A splice revolver is provided for securing a plurality of splices in a splice module. The revolver has a revolver body with a plurality of channels there through for receiving splice sleeves. The revolver body is configured to be rotated by a user so that splice sleeves may be loaded into empty channels of the splice revolver to provide compact storage of, and easy access to, splice sleeves.
|
1. A splice holder comprising:
a clamp;
a revolver body having a generally cylindrical shape; and
a plurality of splice holding channels extending from a first end of said cylindrical shape to a second end of said cylindrical shape,
wherein said plurality of channels are formed into a sidewall of said cylindrical shape and are sized to accept splices, and
wherein said revolver body is rotatably relative to said clamp while remaining attached to said clamp.
10. A method of holding splices in a splice holder comprising:
providing a clamp and a revolver body having a generally cylindrical shape, the revolver body including a plurality of splice holding channels extending from a first end of the cylindrical shape to a second end of the cylindrical shape, wherein the plurality of channels are formed into a sidewall of the cylindrical shape;
inserting a first splice into one of the plurality of channels;
rotating the revolver body relative to the clamp, while maintaining the attachment between the revolver body and the clamp; and
inserting a second splice into another of the plurality of channels.
13. A splice holder comprising:
a clamp;
a revolver body; and
a plurality of splice holding channels extending from a first end of said revolver body to a second end of said revolver body,
wherein said plurality of channels are formed into a sidewall of said revolver body and are sized to accept splices,
wherein said clamp includes an opening permitting access to one of said plurality of channels while said clamp holds said revolver body, and wherein said revolver body may be rotated, while remaining attached to said clamp, to permit access to another of said plurality of channels via said opening of said clamp, and
wherein said revolver body is attached to said clamp in a manner permitting rotation of said revolver body in a clockwise and counter-clockwise direction about a central axis of said revolver body as desired by a user.
2. The splice holder of
3. The splice holder of
4. The splice holder of
5. The splice holder of
6. The splice holder of
7. The splice holder of
8. The splice holder of
9. The splice holder of
11. The method of
12. The method of
rotating the revolver body in a counterclockwise direction to place a portion of the sidewall without a channel into alignment with the opening of the clamp.
14. The splice holder of
15. The splice holder of
16. The splice holder of
17. The splice holder of
18. The splice holder of
19. The splice holder of
|
1. Field of the Invention
Example embodiments of the present invention generally relate to a splice revolver, splice module and method of organizing fiber strands in the module.
2. Description of Related Art
Splice modules are employed for organizing glass fibers from a fiber optic cable as they are spliced to jumpers, such as “connecterized” fibers that are mated to connectors for snap-fit engagement to adaptors.
Module 10 includes a housing 15 having a plurality of adaptors 20 therein that receive connectors 60.
Even with such fiber organizing arrangements, great care must be taken to ensure that in routing the fibers 50 around the guide 25, there are no sharp bends or twists. Bends or twists can cause potential damage to the fibers 50 and/or signal attenuation due to micro-bends. This must be done by the on-site installer and there is little margin for error.
An example embodiment is directed to a device for securing splices in a splice module. The device includes a rotatable body having a plurality of channels there through for receiving splice sleeves. The channels are sized to secure the splice sleeves therein.
Another example embodiment is directed to a device for facilitating the routing of fibers to fiber connectors. The device includes a generally cylindrical body having a plurality of spaced channels located around a circumference thereof and extending along a length of the cylindrical body for receiving splice sleeves. The cylindrical body is rotatable.
Another example embodiment is directed to a splice module. The splice module includes a housing and a plurality of adaptors affixed to the housing and adapted to receive a plurality of fiber connectors. The splice module includes a splice revolver adapted to rotate around an axis passing there through and including a plurality of channels sized to accommodate a splice sleeve.
Another example embodiment is directed to a splice revolver of a splice module. The slice revolver comprises a revolver body adapted to rotate so as to sequentially receive individual splice sleeves formed from splicing fiber strands of a cable.
Another example embodiment is directed to a method of organizing fiber strands in a splice module for routing to connectors in the module. In the method, at least one cable is fed into the splice module, and fiber strands of the cable are spliced into a plurality of splice sleeves. The splice sleeves are placed into a rotatable splice revolver of the module.
Example embodiments of the present invention will become more fully understood from the detailed description given herein below and the accompanying drawings, wherein like elements are represented by like reference numerals, which are given by way of illustration only and thus do not limit the example embodiments.
The example embodiments in general relate to a splice revolver, splice module incorporating the revolver and a method of organizing fiber strands in the splice module with the splice revolver. The example splice revolver construction secures sleeves in a dense volume as these fibers are routed to connectors of a plurality of adaptors in the splice module. The example splice revolver uses less space within the splice module and thus may densely secure a plurality of splice sleeves therein.
The splice revolver 145 has a generally cylindrical revolver body that is secured to the housing 115 via a splice mount 147. The splice mount 147 can be attached on any surface of the housing 115 via a fastener 142 such as a mounting screw. In one embodiment, the splice revolver 145 includes a minimum of six slots or channels designed to accept and hold splice sleeves 150. The splice sleeve 150 is configured to house or enclose one or more glass fiber strands therein. The splice sleeves 150 can be inserted into the channels one at a time as the splice revolver 145 rotates until all channels have a splice sleeve 150 therein. The splice revolver 145 revolves freely (clockwise and counter-clockwise) within the splice mount 147 proximate an axis thereof to avoid fiber twisting.
As can be seen in
The mount 147 additionally includes a pair of slots 144, and the revolver body 146 includes a plurality of bosses 151. The bosses 151 are arranged in spaced relation to one another around a circumference of the body 146. As the revolver body 146 rotates within the clamp portion 143 of the mount 147, the bosses 151 travel within the slots 144 of the clamp portion 143 to hold the revolver 145 in the mount 147. Referring additionally to
As shown in
Accordingly, in order to organize the fiber strands in the splice module 100, the cable (or multiple cables) is inserted through the strain relief boot(s) 135, the jacket is stripped, and then the glass fibers 155 are spliced to terminated fibers in the splice sleeves 150. Each splice sleeve 150 is sequentially loaded into an open channel 148 of the revolver body 146 as the revolver 145 is rotated. As noted previously, the body 146 rotates within the clamp portion 143 of the splice mount 147 so that each channel 148 may align with the opening 149 for dropping a splice sleeve 150 therein. As the splice sleeves 150 are sequentially dropped into the splice revolver 145, the fiber strands, represented by reference numerals 40 and 50 in
The example embodiments being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as departure from the exemplary embodiments of the present invention. All such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Patent | Priority | Assignee | Title |
10215944, | Jun 30 2016 | Panduit Corp | Modular fiber optic tray |
10268013, | Sep 12 2014 | Panduit Corp. | High density fiber enclosure and method |
10317637, | Sep 12 2014 | Panduit Corp. | High density fiber enclosure and method |
10606013, | Sep 12 2014 | Panduit Corp. | High density fiber enclosure and method |
10698171, | Sep 12 2014 | Panduit Corp. | High density fiber enclosure and method |
10725258, | Jun 30 2016 | Panduit Corp. | Modular fiber optic tray |
10768385, | Sep 12 2014 | Panduit Corp. | High density fiber enclosure and method |
10928592, | Feb 08 2017 | CommScope Technologies LLC | Sectional housing for fiber optic splices |
11105995, | Sep 12 2014 | Panduit Corp. | High density fiber enclosure and method |
11372185, | Jun 30 2016 | Panduit Corp. | Modular fiber optic tray |
11624888, | Sep 12 2014 | Panduit Corp. | High density fiber enclosure and method |
11709331, | Jun 30 2016 | Panduit Corp. | Modular fiber optic tray |
12105338, | Jun 30 2016 | Panduit Corp. | Modular fiber optic tray |
7899012, | Jul 14 2000 | AT&T Intellectual Property II, L.P. | Virtual streams for QOS-driven wireless LANS |
8009649, | Jul 14 2000 | AT&T Properties, LLC; AT&T INTELLECTUAL PROPERTY II, L P | Admission control for QoS-driven wireless LANs |
8014372, | Jul 14 2000 | AT&T Properties, LLC; AT&T INTELLECTUAL PROPERTY II, L P | Multipoll for QoS-driven wireless LANs |
8503414, | Jul 14 2000 | AT&T Intellectual Property II, L.P. | RSVP/SBM based up-stream session setup, modification, and teardown for QoS-driven wireless LANs |
8811165, | Jun 19 2000 | AT&T Intellectual Property II, L.P. | Voice-data integrated multiaccess by self-reservation and stabilized aloha contention |
9351318, | Jun 19 2000 | AT&T Properties, LLC; AT&T INTELLECTUAL PROPERTY II, L P | Voice-data integrated multiaccess by self-reservation and stabilized aloha contention |
9690065, | Sep 12 2014 | Panduit Corp | High density fiber enclosure and method |
9864158, | Sep 12 2014 | Panduit Corp. | High density fiber enclosure and method |
Patent | Priority | Assignee | Title |
4441786, | Nov 03 1980 | Lignes Telegraphiques et Telephoniques | Device for positioning optical fibers in a terminal connector for splicing two optical fiber transmission cables |
4913512, | Dec 19 1983 | SIECOR PUERTO RICO, INC | Fiber optic in-line splice case assembly |
5069523, | Dec 08 1988 | Siemens Aktiengesellschaft | Cassette for spare lengths of light waveguides to be used at the site to be spliced |
5278933, | Jun 30 1992 | TYCO ELECTRONICS CORPORATION, A CORPORATION OF PENNSYLVANIA | Fiber optic splice organizer and associated method |
5472160, | Jun 22 1994 | Fitel USA Corporation | Splice closure and grip block |
5835658, | Mar 20 1995 | Minnesota Mining and Manufacturing Company | Method and apparatus for anchoring an optical fiber cable |
6360051, | Jul 30 1999 | Lucent Technologies, Inc. | Splice holder with improved access feature |
6480660, | Sep 21 1998 | CommScope EMEA Limited; CommScope Technologies LLC | Fiber optic cabinet and tray |
6866430, | Aug 22 2003 | SCI Systems, Inc. | Cable splicing apparatus and method |
6898346, | Mar 01 2002 | Air Precision | Rotating optical joint |
6944387, | Apr 30 2001 | AMPHENOL NETWORK SOLUTIONS, INC | Fiber optic connector tray system |
7130519, | May 11 2005 | Preformed Line Products Company | Convertible fiber closure platform |
7239789, | Oct 06 2003 | Preformed Line Products Company | Optical fiber splice case |
20050180705, | |||
20060093304, | |||
20060098932, | |||
20060204198, | |||
20070125496, | |||
20090060421, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 27 2008 | RUIZ, GIL | COMMSCOPE, INC, OF NORTH CAROLINA | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020578 | /0518 | |
Feb 28 2008 | CommScope, Inc. of North Carolina | (assignment on the face of the patent) | / | |||
Apr 25 2008 | Andrew Corporation | BANK OF AMERICA, N A | PATENT SECURITY AGREEMENT SUPPLEMENT | 020884 | /0365 | |
Apr 25 2008 | COMMSCOPE, INC OF NORTH CAROLINA | BANK OF AMERICA, N A | PATENT SECURITY AGREEMENT SUPPLEMENT | 020884 | /0365 | |
Jan 14 2011 | COMMSCOPE, INC OF NORTH CAROLINA, A NORTH CAROLINA CORPORATION | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | SECURITY AGREEMENT | 026272 | /0543 | |
Jan 14 2011 | ANDREW LLC, A DELAWARE LLC | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | SECURITY AGREEMENT | 026272 | /0543 | |
Jan 14 2011 | BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENT | COMMSCOPE, INC OF NORTH CAROLINA | PATENT RELEASE | 026039 | /0005 | |
Jan 14 2011 | BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENT | Allen Telecom LLC | PATENT RELEASE | 026039 | /0005 | |
Jan 14 2011 | BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENT | ANDREW LLC F K A ANDREW CORPORATION | PATENT RELEASE | 026039 | /0005 | |
Jan 14 2011 | ALLEN TELECOM LLC, A DELAWARE LLC | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | SECURITY AGREEMENT | 026272 | /0543 | |
Jun 11 2015 | CommScope Technologies LLC | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 036201 | /0283 | |
Jun 11 2015 | Allen Telecom LLC | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 036201 | /0283 | |
Jun 11 2015 | COMMSCOPE, INC OF NORTH CAROLINA | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 036201 | /0283 | |
Jun 11 2015 | REDWOOD SYSTEMS, INC | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 036201 | /0283 | |
Mar 17 2017 | WILMINGTON TRUST, NATIONAL ASSOCIATION | Allen Telecom LLC | RELEASE OF SECURITY INTEREST PATENTS RELEASES RF 036201 0283 | 042126 | /0434 | |
Mar 17 2017 | WILMINGTON TRUST, NATIONAL ASSOCIATION | CommScope Technologies LLC | RELEASE OF SECURITY INTEREST PATENTS RELEASES RF 036201 0283 | 042126 | /0434 | |
Mar 17 2017 | WILMINGTON TRUST, NATIONAL ASSOCIATION | COMMSCOPE, INC OF NORTH CAROLINA | RELEASE OF SECURITY INTEREST PATENTS RELEASES RF 036201 0283 | 042126 | /0434 | |
Mar 17 2017 | WILMINGTON TRUST, NATIONAL ASSOCIATION | REDWOOD SYSTEMS, INC | RELEASE OF SECURITY INTEREST PATENTS RELEASES RF 036201 0283 | 042126 | /0434 | |
Apr 04 2019 | ARRIS SOLUTIONS, INC | JPMORGAN CHASE BANK, N A | TERM LOAN SECURITY AGREEMENT | 049905 | /0504 | |
Apr 04 2019 | JPMORGAN CHASE BANK, N A | Andrew LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 048840 | /0001 | |
Apr 04 2019 | JPMORGAN CHASE BANK, N A | CommScope Technologies LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 048840 | /0001 | |
Apr 04 2019 | JPMORGAN CHASE BANK, N A | COMMSCOPE, INC OF NORTH CAROLINA | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 048840 | /0001 | |
Apr 04 2019 | JPMORGAN CHASE BANK, N A | Allen Telecom LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 048840 | /0001 | |
Apr 04 2019 | ARRIS ENTERPRISES LLC | JPMORGAN CHASE BANK, N A | ABL SECURITY AGREEMENT | 049892 | /0396 | |
Apr 04 2019 | CommScope Technologies LLC | JPMORGAN CHASE BANK, N A | ABL SECURITY AGREEMENT | 049892 | /0396 | |
Apr 04 2019 | COMMSCOPE, INC OF NORTH CAROLINA | JPMORGAN CHASE BANK, N A | ABL SECURITY AGREEMENT | 049892 | /0396 | |
Apr 04 2019 | RUCKUS WIRELESS, INC | JPMORGAN CHASE BANK, N A | TERM LOAN SECURITY AGREEMENT | 049905 | /0504 | |
Apr 04 2019 | ARRIS TECHNOLOGY, INC | JPMORGAN CHASE BANK, N A | TERM LOAN SECURITY AGREEMENT | 049905 | /0504 | |
Apr 04 2019 | ARRIS ENTERPRISES LLC | JPMORGAN CHASE BANK, N A | TERM LOAN SECURITY AGREEMENT | 049905 | /0504 | |
Apr 04 2019 | CommScope Technologies LLC | JPMORGAN CHASE BANK, N A | TERM LOAN SECURITY AGREEMENT | 049905 | /0504 | |
Apr 04 2019 | COMMSCOPE, INC OF NORTH CAROLINA | JPMORGAN CHASE BANK, N A | TERM LOAN SECURITY AGREEMENT | 049905 | /0504 | |
Apr 04 2019 | COMMSCOPE, INC OF NORTH CAROLINA | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | PATENT SECURITY AGREEMENT | 049678 | /0577 | |
Apr 04 2019 | ARRIS TECHNOLOGY, INC | JPMORGAN CHASE BANK, N A | ABL SECURITY AGREEMENT | 049892 | /0396 | |
Apr 04 2019 | RUCKUS WIRELESS, INC | JPMORGAN CHASE BANK, N A | ABL SECURITY AGREEMENT | 049892 | /0396 | |
Apr 04 2019 | ARRIS SOLUTIONS, INC | JPMORGAN CHASE BANK, N A | ABL SECURITY AGREEMENT | 049892 | /0396 | |
Apr 04 2019 | JPMORGAN CHASE BANK, N A | REDWOOD SYSTEMS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 048840 | /0001 | |
Nov 15 2021 | ARRIS SOLUTIONS, INC | WILMINGTON TRUST | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 060752 | /0001 | |
Nov 15 2021 | ARRIS ENTERPRISES LLC | WILMINGTON TRUST | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 060752 | /0001 | |
Nov 15 2021 | CommScope Technologies LLC | WILMINGTON TRUST | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 060752 | /0001 | |
Nov 15 2021 | COMMSCOPE, INC OF NORTH CAROLINA | WILMINGTON TRUST | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 060752 | /0001 | |
Nov 15 2021 | RUCKUS WIRELESS, INC | WILMINGTON TRUST | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 060752 | /0001 | |
Jun 28 2022 | COMMSCOPE, INC OF NORTH CAROLINA | BISON PATENT LICENSING, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 060495 | /0033 | |
Jul 11 2022 | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | CommScope Technologies LLC | PARTIAL TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS | 060671 | /0324 | |
Jul 11 2022 | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | ARRIS ENTERPRISES LLC | PARTIAL TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS | 060671 | /0324 | |
Jul 11 2022 | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENT | COMMSCOPE, INC OF NORTH CAROLINA | PARTIAL TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS | 060671 | /0324 | |
Jul 12 2022 | JPMORGAN CHASE BANK, N A | COMMSCOPE, INC OF NORTH CAROLINA | PARTIAL RELEASE OF ABL SECURITY INTEREST | 060649 | /0305 | |
Jul 12 2022 | JPMORGAN CHASE BANK, N A | ARRIS ENTERPRISES LLC | PARTIAL RELEASE OF ABL SECURITY INTEREST | 060649 | /0305 | |
Jul 12 2022 | JPMORGAN CHASE BANK, N A | CommScope Technologies LLC | PARTIAL RELEASE OF ABL SECURITY INTEREST | 060649 | /0305 | |
Jul 12 2022 | JPMORGAN CHASE BANK, N A | ARRIS ENTERPRISES LLC | PARTIAL RELEASE OF TERM LOAN SECURITY INTEREST | 060649 | /0286 | |
Jul 12 2022 | JPMORGAN CHASE BANK, N A | CommScope Technologies LLC | PARTIAL RELEASE OF TERM LOAN SECURITY INTEREST | 060649 | /0286 | |
Jul 12 2022 | JPMORGAN CHASE BANK, N A | COMMSCOPE, INC OF NORTH CAROLINA | PARTIAL RELEASE OF TERM LOAN SECURITY INTEREST | 060649 | /0286 | |
Nov 16 2022 | WILMINGTON TRUST | ARRIS ENTERPRISES LLC | PARTIAL TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT R F 060752 0001 | 063322 | /0209 | |
Nov 16 2022 | WILMINGTON TRUST | CommScope Technologies LLC | PARTIAL TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT R F 060752 0001 | 063322 | /0209 | |
Nov 16 2022 | WILMINGTON TRUST, NATIONAL ASSOCIATION | CommScope Technologies LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 063270 | /0220 | |
Nov 16 2022 | WILMINGTON TRUST, NATIONAL ASSOCIATION | COMMSCOPE, INC OF NORTH CAROLINA | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 063270 | /0220 | |
Nov 16 2022 | WILMINGTON TRUST, NATIONAL ASSOCIATION | ARRIS ENTERPRISES LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 063270 | /0220 | |
Nov 16 2022 | WILMINGTON TRUST | COMMSCOPE, INC OF NORTH CAROLINA | PARTIAL TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS RECORDED AT R F 060752 0001 | 063322 | /0209 |
Date | Maintenance Fee Events |
Jan 13 2014 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jan 15 2018 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jan 13 2022 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 13 2013 | 4 years fee payment window open |
Jan 13 2014 | 6 months grace period start (w surcharge) |
Jul 13 2014 | patent expiry (for year 4) |
Jul 13 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 13 2017 | 8 years fee payment window open |
Jan 13 2018 | 6 months grace period start (w surcharge) |
Jul 13 2018 | patent expiry (for year 8) |
Jul 13 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 13 2021 | 12 years fee payment window open |
Jan 13 2022 | 6 months grace period start (w surcharge) |
Jul 13 2022 | patent expiry (for year 12) |
Jul 13 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |