A device for determining a flow characteristic of a fluid in a conduit comprises a conduit body (10), a first pair of first ultrasonic transducers (16, 18) defining a first swirl sensitive acoustic path (20) and a second pair of second ultrasonic transducers (24, 26) defining a second swirl sensitive acoustic path (28), a third pair of third ultrasonic transducers (30, 32) and a fourth pair of fourth ultrasonic transducers (36, 38) the transducers (30, 32) of the third pair being positioned diametrically opposite to each other at the wall (14) of the conduit body (10) such that the third transducers (30, 32) define a third acoustic path (34) having a single reflection against the inner (12) wall of the conduit body (10) and the transducers (36, 38) of the fourth pair being positioned diametrically opposite to each other such that the fourth transducers (36, 38) define a fourth acoustic path (40), wherein the transducers (16, 18; 24, 26; 30, 32; 36, 38) are capable of acting individually as a transmitter and receiver for transmitting ultrasonic waves along their respective acoustic paths and receiving thereof, means (42, 44) for measuring the transit times of transmitted ultrasonic waves and for determining a flow characteristic from the measured transit times.
|
1. Device for determining a flow characteristic of a fluid in a conduit, comprising: a conduit body, a first pair of first ultrasonic transducers aligned along a first line at the wall of the conduit body and defining a first swirl sensitive acoustic path and a second pair of second ultrasonic transducers aligned along a second line at the wall of the conduit body and defining a second swirl sensitive acoustic path, the first and second lines being parallel to the conduit body axis and at the same side of the conduit body, the first and second swirl paths having a clockwise and a counter clockwise orientation respectively as viewed in axial direction, a third pair of third ultrasonic transducers and a fourth pair of fourth ultrasonic transducers the transducers of the third pair being positioned diametrically opposite to each other at the wall of the conduit body and spaced apart in the axial direction such that the third transducers define a third acoustic path having a single reflection against the inner wall of the conduit body and the transducers of the fourth pair being positioned diametrically opposite to each other at the wall of the conduit body and spaced apart in the axial direction such that the fourth transducers define a fourth acoustic path, the fourth acoustic path being symmetrical to the third acoustic path, the transducers of each pair being arranged spaced apart in the axial direction of the conduit body, the acoustic paths extending in the axial direction of the conduit body, wherein the transducers are capable of acting individually as a transmitter and receiver for transmitting ultrasonic waves along their respective acoustic paths and receiving thereof, and means for measuring the transit times of transmitted ultrasonic waves and for determining a flow characteristic from the measured transit times.
2. Device according to
3. Device according to
4. Device according to
5. Device according to
6. Device according to
7. Device according to
8. Device according to
9. Device according to
10. Method of measuring a flow characteristic of a fluid in a conduit comprising: transmitting and receiving ultrasonic waves in opposite directions along acoustic paths of a device for determining a flow characteristic according to
|
The present invention relates to ultrasonic flow measurement, in particular a device and method for measuring a flow characteristic, e.g. the flow velocity and/or throughput of a fluid in a conduit.
Ultrasonic flow measurement of fluids flowing in a conduit is generally known in the art. Basically it comprises transmitting ultrasonic sound waves between a transmitter and a receiver, that are spaced apart in axial direction of a conduit, in a downstream direction of the fluid flow and in the upstream direction thereof. The transit time of the ultrasonic waves is measured. From the difference in transit time of the downstream directed ultrasonic wave and the upstream directed wave an average flow velocity or throughput can be calculated based on a known geometry of the conduit. The fluid is a gas, vapour or liquid, such as natural gas.
In addition to the flow velocity, the transit time as measured is dependent from the flow profile of the fluid in the conduit. Swirl, cross flow, profile, asymmetry and a velocity fluctuating in time are known distortions from an ideal flow profile, which frequently occur in practice, e.g. in complex piping structures, after bends and the like.
The ultimate reliability of the flow velocity as measured and calculated depends on many parameters, like the distance covered, the acoustic path configuration, transmitted ultrasonic wave type and the calculation method itself. Many acoustic path configurations are known in the art.
One of the known acoustic path configurations is a triangular path having midradius chords, wherein the ultrasonic wave transmitted by the transmitter reflects twice at the inner conduit wall prior to being received by the receiver. E.g. U.S. Pat. No. 5,546,812 has disclosed a method and device for determining characteristics of the flow of a medium in a channel, comprising a transducer arrangement defining two triangular paths offset to each other for swirl determination and three single reflection axial paths also offset to each other for (a) symmetry determination. In commercially available flow meters according to this patent, the first triangular path has a clockwise orientation and the second triangular path has a counter clockwise orientation.
Yet another path configuration known from e.g. EP 0 843 160 A1 comprises at least one first path through the centre of the conduit, at least one second path in the form of an inscribed triangle and at least one third path having three or more reflections against the wall of the conduit. This known path configuration is directed to obtaining a curve of composite weighting factors used in calculating the flow velocity/throughput as close as possible to the ideal weighting factor. It is said that a reduction of the inaccuracy to about 0.15% could be achieved.
The requirements regarding accuracy and reliability of the measured results still increase. Frequently, improving accuracy and reliability if possible at all, is accompanied by a disproportionate increase of complexity and thus costs of the device.
It is an object of the invention to provide an ultrasonic flow measurement device and method allowing increasing the gathering of information of the actual flow profile of a fluid flowing in a conduit, as well as increasing the interrogation area, while simultaneously allowing a relatively simple design of the device.
Another object of the invention is to provide an ultrasonic flow measurement device having an excellent performance with respect to accuracy and reliability at a minimum number of transducers.
The device according to the invention is defined in claim 1. Preferred embodiments are defined in subclaims.
The device for determining a flow characteristic, in particular flow velocity and/or throughput of a fluid flowing in a conduit comprises a conduit body. On or in the outer wall of the conduit body, usually having a circular cross-section, ultrasonic transducers are mounted. The device according to the invention comprises a first set of transducers. The transducers axially spaced apart are capable of transmitting ultrasonic waves along a first swirl sensitive acoustic path (the trajectory between the transducers concerned, irrespective of the direction, upstream or downstream, of the sound waves that are transmitted along the trajectory). Thus the first swirl sensitive acoustic path has an axial component. A second set of transducers defines a second swirl sensitive path and is present at the same side of the conduit body as the first set of transducers. Due to space requirements of the transducers practically the first alignment line and the second alignment line both parallel to the conduit body axis are tangentially offset over a very small angle and/or the transducers of the first pair are axially offset over a small distance with respect to the transducers of the second pair of transducers. Preferably the first and second lines are at the same position. The transducers are arranged such that the first and second acoustic paths together have a clockwise (CW) and a counter clockwise (CCW) direction as seen in axial direction. Such a pair of swirl sensitive acoustic paths is also called a paired path in this application.
In order to increase the interrogation area the device according to the invention also comprises a third pair of ultrasonic transducers defining a third acoustic path having a single reflection between diametrically and axially offset transducers. A counterpart is provided by a fourth pair of ultrasonic transducers defining a fourth acoustic path being symmetrical to the third acoustic path. In other words the third and fourth paths together have a clockwise and a counter clockwise orientation respectively as viewed in axial direction. These “half square” paths located closer to the wall of the conduit than the preferred swirl sensitive paths (0.707*conduit radius vs. 0.5*conduit radius for an equilateral triangular path as the preferred swirl sensitive path) specifically allow to obtain information about the sharpness of the flow profile (e.g. axial velocity components across the cross sectional area of the conduit) and to cover an additional area of the conduit cross-section. Furthermore this configuration allows another swirl angle measurement.
Instead of each half square path having its own pair of transducers, the third and fourth paths preferably have a common set of transducers. The same applies to the first and second paths. Phased array type transducers are eminently suitable for this purpose. Such transducers are capable of focussing the acoustic energy in a certain direction. More preferably the four paths have at least one common transducer. In other words the four paths have one common end and the swirl sensitive paths have a common other end and the half square paths have a common opposite other end, which is positioned diametrically to the common other end of the swirl sensitive paths. When an acoustic burst is emitted by the at least one common transducer of the four paths, the burst signals over the first and second paths are received by the corresponding transducer of the first and second pair positioned at the same side of the conduit as the emitting transducer, while the burst signals travelling along the half square paths are received by a corresponding transducer of the third and fourth pair positioned diametrically opposite the other receiving transducer. In this way the risk of interference between the received signals is eliminated compared to a full square path. A full square path would end at the same side of the conduit body as the swirl sensitive path and additionally the transit times along a triangular path and a full square path are very close to each other. Thus interference of received signals is very likely to occur in such situation.
In yet another preferred embodiment of the device according to the invention additionally a fifth pair of ultrasonic transducers defining a swirl sensitive fifth acoustic path and a sixth pair of ultrasonic transducers defining a swirl sensitive sixth acoustic path are provided at the wall of the conduit body at the side opposite to the first and second pairs of transducers. The transducers of each fifth and sixth pairs are aligned along imaginary lines, preferably these lines do overlap, as explained with respect to the first and second pair of transducers. The fifth and sixth swirl sensitive acoustic paths together have a CW and CCW orientation and form a second set of paired paths. Preferably the transducers are arranged that this second set of paired paths is symmetrical to the first set of paired paths comprising the first and second swirl sensitive acoustic paths. Again the transducers of the pairs are axially spaced apart such that the respective acoustic paths have an axial component.
More preferably the device according to the invention also comprises a seventh and an eighth pair of transducers. The transducers of the seventh pair are mounted diametrically opposite to each other, such that the seventh acoustic path is comprises a single reflection (half square configuration). The eighth pair of transducers is similarly arranged such that the two half square paths together define a full square. The seventh and eighth paths together have a clockwise and a counter clockwise orientation respectively as viewed in axial direction. Preferably, the transducers of the seventh and eighth pairs are diametrically opposite to the transducers of the third and fourth pairs.
As discussed before, advantageously the various acoustic paths could share common transducers. More particularly, the seventh and eighth acoustic paths advantageously have common transducers. The fifth, sixth, seventh and eighth pairs preferably have at least one common transducer.
By a suitable configuration of the transducers it is possible to provide a device wherein using only two pairs of ultrasonic transducers an eight path configuration could be achieved.
In a further preferred embodiment the swirl sensitive acoustic paths comprise equilateral triangular acoustic paths.
Additional paths at the same transducer positions, e.g. axial paths, either direct or having one or more reflections, can be incorporated, using multi phased array transducers.
According to the invention also a method of measuring a flow characteristic, in particular flow velocity, of a fluid in a conduit is provided by transmitting and receiving ultrasonic waves in opposite directions along acoustic paths of a device for determining a flow characteristic according to the invention as described hereinbefore, measuring the transit times of the transmitted ultrasonic waves and determining the flow characteristic from the measured transit times.
The invention will be explained in more detail referring to the attached drawing, wherein
The paired swirl sensitive acoustic paths 20 and 28 allow an accurate determination of swirl, but might cause an underreading or overreading of the average flow velocity if the fluid has an asymmetric flow profile, e.g. a higher velocity in the right half (positive x-axis) of the conduit body. Moreover the swirl sensitive acoustic paths 20 and 28 do not extend into the right half of the conduit body. The half square acoustic paths 34, 40 covering additional area of the conduit cross-section provide additional information about the flow profile, thereby enabling a more accurate determination and calculation of the flow velocity.
As one end of all four paths is at the same position, the respective transducers 16, 24, 30, 36 are provided by a single multi phased array type transducer.
In this preferred embodiment having a fully symmetrical and half square paths design all the 8 paths are preferably provided by 4 transducer positions using single multi faced or phased array type transducers.
Patent | Priority | Assignee | Title |
8181536, | Dec 19 2009 | Sensia LLC | Ultrasonic Flow Meter including a transducer having conical face |
8590397, | Dec 19 2009 | Sensia LLC | Ultrasonic flow meter including a transducer having conical face |
9097567, | Jul 15 2011 | Endress + Hauser Flowtec AG | Ultrasonic, flow measuring device |
9714855, | Jan 26 2015 | ARAD LTD | Ultrasonic water meter |
Patent | Priority | Assignee | Title |
5546812, | Aug 17 1993 | INSTROMET ULTRASONICS B V | Method and device for determining characteristics of the flow of a medium |
5546813, | Oct 06 1992 | Caldon, Inc. | Apparatus for determining fluid flow |
5650572, | Oct 25 1993 | Siemens Aktiengesellschaft | Device for ultrasonic flow measurement |
6098466, | Jun 09 1998 | Transonic Systems, Inc. | Ultrasonic flow sensor incorporating full flow illumination |
6178827, | Apr 22 1999 | Onicon Incorporated | Ultrasonic flow sensor |
7152490, | Aug 15 2005 | EMERSUB CVIII, INC ; Micro Motion, Inc | Methods for determining transducer delay time and transducer separation in ultrasonic flow meters |
7469598, | May 29 2003 | Transonic Systems, Inc. | Method of employing a transit time ultrasound sensor |
7568398, | Oct 07 2007 | Onicon Incorporated | Ultrasonic flow sensor with repeated transmissions |
DE19503714, | |||
EP639776, | |||
EP1736741, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 24 2009 | Elster NV/SA | (assignment on the face of the patent) | / | |||
Aug 06 2009 | STEHOUWER, ARJAN | ELSTER NV SA | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023326 | /0410 |
Date | Maintenance Fee Events |
Jun 09 2014 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 28 2018 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
May 24 2022 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 07 2013 | 4 years fee payment window open |
Jun 07 2014 | 6 months grace period start (w surcharge) |
Dec 07 2014 | patent expiry (for year 4) |
Dec 07 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 07 2017 | 8 years fee payment window open |
Jun 07 2018 | 6 months grace period start (w surcharge) |
Dec 07 2018 | patent expiry (for year 8) |
Dec 07 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 07 2021 | 12 years fee payment window open |
Jun 07 2022 | 6 months grace period start (w surcharge) |
Dec 07 2022 | patent expiry (for year 12) |
Dec 07 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |