A technique enables improved performance of oilfield service operations. A protective shield is formed with a portable stand and at least one lightweight impact panel. The one or more lightweight impact panels enable easy movement of the safety shield from one location to another at a given well site or between different well sites, thus affording protection with a minimum of labor and set up time. The safety shield can be used to provide protection during individual operations and/or to segregate and protect independent operations from each other during multiple, simultaneous operations.
|
8. A method, comprising:
forming a plurality of impact panels comprising a material substantially lighter than steel;
mounting the plurality of impact panels to a portable stand with at least one quick connect fastener, the panels and stand able to be hand carried;
positioning the portable stand and the impact panels at a well site adjacent a well undergoing an operation comprising an operation selected from the operations consisting of: a drilling operation, a well stimulation operation, a fracturing operation, and a perforating operation; and
orienting the impact panels to segregate a first group of workers conducting the operation from a second group of workers in the area without covering the well.
1. A method for using a safety shield while performing oilfield service operations, comprising:
providing a safety shield comprising a fabricated stand and at least one impact panel comprising a material substantially lighter than steel;
positioning the safety shield at a first location at a wellsite without covering a well of the wellsite, the first location comprising a position between a first operation and a second operation therefore segregating a first group of workers for the first operation from a second group of workers for the second operation; and
moving the safety shield to a second location at the wellsite without covering a well of the wellsite, the second location comprising a position between a third operation and at least one of a first operation and a second operation therefore segregating a third group of workers for the third operation from at least one of the first group of workers and the second group of workers.
2. The method as recited in
3. The method as recited in
4. The method as recited in
5. The method as recited in
6. The method as recited in
7. The method as recited in
9. The method as recited in
10. The method as recited in
11. The method as recited in
12. The method as recited in
|
The present document is based on and claims priority to U.S. Provisional Application Ser. No. 60/889,072, filed Feb. 9, 2007.
In many well related operations, a variety of devices and systems are used in performing oilfield services. Some applications utilize the devices and systems in simultaneous operations (SIMOPS) at a given well site. The well site may have multiple wellheads with various operations being performed simultaneously. For example, well stimulation operations can be performed concurrently with perforation operations and drilling operations.
The multiple wellheads at which simultaneous operations are performed often are in close proximity to each other. Additionally, the simultaneous operations can be performed by several different service companies. Because of the concurrent service operations and the close proximity of wellheads, the simultaneous operations potentially can create hazards. For example, breakages, ruptures, or other failures at one wellhead can create detrimental effects at adjacent wellheads. Attempts have been made to create a barrier between operations by erecting panels of steel. However, such panels are heavy, difficult to move from one position or location to another, and the installation of such panels proves labor and time intensive.
In general, the present invention provides a system and method for use in performing oilfield service operations. A safety shield is formed with a portable stand and at least one lightweight impact panel. The stand and the at least one lightweight impact panel enable easy movement of the safety shield from one well site location to another as needed during well service operations, e.g. during multiple simultaneous operations. The safety shield can be used to provide protection during individual operations and/or to segregate and protect independent operations from each other.
Certain embodiments of the invention will hereafter be described with reference to the accompanying drawings, wherein like reference numerals denote like elements, and:
In the following description, numerous details are set forth to provide an understanding of the present invention. However, it will be understood by those of ordinary skill in the art that the present invention may be practiced without these details and that numerous variations or modifications from the described embodiments may be possible.
The present invention generally relates to a lightweight portable safety shield useful in oilfield service operations and very well suited for simultaneous operations. The safety shield comprises a portable stand, such as a fabricated stand, fitted with one or more impact panels. The impact panels are made of a lightweight material that is easy to move. In one embodiment, the lightweight impact panels can be hand carried to facilitate quick and easy movement of the safety shield from one well site location to another. Depending on the size of the safety shield, the impact panels can be moved while joined with the portable stand or separated from the portable stand.
The lightweight nature of the portable safety shield enables rapid and inexpensive set up and tear down to facilitate deployment and movement of the portable shield from one location to another. By way of example, the lightweight panels can be constructed from a non-metallic material that is substantially lighter than steel. In one embodiment, the lightweight panels are constructed from a Kevlar® fiber material, such as a sheeted Kevlar® fiber material, available from the DuPont™ corporation, or similar lightweight, impact resistant materials.
The lightweight portable safety shield provides short-term impact protection at the well site to provide well site workers with enough time to get out of harms way in the event of a problem at one of the wells. The safety shield can be used for an individual operation, e.g. a maintenance operation, or it can be used in a simultaneous operations field to segregate and protect the independent operations from each other.
Referring generally to
Additionally, stand 22 can be constructed in sections 28 to enable selective changing or adjustment of the stand configuration and the relative orientation of the lightweight impact panels 24 to accommodate a variety of wellhead and space constraints. The individual sections 28 can be connected together by appropriate connectors 30. By way of example, connectors 30 may comprise hinges that enable the sections 28 of stand 22 to be pivoted relative to one another. A variety of securing devices 32, such as bolts, pins, or other fasteners, also can be used to secure stand 22 to a desired surface 34, such as a surface of the earth or a platform.
The stand 22 can be fabricated in a variety of sizes and configurations depending on the environment and applications in which it is used to provide protection. As illustrated in
In
In this particular example, one embodiment of safety shield 20 is deployed in proximity to wellhead 42 where well stimulation operations are being performed. Safety shield 20 is deployed in a configuration that segregates wellhead 42 from the adjacent wellheads 44, 46, 48, 50 and provides protection for any workers/personnel that are active by these other wellheads. In the event of a problem, such as a failure in treating lines at wellhead 42, safety shield 20 protects the surrounding area from potentially impacting materials.
It should be noted that the simultaneous operations field 40 is provided as one example. The number of wellheads, placement of the wellheads, type of operations, actual services being conducted simultaneously, and other well related factors can vary from one application to another. Additionally, the configuration and the size of safety shield 20 can vary according to environment, topography, wellhead and operations being conducted. Additional safety shields 20 also can be deployed around other wellheads, or the sequence of service operations can be selected to accommodate movement of one or more safety shields 20.
Also, the geometry, orientation and number of safety shield sections 28 can be changed according to the environment, operations being performed, and orientation of the wellheads at a particular well site. As illustrated in
The use of safety shield 20 is not limited to simultaneous operations. As illustrated in
The safety shield 20 can be set up and/or moved quickly and easily to provide desired protection at a variety of locations throughout well stimulation site 54. If, for example, one of the frac pumps requires maintenance during the well stimulation operation, personnel generally service the subject frac pump, e.g. frac pump 70, while well stimulation operations continue. The safety shield 20 provides impact protection for the personnel working on frac pump 70 by segregating them from the neighboring treating iron 78 and the surrounding frac pumps. The safety shield 20 provides protection that gives workers time to move away from potential harm. Additionally, the safety shield 20 is easy to move from one location to another to accommodate, for example, maintenance of other frac pumps. In many applications, the lightweight impact panels 24 and stand 22 enable the safety shield 20 or safety shield components to be hand carried from one location to another. This portability and ease of setup/tear down greatly reduces the cost and improves the efficiency of providing a safety shield at desired locations throughout a given well site.
One or more safety shields 20 can be deployed in a variety of configurations for use at many types of well sites. The actual size and configuration of each safety shield can be selected according to the parameters of a given well site environment or well site application. The one or more safety shields also can be integrated with individual or simultaneous operations and can be used in cooperation with many types of well equipment.
Accordingly, although only a few embodiments of the present invention have been described in detail above, those of ordinary skill in the art will readily appreciate that many modifications are possible without materially departing from the teachings of this invention. Such modifications are intended to be included within the scope of this invention as defined in the claims.
Patent | Priority | Assignee | Title |
10048046, | Apr 30 2015 | SHOTSTOP BALLISTICS LLC | Shooting range booth assembly |
10082372, | Aug 29 2011 | SHOTSTOP BALLISTICS LLC | Material for and the method of manufacture for ballistic shielding |
Patent | Priority | Assignee | Title |
3626836, | |||
3994105, | Mar 20 1972 | Hughes Aircraft Company | Shelter construction |
4124320, | Mar 23 1977 | Illinois Tool Works Inc. | Linkage quick-connect fastener |
4566237, | Apr 08 1983 | PILKINGTON AEROSPACE INC | Armored panel |
4628826, | Jul 27 1984 | ABS BRANDSCHUTZ GMBH | Walk-in shelter |
5026219, | Sep 08 1988 | Portable wellhead and welder protector system | |
5109934, | Feb 13 1991 | Nabors Industries, Inc. | Mobile drilling rig for closely spaced well centers |
5200256, | Jan 23 1989 | Composite lightweight bullet proof panel for use on vessels, aircraft and the like | |
5306557, | Feb 27 1992 | 21ST CENTURY HARD ARMOR PROTECTION, INC | Composite tactical hard body armor |
5635288, | May 17 1994 | Armorworks Enterprises, LLC | Ballistic resistant composite for hard-armor application |
5635306, | Mar 30 1992 | SAES GETTERS S P A | Honeycomb panel and process for producing same |
6647855, | Sep 30 2002 | NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, U S GOVERNMENT AS REPRESENTED BY THE ADMINISTRATOR OF; U S GOVERNMENT AS REPRESENTED BY THE ADMINISTRATOR OF NATIONAL AERONAUTICS AND SPACE ADMINISTRATION | Apparatus and method for deploying a hypervelocity shield |
6745852, | May 08 2002 | Anadarko Petroleum Corporation | Platform for drilling oil and gas wells in arctic, inaccessible, or environmentally sensitive locations |
6962030, | Oct 04 2001 | Wells Fargo Bank, National Association | Method and apparatus for interconnected, rolling rig and oilfield building(s) |
7306055, | Mar 02 2004 | Automatic method for installing mobile drilling rig at a drilling site | |
7308847, | Feb 05 2002 | 755816 ALBERTA LTD | Perforating gun loading bay and method |
7308953, | Mar 02 2004 | Mobile drilling rig | |
7325599, | Oct 31 2005 | Safety shield for rotary drilling rigs | |
7340779, | Jul 01 2003 | DUPONT SAFETY & CONSTRUCTION, INC | Flexible spike/ballistic penetration-resistant articles |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 15 2008 | Schlumberger Technology Corporation | (assignment on the face of the patent) | / | |||
Jan 21 2008 | EDEN, DALE | Schlumberger Technology Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020621 | /0278 | |
Jan 21 2008 | STOVER, RONNIE | Schlumberger Technology Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020621 | /0278 |
Date | Maintenance Fee Events |
Sep 10 2014 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Dec 03 2018 | REM: Maintenance Fee Reminder Mailed. |
May 20 2019 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Apr 12 2014 | 4 years fee payment window open |
Oct 12 2014 | 6 months grace period start (w surcharge) |
Apr 12 2015 | patent expiry (for year 4) |
Apr 12 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 12 2018 | 8 years fee payment window open |
Oct 12 2018 | 6 months grace period start (w surcharge) |
Apr 12 2019 | patent expiry (for year 8) |
Apr 12 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 12 2022 | 12 years fee payment window open |
Oct 12 2022 | 6 months grace period start (w surcharge) |
Apr 12 2023 | patent expiry (for year 12) |
Apr 12 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |