetermined voltage, and may in some embodiments be a ground.
As described above the difference in the voltage of the capacitor C1 between nodes 662 and 661 and the voltage of the capacitor C2 between nodes 664 and 663 is dependent upon the resistance of the memory element 348. Therefore, the resulting difference in the voltage between the first input 681 and the bias voltage Vbias4 is a subtraction of the voltages of the first and second capacitors C1, C2 and indicates the resistive state of the selected memory cell 332. Therefore, the voltage on the first input 681 can be sensed to indicate the resistive state of the memory element 348.
The sense amplifier 680 is responsive to the difference between the voltage on the first input 681 and a predetermined reference voltage Vref on a second input and generates an output signal VOUT indicating the resistive state of the memory element 348. In
While the present invention is disclosed by reference to the preferred embodiments and examples detailed above, it is to be understood that these examples are intended in an illustrative rather than in a limiting sense. It is contemplated that modifications and combinations will readily occur to those skilled in the art, which modifications and combinations will be within the spirit of the invention and the scope of the following claims.
Lung, Hsiang-Lan, Lamorey, Mark
Patent | Priority | Assignee | Title |
10402098, | Mar 14 2016 | SK Hynix Inc. | Nonvolatile memory apparatus and verification write method thereof for reducing program time |
11049557, | Jul 19 2019 | Macronix International Co., Ltd. | Leakage current compensation in crossbar array |
8271855, | Dec 22 2008 | Unity Semiconductor Corporation | Memory scrubbing in third dimension memory |
9042154, | Aug 28 2012 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Non-volatile memory including reference signal path |
9627051, | Aug 28 2012 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Non-volatile memory including reference signal path |
9761309, | Feb 28 2014 | Hewlett Packard Enterprise Development LP | Sensing circuit for resistive memory array |
Patent | Priority | Assignee | Title |
3271591, | |||
3530441, | |||
4452592, | Jun 01 1982 | General Motors Corporation | Cyclic phase change coupling |
4599705, | Dec 13 1979 | Energy Conversion Devices, Inc. | Programmable cell for use in programmable electronic arrays |
4719594, | Nov 01 1984 | Energy Conversion Devices, Inc. | Grooved optical data storage device including a chalcogenide memory layer |
4769339, | Dec 26 1983 | Kabushiki Kaisha Toshiba | Method of manufacturing a field effect transistor device having a multilayer gate electrode |
4876220, | May 16 1986 | Actel Corporation | Method of making programmable low impedance interconnect diode element |
4959812, | Dec 28 1987 | Kabushiki Kaisha Toshiba | Electrically erasable programmable read-only memory with NAND cell structure |
5106775, | Dec 10 1987 | Hitachi, Ltd. | Process for manufacturing vertical dynamic random access memories |
5166096, | Oct 29 1991 | International Business Machines Corporation | Process for fabricating self-aligned contact studs for semiconductor structures |
5166758, | Jan 18 1991 | Ovonyx, Inc | Electrically erasable phase change memory |
5177567, | Jul 19 1991 | Ovonyx, Inc | Thin-film structure for chalcogenide electrical switching devices and process therefor |
5332923, | Aug 06 1991 | NEC Corporation | Semiconductor memory |
5391901, | Oct 30 1992 | NEC Corporation | Semiconductor memory with oblique folded bit-line arrangement |
5515488, | Aug 30 1994 | GOOGLE LLC | Method and apparatus for concurrent graphical visualization of a database search and its search history |
5534712, | Jan 18 1991 | Ovonyx, Inc | Electrically erasable memory elements characterized by reduced current and improved thermal stability |
5550396, | Jan 24 1992 | Mitsubishi Denki Kabushiki Kaisha | Vertical field effect transistor with a trench structure |
5687112, | Apr 19 1996 | Ovonyx, Inc | Multibit single cell memory element having tapered contact |
5688713, | Aug 26 1996 | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | Method of manufacturing a DRAM cell having a double-crown capacitor using polysilicon and nitride spacers |
5716883, | Nov 06 1996 | Vanguard International Semiconductor Corporation | Method of making increased surface area, storage node electrode, with narrow spaces between polysilicon columns |
5754472, | Dec 27 1995 | Hyundai Electronics Industries Co., Ltd. | Flash memory device having a program path the same as a read pre-condition path |
5789277, | Jul 22 1996 | Round Rock Research, LLC | Method of making chalogenide memory device |
5789758, | Jun 07 1995 | Round Rock Research, LLC | Chalcogenide memory cell with a plurality of chalcogenide electrodes |
5814527, | Jul 22 1996 | Round Rock Research, LLC | Method of making small pores defined by a disposable internal spacer for use in chalcogenide memories |
5831276, | Jul 22 1996 | Round Rock Research, LLC | Three-dimensional container diode for use with multi-state material in a non-volatile memory cell |
5837564, | Nov 01 1995 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method for optimal crystallization to obtain high electrical performance from chalcogenides |
5869843, | Jun 07 1995 | Round Rock Research, LLC | Memory array having a multi-state element and method for forming such array or cells thereof |
5879955, | Jun 07 1995 | Round Rock Research, LLC | Method for fabricating an array of ultra-small pores for chalcogenide memory cells |
5902704, | Jul 02 1997 | Bell Semiconductor, LLC | Process for forming photoresist mask over integrated circuit structures with critical dimension control |
5920788, | Jun 07 1995 | Round Rock Research, LLC | Chalcogenide memory cell with a plurality of chalcogenide electrodes |
5933365, | Jun 19 1997 | OVONYX MEMORY TECHNOLOGY, LLC | Memory element with energy control mechanism |
5952671, | May 09 1997 | Round Rock Research, LLC | Small electrode for a chalcogenide switching device and method for fabricating same |
5958358, | Jul 08 1992 | Yeda Research and Development Co., Ltd. | Oriented polycrystalline thin films of transition metal chalcogenides |
5970336, | Aug 22 1996 | Round Rock Research, LLC | Method of making memory cell incorporating a chalcogenide element |
5985698, | Jul 22 1996 | Round Rock Research, LLC | Fabrication of three dimensional container diode for use with multi-state material in a non-volatile memory cell |
5998244, | Aug 22 1996 | Round Rock Research, LLC | Memory cell incorporating a chalcogenide element and method of making same |
6011725, | Aug 01 1997 | MORGAN STANLEY SENIOR FUNDING | Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping |
6025220, | Jun 18 1996 | Round Rock Research, LLC | Method of forming a polysilicon diode and devices incorporating such diode |
6031287, | Jun 18 1997 | Round Rock Research, LLC | Contact structure and memory element incorporating the same |
6034882, | Nov 16 1998 | SanDisk Technologies LLC | Vertically stacked field programmable nonvolatile memory and method of fabrication |
6046951, | Jan 23 1998 | STMICROELECTRONICS S A | Process for controlling the read circuit of a memory plane and corresponding memory device |
6066870, | Jul 16 1996 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Single digit line with cell contact interconnect |
6077674, | Oct 27 1999 | Agilent Technologies Inc | Method of producing oligonucleotide arrays with features of high purity |
6077729, | Jun 07 1995 | Round Rock Research, LLC | Memory array having a multi-state element and method for forming such array or cellis thereof |
6087269, | Apr 20 1998 | Advanced Micro Devices, Inc. | Method of making an interconnect using a tungsten hard mask |
6087674, | Oct 28 1996 | OVONYX MEMORY TECHNOLOGY, LLC | Memory element with memory material comprising phase-change material and dielectric material |
6104038, | Jun 07 1995 | Round Rock Research, LLC | Method for fabricating an array of ultra-small pores for chalcogenide memory cells |
6111264, | Jul 22 1996 | Round Rock Research, LLC | Small pores defined by a disposable internal spacer for use in chalcogenide memories |
6114713, | Jan 28 1997 | Round Rock Research, LLC | Integrated circuit memory cell having a small active area and method of forming same |
6117720, | Jun 07 1995 | Round Rock Research, LLC | Method of making an integrated circuit electrode having a reduced contact area |
6147395, | Oct 02 1996 | Round Rock Research, LLC | Method for fabricating a small area of contact between electrodes |
6150253, | Oct 02 1996 | Round Rock Research, LLC | Controllable ovonic phase-change semiconductor memory device and methods of fabricating the same |
6153890, | Aug 22 1996 | Round Rock Research, LLC | Memory cell incorporating a chalcogenide element |
6177317, | Apr 14 1999 | MACRONIX INTERNATIONAL CO , LTD | Method of making nonvolatile memory devices having reduced resistance diffusion regions |
6185122, | Nov 16 1998 | SanDisk Technologies LLC | Vertically stacked field programmable nonvolatile memory and method of fabrication |
6189582, | May 09 1997 | Round Rock Research, LLC | Small electrode for a chalcogenide switching device and method for fabricating same |
6236059, | Aug 22 1996 | Round Rock Research, LLC | Memory cell incorporating a chalcogenide element and method of making same |
6271090, | Dec 22 2000 | Macronix International Co., Ltd. | Method for manufacturing flash memory device with dual floating gates and two bits per cell |
6280684, | Dec 13 1994 | Ricoh Company, Ltd. | Sputtering target, method of producing the target, optical recording medium fabricated by using the sputtering target, and method of fabricating the optical recording medium |
6287887, | Oct 02 1996 | Round Rock Research, LLC | Method for fabricating a small area of contact between electrodes |
6291137, | Jan 20 1999 | Advanced Micro Devices, Inc. | Sidewall formation for sidewall patterning of sub 100 nm structures |
6314014, | Dec 16 1999 | OVONYX MEMORY TECHNOLOGY, LLC | Programmable resistance memory arrays with reference cells |
6316348, | Feb 05 1999 | Taiwan Semiconductor Manufacturing Company | High selectivity Si-rich SiON etch-stop layer |
6320786, | Dec 22 2000 | Macronix International Co., Ltd. | Method of controlling multi-state NROM |
6326307, | Nov 15 1999 | Applied Materials, Inc | Plasma pretreatment of photoresist in an oxide etch process |
6339544, | Sep 29 2000 | OVONYX MEMORY TECHNOLOGY, LLC | Method to enhance performance of thermal resistor device |
6351406, | Nov 16 1998 | SanDisk Technologies LLC | Vertically stacked field programmable nonvolatile memory and method of fabrication |
6372651, | Jul 17 1998 | MONTEREY RESEARCH, LLC | Method for trimming a photoresist pattern line for memory gate etching |
6380068, | Jan 05 2000 | Macronix International Co., Ltd. | Method for planarizing a flash memory device |
6420215, | Apr 28 2000 | SanDisk Technologies LLC | Three-dimensional memory array and method of fabrication |
6420216, | Mar 14 2000 | Qimonda AG | Fuse processing using dielectric planarization pillars |
6420725, | Jun 07 1995 | Round Rock Research, LLC | Method and apparatus for forming an integrated circuit electrode having a reduced contact area |
6423621, | Oct 02 1996 | Round Rock Research, LLC | Controllable ovonic phase-change semiconductor memory device and methods of fabricating the same |
6429064, | Sep 29 2000 | Intel Corporation | Reduced contact area of sidewall conductor |
6440837, | Jul 14 2000 | Round Rock Research, LLC | Method of forming a contact structure in a semiconductor device |
6462353, | Oct 02 1996 | Round Rock Research, LLC | Method for fabricating a small area of contact between electrodes |
6483736, | Nov 16 1998 | SanDisk Technologies LLC | Vertically stacked field programmable nonvolatile memory and method of fabrication |
6487106, | Jan 12 1999 | Arizona Board of Regents | Programmable microelectronic devices and method of forming and programming same |
6487114, | Feb 28 2001 | Macronix International Co., Ltd. | Method of reading two-bit memories of NROM cell |
6501111, | Jun 30 2000 | Intel Corporation | Three-dimensional (3D) programmable device |
6511867, | Jun 30 2001 | OVONYX MEMORY TECHNOLOGY, LLC | Utilizing atomic layer deposition for programmable device |
6512241, | Dec 31 2001 | Intel Corporation | Phase change material memory device |
6514788, | May 29 2001 | Ovonyx, Inc | Method for manufacturing contacts for a Chalcogenide memory device |
6514820, | Aug 27 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method for forming single electron resistor memory |
6534781, | Dec 26 2000 | OVONYX MEMORY TECHNOLOGY, LLC | Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact |
6545903, | Dec 17 2001 | Texas Instruments Incorporated | Self-aligned resistive plugs for forming memory cell with phase change material |
6551866, | Nov 27 1998 | Mitsubishi Denki Kabushiki Kaisha | Method of manufacturing a semiconductor memory device |
6555860, | Sep 29 2000 | Intel Corporation | Compositionally modified resistive electrode |
6563156, | Mar 15 2001 | Round Rock Research, LLC | Memory elements and methods for making same |
6566700, | Oct 11 2001 | OVONYX MEMORY TECHNOLOGY, LLC | Carbon-containing interfacial layer for phase-change memory |
6567293, | Sep 29 2000 | OVONYX MEMORY TECHNOLOGY, LLC | Single level metal memory cell using chalcogenide cladding |
6576546, | Dec 22 1999 | BROADCOM INTERNATIONAL PTE LTD | Method of enhancing adhesion of a conductive barrier layer to an underlying conductive plug and contact for ferroelectric applications |
6579760, | Mar 28 2002 | Macronix International Co., Ltd.; MACRONIX INTERNATIONAL CO , LTD | Self-aligned, programmable phase change memory |
6586761, | Sep 07 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Phase change material memory device |
6589714, | Jun 26 2001 | OVONYX MEMORY TECHNOLOGY, LLC | Method for making programmable resistance memory element using silylated photoresist |
6593176, | Dec 26 2000 | OVONYX MEMORY TECHNOLOGY, LLC | METHOD FOR FORMING PHASE-CHANGE MEMORY BIPOLAR ARRAY UTILIZING A SINGLE SHALLOW TRENCH ISOLATION FOR CREATING AN INDIVIDUAL ACTIVE AREA REGION FOR TWO MEMORY ARRAY ELEMENTS AND ONE BIPOLAR BASE CONTACT |
6596589, | Apr 30 2001 | Vanguard International Semiconductor Corporation | Method of manufacturing a high coupling ratio stacked gate flash memory with an HSG-SI layer |
6597009, | Sep 29 2000 | Intel Corporation | Reduced contact area of sidewall conductor |
6605527, | Jun 30 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Reduced area intersection between electrode and programming element |
6605821, | May 10 2002 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Phase change material electronic memory structure and method for forming |
6607974, | Jul 14 2000 | Round Rock Research, LLC | Method of forming a contact structure in a semiconductor device |
6613604, | Aug 02 2001 | OVONYX MEMORY TECHNOLOGY, LLC | Method for making small pore for use in programmable resistance memory element |
6617192, | Oct 01 1997 | OVONYX MEMORY TECHNOLOGY, LLC | Electrically programmable memory element with multi-regioned contact |
6621095, | Sep 29 2000 | OVONYX MEMORY TECHNOLOGY, LLC | Method to enhance performance of thermal resistor device |
6627530, | Dec 22 2000 | SanDisk Technologies LLC | Patterning three dimensional structures |
6639849, | Feb 28 2002 | Infineon Technologies LLC | Nonvolatile semiconductor memory device programming second dynamic reference cell according to threshold value of first dynamic reference cell |
6673700, | Jun 30 2001 | OVONYX MEMORY TECHNOLOGY, LLC | Reduced area intersection between electrode and programming element |
6674115, | Aug 31 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Multiple layer phrase-change memory |
6677678, | Mar 14 2000 | GOOGLE LLC | Damascene structure using a sacrificial conductive layer |
6744088, | Dec 13 2002 | Intel Corporation | Phase change memory device on a planar composite layer |
6750079, | Mar 25 1999 | OVONYX MEMORY TECHNOLOGY, LLC | Method for making programmable resistance memory element |
6750101, | Mar 28 2002 | Macronix International Co., Ltd. | Method of manufacturing self-aligned, programmable phase change memory |
6791102, | Dec 13 2002 | Intel Corporation | Phase change memory |
6797979, | Dec 21 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Metal structure for a phase-change memory device |
6800504, | Aug 30 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Integrated circuit device and fabrication using metal-doped chalcogenide materials |
6805563, | Sep 10 2002 | Enplas Corporation | Socket for electrical parts |
6815704, | Sep 04 2003 | Silicon Storage Technology, Inc | Phase change memory device employing thermally insulating voids |
6838692, | Jun 23 2003 | Macronix International Co., Ltd. | Chalcogenide memory device with multiple bits per cell |
6850432, | Aug 20 2002 | Macronix International Co., Ltd. | Laser programmable electrically readable phase-change memory method and device |
6859389, | Oct 31 2002 | DAI NIPPON PRINTING CO , LTD | Phase change-type memory element and process for producing the same |
6861267, | Sep 17 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Reducing shunts in memories with phase-change material |
6864500, | Apr 10 2002 | OVONYX MEMORY TECHNOLOGY, LLC | Programmable conductor memory cell structure |
6864503, | Aug 09 2002 | Macronix International Co., Ltd. | Spacer chalcogenide memory method and device |
6867638, | Jan 10 2002 | Silicon Storage Technology, Inc. | High voltage generation and regulation system for digital multilevel nonvolatile memory |
6881603, | Dec 13 2001 | Intel Corporation | Phase change material memory device |
6888750, | Apr 28 2000 | SanDisk Technologies LLC | Nonvolatile memory on SOI and compound semiconductor substrates and method of fabrication |
6894304, | Aug 27 2001 | OVONYX MEMORY TECHNOLOGY, LLC | Apparatus and method for dual cell common electrode PCRAM memory device |
6894305, | Feb 24 2003 | Samsung Electronics Co., Ltd. | Phase-change memory devices with a self-heater structure |
6900517, | Apr 09 2002 | Matsushita Electric Industrial Co., Ltd. | Non-volatile memory with phase-change recording layer |
6903362, | May 09 2001 | Leidos, Inc | Phase change switches and circuits coupling to electromagnetic waves containing phase change switches |
6909107, | Dec 30 2002 | OVONYX MEMORY TECHNOLOGY, LLC | Method for manufacturing sidewall contacts for a chalcogenide memory device |
6910907, | Nov 18 2003 | Bell Semiconductor, LLC | Contact for use in an integrated circuit and a method of manufacture therefor |
6927410, | Sep 04 2003 | Silicon Storage Technology, Inc | Memory device with discrete layers of phase change memory material |
6928022, | Nov 27 2003 | Samsung Electronics Co., Ltd. | Write driver circuit in phase change memory device and method for applying write current |
6933516, | Oct 11 2001 | OVONYX MEMORY TECHNOLOGY, LLC | Forming tapered lower electrode phase-change memories |
6936544, | Mar 11 2003 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method of removing metal etching residues following a metal etchback process to improve a CMP process |
6936840, | Jan 30 2004 | GLOBALFOUNDRIES Inc | Phase-change memory cell and method of fabricating the phase-change memory cell |
6937507, | Dec 05 2003 | Silicon Storage Technology, Inc | Memory device and method of operating same |
6943365, | Mar 25 1999 | OVONYX MEMORY TECHNOLOGY, LLC | Electrically programmable memory element with reduced area of contact and method for making same |
6969866, | Oct 01 1997 | OVONYX MEMORY TECHNOLOGY, LLC | Electrically programmable memory element with improved contacts |
6972428, | Jun 26 2001 | OVONYX MEMORY TECHNOLOGY, LLC | Programmable resistance memory element |
6972430, | Feb 20 2002 | OVONYX MEMORY TECHNOLOGY, LLC | Sublithographic contact structure, phase change memory cell with optimized heater shape, and manufacturing method thereof |
6977181, | Jun 17 2004 | Polaris Innovations Limited | MTJ stack with crystallization inhibiting layer |
6992932, | Oct 29 2002 | MORGAN STANLEY SENIOR FUNDING | Method circuit and system for read error detection in a non-volatile memory array |
7023009, | Oct 01 1997 | OVONYX MEMORY TECHNOLOGY, LLC | Electrically programmable memory element with improved contacts |
7033856, | Aug 09 2002 | Macronix International Co. Ltd | Spacer chalcogenide memory method |
7038230, | Jan 06 2004 | Macronix Internation Co., Ltd. | Horizontal chalcogenide element defined by a pad for use in solid-state memories |
7038938, | Dec 13 2003 | Hynix Semiconductor Inc. | Phase change resistor cell and nonvolatile memory device using the same |
7042001, | Jan 29 2004 | Samsung Electronics Co., Ltd. | Phase change memory devices including memory elements having variable cross-sectional areas |
7054183, | Oct 31 2002 | Unity Semiconductor Corporation | Adaptive programming technique for a re-writable conductive memory device |
7067837, | Apr 02 2003 | Samsung Electronics Co., Ltd. | Phase-change memory devices |
7067864, | Jan 30 2001 | Renesas Electronics Corporation | SRAM having an improved capacitor |
7067865, | Jun 06 2003 | Macronix International Co., Ltd. | High density chalcogenide memory cells |
7078273, | Feb 01 2002 | Hitachi, Ltd. | Semiconductor memory cell and method of forming same |
7085154, | Jun 03 2003 | Samsung Electronics Co., Ltd. | Device and method for pulse width control in a phase change memory device |
7099180, | Feb 15 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Phase change memory bits reset through a series of pulses of increasing amplitude |
7115927, | Feb 24 2003 | Samsung Electronics Co., Ltd. | Phase changeable memory devices |
7122281, | Feb 26 2002 | SYNOPSYS MERGER HOLDINGS LLC | Critical dimension control using full phase and trim masks |
7122824, | Jan 15 2003 | OVONYX MEMORY TECHNOLOGY, LLC | Sublithographic contact structure, in particular for a phase change memory cell, and fabrication process thereof |
7126149, | Jan 21 2004 | Renesas Technology Corp. | Phase change memory and phase change recording medium |
7132675, | Apr 10 2002 | OVONYX MEMORY TECHNOLOGY, LLC | Programmable conductor memory cell structure and method therefor |
7151273, | Feb 20 2002 | Micron Technology, Inc | Silver-selenide/chalcogenide glass stack for resistance variable memory |
7154774, | Mar 30 2005 | OVONYX MEMORY TECHNOLOGY, LLC | Detecting switching of access elements of phase change memory cells |
7164147, | May 23 2003 | Samsung Electronics Co., Ltd. | Semiconductor memory device and method of fabricating the same |
7166533, | Apr 08 2005 | Infineon Technologies AG | Phase change memory cell defined by a pattern shrink material process |
7169635, | Feb 11 2000 | Axon Technologies Corporation | Programmable structure, an array including the structure, and methods of forming the same |
7190607, | Jun 19 2004 | Samsung Electronics Co., Ltd. | Phase-change memory element driver circuits using measurement to control current and methods of controlling drive current of phase-change memory elements using measurement |
7202493, | Nov 30 2004 | Macronix International Co., Inc. | Chalcogenide memory having a small active region |
7208751, | Sep 13 2002 | Renesas Electronics Corporation; NEC Electronics Corporation | Non-volatile semiconductor memory device allowing shrinking of memory cell |
7214958, | Feb 10 2005 | Polaris Innovations Limited | Phase change memory cell with high read margin at low power operation |
7220983, | Dec 09 2004 | MACRONIX INTERNATIONAL CO , LTD | Self-aligned small contact phase-change memory method and device |
7229883, | Feb 23 2005 | Taiwan Semiconductor Manufacturing Company, Ltd. | Phase change memory device and method of manufacture thereof |
7238959, | Nov 01 2004 | Silicon Storage Technology, Inc | Phase change memory device employing thermally insulating voids and sloped trench, and a method of making same |
7238994, | Jun 17 2005 | Macronix International Co., Ltd. | Thin film plate phase change ram circuit and manufacturing method |
7248494, | Sep 06 2004 | Samsung Electronics Co., Ltd. | Semiconductor memory device capable of compensating for leakage current |
7251157, | Mar 12 2004 | Hitachi, LTD | Semiconductor device |
7253429, | Mar 25 1999 | OVONYX MEMORY TECHNOLOGY, LLC | Electrically programmable memory element |
7254059, | Oct 08 2004 | Industrial Technology Research Institut | Multilevel phase-change memory element and operating method |
7269052, | Jul 25 2001 | Nantero, Inc. | Device selection circuitry constructed with nanotube technology |
7277317, | Jan 31 2003 | Allegro MicroSystems, LLC | MRAM architecture for low power consumption and high selectivity |
7291556, | Dec 12 2003 | Samsung Electronics Co., Ltd. | Method for forming small features in microelectronic devices using sacrificial layers |
7309630, | Jul 08 2005 | NANOCHIP, INC | Method for forming patterned media for a high density data storage device |
7321130, | Jun 17 2005 | Macronix International Co., Ltd. | Thin film fuse phase change RAM and manufacturing method |
7323708, | Jul 23 2003 | Samsung Electronics Co., Ltd. | Phase change memory devices having phase change area in porous dielectric layer |
7332370, | Jun 10 2005 | MIMIRIP LLC | Method of manufacturing a phase change RAM device utilizing reduced phase change current |
7336526, | Jan 05 2005 | Renesas Electronics Corporation; NEC Electronics Corporation | Semiconductor device |
7351648, | Jan 19 2006 | GOOGLE LLC | Methods for forming uniform lithographic features |
7359231, | Jun 30 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Providing current for phase change memories |
7364935, | Oct 29 2004 | Macronix International Co., Ltd. | Common word line edge contact phase-change memory |
7365385, | Aug 30 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | DRAM layout with vertical FETs and method of formation |
7379328, | Mar 12 2004 | Hitachi, Ltd. | Semiconductor device |
7385235, | Aug 09 2002 | Macronix International Co., Ltd. | Spacer chalcogenide memory device |
7394088, | Nov 15 2005 | MACRONIX INTERNATIONAL CO , LTD | Thermally contained/insulated phase change memory device and method (combined) |
7397060, | Nov 14 2005 | Macronix International Co., Ltd. | Pipe shaped phase change memory |
7423300, | May 24 2006 | MACRONIX INTERNATIONAL CO , LTD | Single-mask phase change memory element |
7426134, | Feb 24 2006 | SAMSUNG ELECTRONICS CO , LTD | Sense circuit for resistive memory |
7440308, | Sep 05 2005 | SAMSUNG ELECTRONICS CO , LTD | Phase-change random access memory device and method of operating the same |
7449710, | Nov 21 2005 | MACRONIX INTERNATIONAL CO , LTD | Vacuum jacket for phase change memory element |
7479649, | Nov 21 2005 | MACRONIX INTERNATIONAL CO , LTD | Vacuum jacketed electrode for phase change memory element |
7505330, | Aug 31 2006 | OVONYX MEMORY TECHNOLOGY, LLC | Phase-change random access memory employing read before write for resistance stabilization |
20020024380, | |||
20020070457, | |||
20020113273, | |||
20030072195, | |||
20030095426, | |||
20030103400, | |||
20030186481, | |||
20040026686, | |||
20040051094, | |||
20040113137, | |||
20040165422, | |||
20040248339, | |||
20040256610, | |||
20050018526, | |||
20050029502, | |||
20050062087, | |||
20050093022, | |||
20050127349, | |||
20050145984, | |||
20050167656, | |||
20050191804, | |||
20050201182, | |||
20050212024, | |||
20050212026, | |||
20050215009, | |||
20050263829, | |||
20060006472, | |||
20060034112, | |||
20060038221, | |||
20060066156, | |||
20060073642, | |||
20060091476, | |||
20060094154, | |||
20060108667, | |||
20060110878, | |||
20060110888, | |||
20060113520, | |||
20060113521, | |||
20060118913, | |||
20060124916, | |||
20060126395, | |||
20060131555, | |||
20060138467, | |||
20060154185, | |||
20060157681, | |||
20060163554, | |||
20060175599, | |||
20060198183, | |||
20060205108, | |||
20060211165, | |||
20060226409, | |||
20060234138, | |||
20060237756, | |||
20060266993, | |||
20060284157, | |||
20060284158, | |||
20060284214, | |||
20060284279, | |||
20060286709, | |||
20060286743, | |||
20060289848, | |||
20070008786, | |||
20070030721, | |||
20070037101, | |||
20070096162, | |||
20070096248, | |||
20070108077, | |||
20070108429, | |||
20070108430, | |||
20070108431, | |||
20070109836, | |||
20070109843, | |||
20070111429, | |||
20070115794, | |||
20070117315, | |||
20070120104, | |||
20070121363, | |||
20070121374, | |||
20070126040, | |||
20070131922, | |||
20070138458, | |||
20070140029, | |||
20070147105, | |||
20070153563, | |||
20070154847, | |||
20070155172, | |||
20070158632, | |||
20070158633, | |||
20070158645, | |||
20070158690, | |||
20070158862, | |||
20070161186, | |||
20070170881, | |||
20070173019, | |||
20070173063, | |||
20070176261, | |||
20070187664, | |||
20070201267, | |||
20070215852, | |||
20070224726, | |||
20070235811, | |||
20070236989, | |||
20070246699, | |||
20070249090, | |||
20070257300, | |||
20070262388, | |||
20070274121, | |||
20070285960, | |||
20070298535, | |||
20080006811, | |||
20080012000, | |||
20080014676, | |||
20080025089, | |||
20080043520, | |||
20080094871, | |||
20080101110, | |||
20080137400, | |||
20080164453, | |||
20080165569, | |||
20080165570, | |||
20080165572, | |||
20080166875, | |||
20080179582, | |||
20080180990, | |||
20080186755, | |||
20080191187, | |||
20080192534, | |||
20080197334, | |||
20080224119, | |||
20080225489, | |||
20080265234, | |||
20090001341, | |||
20090014704, | |||
20090023242, | |||
20090027950, | |||
20090042335, | |||
20090057641, | |||
20090273968, | |||
RE37259, | Nov 08 1999 | OVONYX MEMORY TECHNOLOGY, LLC | Multibit single cell memory element having tapered contact |
WO79539, | |||
WO145108, | |||
WO225733, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 04 2008 | LAMOREY, MARK | MACRONIX INTERNATIONAL CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021685 | /0253 | |
Aug 04 2008 | LAMOREY, MARK | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021685 | /0253 | |
Aug 08 2008 | LUNG, HSIANG LAN | MACRONIX INTERNATIONAL CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021685 | /0253 | |
Aug 08 2008 | LUNG, HSIANG LAN | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021685 | /0253 | |
Sep 12 2008 | Macronix International Co., Ltd. | (assignment on the face of the patent) | / | |||
Sep 12 2008 | International Business Machines Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Oct 23 2013 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 04 2017 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Sep 15 2021 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
May 18 2013 | 4 years fee payment window open |
Nov 18 2013 | 6 months grace period start (w surcharge) |
May 18 2014 | patent expiry (for year 4) |
May 18 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 18 2017 | 8 years fee payment window open |
Nov 18 2017 | 6 months grace period start (w surcharge) |
May 18 2018 | patent expiry (for year 8) |
May 18 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 18 2021 | 12 years fee payment window open |
Nov 18 2021 | 6 months grace period start (w surcharge) |
May 18 2022 | patent expiry (for year 12) |
May 18 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |