A switch assembly selectively couples an antenna communication circuit to a first feed point of a first antenna, and selectively couples the antenna communication circuit to a second feed point of a second antenna. Each feed point is selected based on polarization of an electromagnetic wave to be radiated from or received by the corresponding antenna.
|
1. A system comprising:
a first antenna having a first feed point;
a second antenna having a second feed point;
an antenna communication circuit configured to selectively tune and de-tune at least one of the first antenna and the second antenna; and
a switch assembly that selectively couples the antenna communication circuit to the first feed point of the first antenna, and that selectively couples the antenna communication circuit to the second feed point of the second antenna,
wherein the first antenna transmits an electromagnetic wave having a first polarization when the first antenna is selectively tuned and de-tuned with respect to the first feed point, and
wherein the second antenna transmits an electromagnetic wave having a second polarization when the second antenna is selectively tuned and de-tuned with respect to the second feed point.
20. A radio frequency identification (rfid) tag comprising:
a first tag antenna;
a second tag antenna;
a rfid circuit configured to selectively tune and de-tune the first tag antenna and the second tag antenna; and
a switch assembly that selectively couples the rfid circuit to a first feed point of the first tag antenna, and that selectively couples the rfid circuit to a second feed point of the second tag antenna,
wherein the first feed point is associated with a first polarization of the first tag antenna, and the second feed point is associated with a second polarization of the second tag antenna,
wherein the first tag antenna transmits an electromagnetic wave having the first polarization when the first tag antenna is selectively tuned and de-tuned with respect to the first feed point, and
wherein the second tag antenna transmits an electromagnetic wave having the second polarization when the second tag antenna is selectively tuned and de-tuned with respect to the second feed point.
9. A system comprising:
a first reading antenna having a first feed point associated with a first polarization of the first reading antenna;
a second reading antenna having a second feed point associated with a second polarization of the second reading antenna;
a radio frequency identification (rfid) reader circuit configured to generate an interrogation signal; and
a switch assembly that selectively couples the rfid reader circuit to the first feed point of the first reading antenna, and that selectively couples the rfid reader circuit to the second feed point of the second reading antenna,
wherein when the interrogation signal is applied to the first reading antenna through the first feed point, the first reading antenna produces electromagnetic radiation with the first polarization, and
wherein when the interrogation signal is applied to the second reading antenna through the second feed point, the second reading antenna produces electromagnetic radiation with the second polarization.
13. A radio frequency identification (rfid) tag comprising:
a first tag antenna;
a second tag antenna;
a rfid circuit configured to generate a responsive signal, wherein the responsive signal is responsive to an interrogation of the rfid tag; and
a switch assembly that selectively couples the rfid circuit to a first feed point of the first tag antenna, and that selectively couples the rfid circuit to a second feed point of the second tag antenna,
wherein the first feed point is associated with a first polarization of the first tag antenna, and the second feed point is associated with a second polarization of the second tag antenna,
wherein when the responsive signal is applied to the first tag antenna by way of the first feed point, the first tag antenna produces electromagnetic radiation with the first polarization, and
wherein when the responsive signal is applied to the second tag antenna through the second feed point, the second tag antenna produces electromagnetic radiation with the second polarization.
17. A system comprising:
a first antenna having a first feed point;
a second antenna having a second feed point;
a first antenna communication circuit configured to produce an electrical signal proportional to electromagnetic radiation incident upon the first antenna;
a second antenna communication circuit configured to produce an electrical signal proportional to electromagnetic radiation incident upon the second antenna; and
a switch assembly that selectively couples the first antenna communication circuit to the first feed point, and that selectively couples the second antenna communication circuit to the second feed point,
wherein when the electrical signal is conducted between the first feed point and the first antenna communication circuit, the electrical signal is predominantly proportional to electro-magnetic radiation incident on the first antenna having a first polarization, and
wherein when the electrical signal is conducted between the second feed point and the second antenna communication circuit, the electrical signal is predominantly proportional to electro-magnetic radiation incident on the second antenna having a second polarization.
21. A radio frequency identification (rfid) tag comprising:
a first tag antenna;
a second tag antenna;
a rfid circuit configured to receive a first interrogating signal from the first tag antenna and a second interrogating signal from the second tag antenna, wherein the first interrogating signal is proportional to electromagnetic radiation incident upon the first tag antenna, and wherein the second interrogating signal is proportional to electromagnetic radiation incident upon the second tag antenna; and
a switch assembly that selectively couples the rfid circuit to a first feed point of the first tag antenna, and that selectively couples the rfid circuit to a second feed point of the second tag antenna,
wherein the first feed point is associated with a first polarization of the first tag antenna, and the second feed point is associated with a second polarization of the second tag antenna,
wherein when the first interrogating signal is received by way of the first feed point, the first interrogating signal is predominantly proportional to the electromagnetic radiation incident on the first tag antenna having the first polarization, and
wherein when the second interrogating signal is received by way of the second feed point, the second interrogating signal is predominantly proportional to the electromagnetic radiation incident on the second tag antenna having the second polarization.
19. A system comprising:
a first reading antenna having a first feed point associated with a first polarization of the first reading antenna;
a second reading antenna having a second feed point associated with a second polarization of the second reading antenna;
a radio frequency identification (rfid) reader circuit configured to receive at least one of a first electrical signal from the first reading antenna and a second electrical signal from the second reading antenna, wherein the first electrical signal is proportional to electromagnetic radiation incident upon the first reading antenna and the second electrical signal is proportional to electromagnetic radiation incident upon the second reading antenna; and
a switch assembly that selectively couples the rfid reader circuit to the first feed point of the first reading antenna, and that selectively couples the rfid reader circuit to the second feed point of the second reading antenna,
wherein when the first electrical signal is received through the first feed point of the first reading antenna, the first electrical signal is predominantly proportional to electromagnetic radiation incident on the first reading antenna having the first polarization, and
wherein when the second electrical signal is received through the second feed point, the second electrical signal is predominantly proportional to electromagnetic radiation incident on the second reading antenna having the second polarization.
2. The system according to
3. The system according to
4. The system according to
5. The system according to
6. The system according to
an antenna element that defines a perimeter;
a ground plane; and
a radiative element suspended over the ground plane,
wherein the corresponding feed point is one or more selected from the group consisting of: within the perimeter and disposed on the perimeter.
7. The system according to
8. The system according to
10. The system according to
11. The system according to
12. The system according to
14. The rfid tag according to
15. The rfid tag according to
16. The rfid tag according to
18. The system according to
|
This application is a continuation of U.S. application Ser. No. 11/740,393, filed on Apr. 26, 2007, the disclosure of which is incorporated herein by reference.
At least some of the various embodiments are directed to systems and methods to selectively radiate and/or receive electromagnetic waves having varying electric field polarizations.
Many systems have a need to radiate (i.e., send) or receive electromagnetic waves with varying electric field polarizations (hereafter just polarization). In some systems, radiating or receiving electromagnetic waves with varying polarization dictates having multiple antennas, with each antenna configured to transmit an electromagnetic wave with a particular polarization (e.g. multiple dipole antennas in different physical orientations, multiple patch antennas in different physical orientations).
To provide varying polarizations, other systems use a single patch antenna having multiple active feed points, with all the active feed points used simultaneously to radiate or receive the electromagnetic waves. Radiating electromagnetic waves with patch antennas having multiple active feed points dictates simultaneously generating several phase-delayed versions of the antenna driving signal, with the multiple phase-delayed antenna driving signals applied one each to the multiple feed points. The amount of phase delay and physical spacing of the feed points on the patch antenna control the polarization of the electromagnetic waves transmitted. Receiving electromagnetic waves with patch antenna having multiple active feed points likewise dictates phase-correcting received signals, and conglomerating the phase-corrected signals to produce a received signal that is proportional to the desired polarization. The amount of phase correction applied to each signal and the physical spacing of the feed points on the patch antenna from which the receive signals originate control the polarization to which the patch antenna is most sensitive.
For a detailed description of various embodiments, reference will now be made to the accompanying drawings in which:
Certain terms are used throughout the following description and claims to refer to particular system components. As one skilled in the art will appreciate, design and manufacturing companies may refer to the same component by different names. This document does not intend to distinguish between components that differ in name but not function. In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . .
Also, the term “couple” or “couples” is intended to mean either an indirect or direct connection. Thus, if a first device couples to a second device, that connection may be through a direct connection or through an indirect connection via other intermediate devices and connections. Moreover, the term “system” means “one or more components” combined together. Thus, a system can comprise an “entire system,” “subsystems” within the system, a radio frequency identification (RFID) tag, a RFID reader, or any other device comprising one or more components.
The various embodiments disclosed herein are discussed in the context of radio frequency identification (RFID) tags and antennas for RFID tags; however, the systems, antennas and methods discussed herein have application beyond RFID tags to other types of electromagnetic wave-based technologies. The discussion of any embodiment in relation to RFID tags is meant only to be illustrative of that embodiment, and not intended to intimate that the scope of the disclosure, including the claims, is limited to that embodiment.
There are several types of RFID tags operable in the illustrative system 1000. For example, RFID tags may be active tags, meaning each RFID tag comprises its own internal battery. Using power from the internal battery, an active RFID tag monitors for interrogating signals from the RFID reader 12. When an interrogating signal is sensed, a response comprising a data or identification value is transmitted by the active RFID tag using power from its internal battery. A semi-active tag may likewise have its own internal battery, but a semi-active tag stays dormant most of the time. When an antenna of a semi-active tag receives an interrogating signal, the power received is used to wake or activate the semi-active tag, and a response comprising an identification value is sent by the semi-active RFID tag using power from its internal battery.
A third type of RFID tag is a passive tag, which, unlike active and semi-active RFID tags, has no internal battery. The antenna of the passive RFID tag receives an interrogating signal, and the power extracted from the received interrogating signal is used to power the tag. Once powered, the passive RFID tag may accept a command, send a response comprising a data or identification value, or both; however, the value is sent in the form of backscattered electromagnetic waves to the RFID reader 12 antenna 14 from the antenna 17 of the RFID tag 16. In particular, the RFID reader 12 and antenna 14 continue to transmit power after the RFID tag is awake. While the RFID reader 12 transmits, the antenna 17 of the RFID tag is selectively tuned and de-tuned with respect to the carrier frequency. When tuned, significant incident power is absorbed by the antenna 17 of the RFID tag 16 (and is used to power the underlying circuits). When de-tuned, significant power is reflected by the antenna 17 of the RFID tag 16 to the antenna 24 of the RFID reader 12. The data or identification value thus modulates the carrier in the form of reflected or backscattered electromagnetic wave. The RFID reader 12 reads the data or identification value from the backscattered electromagnetic waves. Thus, in this specification and in the claims, the terms transmitting and transmission include not only sending from an antenna using internally sourced power, but also sending in the form of backscattered signals.
The system 2000 further comprises a reading antenna 24 positioned downstream of the direction of travel of the object 20. In other embodiments, the reading antenna 24 may be placed at any suitable position (e.g. upstream of the path of travel), or there may be reading antennas at any position relative to the path of travel. Electronic system 10 and RFID reader 12 couple to the reading antenna 24, and the RFID reader 12 reads the RFID tag 16 by way of an antenna element of the RFID tag 16 (e.g., antenna element 26).
In accordance with various embodiments, the RFID reader 12 and/or electronic system 10 determine certain physical characteristics of the RFID tag 16 and attached object 20. For example, the RFID reader 12 and/or electronic system 10 may be implemented in a system which determines which face or side of the object 20 (e.g., face 30 or 32) is exposed to the reading antenna 24. Likewise, the RFID reader 12 and/or electronic system 10 may be implemented in a system which determines the rotational orientation of the object 20 (e.g. which side 34, 36 faces upwards). These and possibly other physical characteristics of the RFID tag 16 and attached object 20 may be determined by polarization of electromagnetic waves or signals transmitted by the RFID tag 16. Co-pending and commonly assigned application Ser. No. 11/692,538 titled, “Methods and Systems of Determining Physical Characteristics Associated with Objects Tagged with RFID Tags,” incorporated by reference herein as if reproduced in full below, describes a plurality of mechanisms to detect physical characteristics of RFID tags and attached objects, some of which are based on polarization of electromagnetic signals received from RFID tags.
As an example of determining physical characteristics of the RFID tag 16 and attached object 20, consider a situation where each face 30, 32 of the object 20 is associated with a particular polarization of electromagnetic signal transmitted from the RFID tag 16 (or possibly multiple RFID tags, one each on each face of the object 20). When interrogated by reading antenna 24, the RFID tag 16 responds with an electromagnetic signal having a particular polarization, and in these embodiments the polarization identifies the which face of the object 20 is exposed to or facing the reading antenna 24. As another example, consider a situation where the polarization of an antenna of the RFID tag 16 is aligned with a rotational orientation of the object 20 (e.g. vertical polarization aligned with upright orientation of the object 20). When interrogated by the reading antenna 24, the RFID tag 16 responds with an electromagnetic signal having a particular polarization, and in these illustrative embodiments the polarization identifies the rotational orientation of the object 20 (e.g. a horizontally polarized electromagnetic signal from the RFID tag 16 indicates the object 20 is laying on its side).
In accordance with at least some embodiments, receiving electromagnetic signals from the RFID tag 16, with the electromagnetic signals having varying polarization, is enabled by a patch antenna having multiple polarizations. In some embodiments, the multiple polarizations are based on multiple feed points, where each feed point is associated with a different polarization of the patch antenna.
The patch antenna 300 also comprises a ground plane or ground element 42. The antenna element 40 and the ground element 42 each define a plane, and those planes are substantially parallel in at least some embodiments. In
Radio frequency signals are driven to the antenna element 40 by way of probe feeds or feed points (i.e., the locations where the radio frequency signals couple to the antenna element 40), such as feed point 46 or feed point 48. The feed points are shown (in dashed lines) to extend through the antenna element 40, dielectric 44 and ground plane 42, and then to couple to respective leads 50 (for feed point 46) and 52 (for the feed point 48). In other embodiments, the leads 50, 52 may extend to their respective feed points through the dielectric material 44, but not through the ground element 42 (i.e., the leads emerge from the dielectric material). In either case, the feed points are electrically isolated from the ground element 42.
Considering first feed point 46, illustrative feed point 46 resides within the perimeter defined by the antenna element 40, and placement of the feed point is selected based on several criteria. One such criterion is the impedance seen by a radio frequency source that drives the antenna element 40. For example, shifting the feed point 46 toward the center of the antenna element 40 along its length (“L” in the figure) tends to lower the impedance seen by the radio frequency source, while shifting along the length towards an edge (e.g., edge 54) tends to increase impedance seen by the radio frequency source. Moreover, the placement of the feed point 46 also controls polarity of the electromagnetic wave or signal created. For example, illustrative feed point 46 as shown creates an electromagnetic signal with a particular electric field polarization (e.g. horizontal polarization (along the length L)). Shifting the feed point toward a corner (e.g. corner 56) creates a different polarization (e.g. circular polarization).
Illustrative feed point 48 also resides within the perimeter defined by the antenna element 40. Shifting the illustrative feed point 48 toward the center of the antenna element 40 along its width (“W” in the figure) tends to lower the impedance seen by the radio frequency source, while shifting along the width towards an edge (e.g. edge 58) tends to increase impedance seen by the radio frequency source. Moreover, illustrative feed point 48 as shown creates an electromagnetic signal with a particular polarization (e.g. a vertical polarization (along the length W)). Shifting the feed point toward a corner (e.g. corner 60) creates an electromagnetic wave having a different polarization (e.g. circularly polarized). Thus, the feed points are internal to the length and width to meet these, and possibly other, design criteria.
Returning to
Consider first a situation where the RFID reader 12 and/or electronic system 10 are configured to transmit electromagnetic signals having an illustrative vertical polarization. In order to make feed point 48 the active feed point, switch 74 is closed or made conducting, while switch 76 is opened or made non-conducting. The RFID reader 12 generates an antenna feed signal, and the antenna feed signal is applied to the first feed point 48 through the switch 74. In turn, the reading antenna 24 radiates an electromagnetic wave having the illustrative vertical polarization. Stated otherwise, the antenna feed signal generated by the RFID reader 12 is applied to feed point 48 to the exclusion of other feed points (i.e., the antenna feed signal is not applied to feed point 46 in the illustration of
Next consider situations where the RFID reader 12 and/or electronic system 10 are configured to transmit electromagnetic signals having an illustrative horizontal polarization. In order to make feed point 46 the active feed point, switch 76 is closed or made conducting, while switch 74 is opened or made non-conducting. The RFID reader 12 generates an antenna feed signal, and the antenna feed signal is applied to the feed point 46 through the switch 76. In turn, the reading antenna radiates an electromagnetic wave having the illustrative horizontal polarization. Stated otherwise, the antenna feed signal generated by the RFID reader 12 is applied to feed point 46 to the exclusion of other feed points (i.e., the antenna feed signal is not applied to feed point 48 in the illustration of
The switch assembly 75 used to selectively to couple the RFID reader 12 to the reading antenna 24 may take many forms. For example, in some embodiments one or more mechanical switches are used, where the mechanic switches are closed (made conducting) or opened (made non-conducting) by physical manipulation of the switches (e.g. knife blade switches). In other embodiments, the switch assembly 75 is one or more electrically controlled switches. Examples of electrically controlled switches that may be used are solenoid operated relays, or solid state switches (e.g., transistors, silicon controlled rectifier pairs). Moreover, there are different types of transistors that may be used, for example metal oxide semiconductor field effect transistors (MOSFETs) or junction transistors. The device that controls the electrically controlled switches 74 and 76 may vary as well. In some embodiments, the RFID reader 12 controls the switch positions of the illustrative switches 74 and 76, as shown by dashed line 78 in
The embodiments discussed to this point have been in reference to an antenna having two feed points, where each feed point is used to the exclusion of the other. However, in other embodiments three or more feed points are used to increase the number of possible polarizations of the reading antenna, and those polarizations may be formed by use of feed points individually, or use of the feed points in groups. For example,
In the configuration illustrated in
The various embodiments discussed to this point have been in relation to the reading antenna 24 having multiple feed points, and having the ability to radiate and receive electromagnetic waves of varying polarization. However, the ability to radiate and receive electromagnetic waves of varying polarization is not limited to the illustrative reading antennas 24 and RFID readers 12, and indeed may also be implemented in RFID tags.
The RFID circuit 124 may be configured in many ways. In some embodiments the RFID circuit 124 controls the switch assembly 126 and transmits electromagnetic signals with particular polarization responsive to specific commands from an RFID reader. In other embodiments, the RFID circuit is pre-programmed to transmit electromagnetic signals of varying polarization, such as in a progression after each interrogation, or alternating polarizations based on successive interrogations.
Regardless of the physical mechanism of applying the time-varying electrical signal to the first feed point of the antenna, or the reason for transmitting the electromagnetic wave, the next step in the illustrative method may be transmitting an electromagnetic with a second polarization (different from the first polarization), the transmitting the second electromagnetic wave by applying a time-varying electrical signal to a second feed point and not the first feed point of the antenna (block 808), and the illustrative method ends (block 812). Much like transmitting the electromagnetic wave with the first polarization, applying a time-varying electrical signal to the second feed point may comprise coupling the time-varying electrical signal to the second feed point by way of a switch. Likewise, the reason for transmitting an electrical magnetic wave with a second polarization may be, for example, to read a RFID tag coupled to an object. In other embodiments, the RFID tag may transmit the electromagnetic wave with the second polarization, such as an additional response to the interrogating signal from an RFID reader or in response to another interrogating single from the RFID reader.
Consider, for example, a manufacturing facility where articles are transported from place to place on a conveyor, and where the physical orientation of each object is important. The object could be tagged with a RFID tag that, when interrogated, responds with an electromagnetic signal whose polarization is aligned with a particular orientation of the object. For example, if the object is upright, the polarization of the electromagnetic signal of the RFID tag could be vertically polarized, and if the object is on its side, the polarization could be horizontal. A system, such as system 2000 of
With regard to each of the transmitting steps discussed above, in some embodiments transmitting is by way a patch antenna having a plurality of feed points, where each feed point is disposed either within an area defined by the length and width of an antenna element of the patch antenna, or along the perimeter. The feed points, alone or in combination, produce electromagnetic waves having a plurality of polarizations such as: vertical polarization; horizontal polarization; right-circular polarization; or left-circular polarization.
The various embodiments discussed to this point have been in relation to antennas where various feed points are selectively used to create varying polarization. Other embodiments create varying polarizations by the selective use of ground points on the antenna element (with a single feed point, or with multiple feed points as discussed above). In particular,
Consider first situations where the RFID reader 12 and/or electronic system 10 are configured to transmit electromagnetic signals having an illustrative first polarization. In order to ground the ground point 160, switch 166 is closed or made conducting, while switch 168 is opened or made non-conducting. The RFID reader 12 generates an antenna feed signal, and the antenna feed signal is applied to the illustrative edge feed point 154. In turn, the antenna element 150 radiates an electromagnetic wave having the first polarization. Now consider a similar situation, except where the RFID reader 12 and/or electronic system 10 are configured to receive electromagnetic signals with the first polarization. In order to ground the ground point 160, switch 166 is again closed or made conducting, while switch 168 is again opened or made non-conducting. The antenna element 150 produces an electrical signal that moves between the illustrative edge feed point 154 and the RFID reader 12, the electrical signal predominantly proportional to electromagnetic radiation incident upon the antenna element 150 having the first polarization.
Next consider situations where the RFID reader 12 and/or electronic system 10 are configured to transmit electromagnetic signals having an illustrative second polarization, different than the first polarization. In order to ground the ground point 162, switch 168 is closed or made conducting, while switch 166 is opened or made non-conducting. The RFID reader 12 generates an antenna feed signal, and the antenna feed signal is applied to the illustrative edge feed point 154. In turn, the antenna element radiates an electromagnetic wave having the illustrative second polarization. Now consider a similar situation, except where the RFID reader 12 and/or electronic system 10 are configured to receive electromagnetic signals with the second polarization. In order to ground the ground point 162, switch 168 is again closed or made conducting, while switch 166 is again opened or made non-conducting. The antenna element 150 produces an electrical signal that moves between the illustrative edge feed point 154 and the RFID reader 12, the electrical signal predominantly proportional to the electromagnetic radiation incident upon the antenna element 120 having the second polarization.
The switch assembly 164 used to selectively to ground the ground points 160, 162 may take many forms. For example, in some embodiments one or more mechanical switches are used, where the mechanic switches are closed (made conducting) or opened (made non-conducting) by physical manipulation of the switches (e.g. knife blade switches). In other embodiments, the switch assembly 164 is one or more electrically controlled switches. Examples of electrically controlled switches that may be used are solenoid operated relays, or solid state switches (e.g. transistors, silicon controlled rectifier pairs). Moreover, there are different types of transistors that may be used, for example metal oxide semiconductor field effect transistors (MOSFETs) or junction transistors. The device that controls the electrically controlled switches 166 and 168 may vary as well. In some embodiments, the RFID reader 12 controls the switch positions of the illustrative switches, as shown by dashed line 170 in
The ability to radiate and receive electromagnetic waves of varying polarization based on selectively grounding the ground points is not limited to the antennas used with RFID readers 12, and indeed may also be implemented in RFID tags.
The RFID circuit 182 may be configured in many ways. In some embodiments the RFID circuit 182 controls the switch assembly 180 and transmits electromagnetic signals with particular polarization responsive to specific commands from an RFID reader. In other embodiments, the RFID circuit is pre-programmed to transmit electromagnetic signals of varying polarization, such as in a progression after each interrogation, or alternating polarizations based on successive interrogations.
The above discussion is meant to be illustrative of the principles and various embodiments of the present invention. Numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such variations and modifications.
Patent | Priority | Assignee | Title |
10374326, | Mar 14 2014 | SEESCAN, INC | Dual antenna systems with variable polarization |
10490908, | Mar 14 2014 | SEESCAN, INC | Dual antenna systems with variable polarization |
10608348, | Mar 31 2012 | SEESCAN, INC | Dual antenna systems with variable polarization |
10651565, | Apr 29 2019 | Microsoft Technology Licensing, LLC | Antenna polarization diversity |
11030512, | Sep 06 2007 | DEKA Products Limited Partnership | RFID system and method |
11593605, | Sep 06 2007 | DEKA Products Limited Partnership | RFID system and method |
9443121, | Mar 31 2014 | Symbol Technologies, LLC | Locally-powered, polarization-insensitive antenna for RFID reader, and RFID system for, and method of, scanning item tags with one or more such antennas |
Patent | Priority | Assignee | Title |
2256619, | |||
3721990, | |||
3727230, | |||
3859652, | |||
3967202, | Jul 25 1974 | Northern Illinois Gas Company | Data transmission system including an RF transponder for generating a broad spectrum of intelligence bearing sidebands |
4016553, | Jun 27 1975 | Knogo Corporation | Article detection system with near field electromagnetic wave control |
4075632, | Aug 27 1974 | The United States of America as represented by the United States | Interrogation, and detection system |
4260983, | Jan 11 1978 | Tag Radionics Limited | Presence sensing detector and system for detecting a receiver/transmitter device affixed to an article |
4274083, | Dec 16 1977 | Apparatus for identifying moving objects | |
4333072, | Aug 06 1979 | AVID INDENTIFICATION SYSTEMS, INC | Identification device |
4510495, | Aug 09 1982 | Cornell Research Foundation, Inc. | Remote passive identification system |
4525713, | Mar 01 1983 | Lockheed Electronics Co., Inc. | Electronic tag identification system |
4539660, | Dec 26 1980 | Hitachi, Ltd.; Hitachi Maxell, Ltd. | Semiconductor integrated circuit |
4572976, | Dec 10 1982 | N.V. Nederlandsche Apparatenfabriek NEDAP | Transponder for electromagnetic detection system with non-linear circuit |
4596988, | Jun 10 1983 | Remote controlled tracking transmitter and tracking support system | |
4630044, | Dec 23 1982 | ANT Nachrichtentechnik GmbH | Programmable inductively coupled transponder |
4641374, | Aug 10 1984 | Kabushiki Kaisha Toshiba | Information medium |
4646090, | Aug 12 1983 | RCA Corporation | Codeable identifying tag and method of identification thereof |
4651157, | May 07 1985 | Harris Corporation | Security monitoring and tracking system |
4654658, | Aug 03 1984 | Identification system with vector phase angle detection | |
4656472, | Jan 23 1985 | Proximity identification system with power aided identifier | |
4724427, | Jul 18 1986 | B I INCORPORATED | Transponder device |
4730188, | Feb 15 1984 | Digital Angel Corporation | Identification system |
4740792, | Aug 27 1986 | HUGHES AIRCRAFT COMPANY, A DE CORP | Vehicle location system |
4782342, | Aug 04 1986 | Proximity identification system with lateral flux paths | |
4809009, | Jan 25 1988 | CRALE, INC | Resonant antenna |
4819053, | May 09 1986 | ENERGETICS, INC , A CORP OF DE | Single-point locating system |
4822990, | Nov 29 1985 | Kabushiki Kaisha Toshiba | Admission control system having a transponder actuated by an inquiry signal |
4854328, | Mar 23 1987 | Animal monitoring telltale and information system | |
4857893, | Jul 18 1986 | B I INCORPORATED | Single chip transponder device |
4862160, | Dec 29 1983 | Revlon Consumer Products Corporation | Item identification tag for rapid inventory data acquisition system |
4870419, | Feb 13 1980 | CANADIAN NATIONAL RAILWAY COMPANY CANADIAN NATIONAL | Electronic identification system |
4888591, | Oct 06 1988 | Intermec IP CORP | Signal discrimination system |
4890072, | Feb 03 1988 | Freescale Semiconductor, Inc | Phase locked loop having a fast lock current reduction and clamping circuit |
4890075, | Jul 31 1986 | The United States of America as represented by the Secretary of the Army | Optical radiation limiter |
4904983, | Jun 05 1986 | Security Services PLC | Alarm system |
4912471, | Nov 03 1983 | Mitron Systems Corporation | Interrogator-responder communication system |
4918458, | May 30 1979 | Eads Deutschland GmbH | Secondary radar transponder |
4920450, | Jun 23 1989 | Motorola, Inc.; Motorola, Inc | Temperature dependent capacitor |
4926182, | May 30 1986 | Sharp Kabushiki Kaisha | Microwave data transmission apparatus |
4937581, | Feb 13 1980 | Canadian National | Electronic identification system |
5046130, | Aug 08 1989 | Motorola, Inc.; MOTOROLA, INC , A CORP OF DELAWARE | Multiple communication path compatible automatic vehicle location unit |
5051726, | Aug 14 1990 | SENSORMATIC ELECTRONICS, LLC | Electronic article surveillance system with antenna array for enhanced field falloff |
5055851, | May 16 1988 | COMCAST TM, INC | Vehicle location system |
5084699, | May 26 1989 | ALGERNON PROMOTIONS,INC ; ALGERNON PROMOTIONS INC | Impedance matching coil assembly for an inductively coupled transponder |
5086389, | May 17 1990 | TC LICENSE LTD | Automatic toll processing apparatus |
5103235, | Dec 30 1988 | Checkpoint Systems, Inc. | Antenna structure for an electronic article surveillance system |
5126749, | Aug 25 1989 | Individually fed multiloop antennas for electronic security systems | |
5134085, | Nov 21 1991 | Micron Technology, Inc. | Reduced-mask, split-polysilicon CMOS process, incorporating stacked-capacitor cells, for fabricating multi-megabit dynamic random access memories |
5136719, | Dec 05 1988 | Seiko Instruments Inc | Automatic antenna tubing method and apparatus |
5142292, | Aug 05 1991 | Checkpoint Systems, Inc. | Coplanar multiple loop antenna for electronic article surveillance systems |
5144314, | Oct 23 1987 | Allen-Bradley Company, Inc. | Programmable object identification transponder system |
5164985, | Oct 27 1987 | CEDCOM NETWORK SYSTEMS PTY LIMITED | Passive universal communicator system |
5175774, | Oct 16 1990 | Micron Technology, Inc. | Semiconductor wafer marking for identification during processing |
5198826, | Sep 22 1989 | Nippon Sheet Glass Co., Ltd. | Wide-band loop antenna with outer and inner loop conductors |
5272367, | May 02 1988 | Micron Technology, Inc. | Fabrication of complementary n-channel and p-channel circuits (ICs) useful in the manufacture of dynamic random access memories (drams) |
5287112, | Apr 14 1993 | Texas Instruments Incorporated | High speed read/write AVI system |
5300875, | Jun 08 1992 | Round Rock Research, LLC | Passive (non-contact) recharging of secondary battery cell(s) powering RFID transponder tags |
5323150, | Jun 11 1992 | Round Rock Research, LLC | Method for reducing conductive and convective heat loss from the battery in an RFID tag or other battery-powered devices |
5334974, | Feb 06 1992 | SIMMS SECURITY CORPORATION | Personal security system |
5365551, | Dec 15 1992 | Round Rock Research, LLC | Data communication transceiver using identification protocol |
5374930, | Apr 14 1993 | Texas Instruments Incorporated | High speed read/write AVI system |
5406263, | Jul 27 1992 | Round Rock Research, LLC | Anti-theft method for detecting the unauthorized opening of containers and baggage |
5420757, | Feb 11 1993 | ASSA ABLOY AB | Method of producing a radio frequency transponder with a molded environmentally sealed package |
5446447, | Feb 16 1994 | MOTOROLA SOLUTIONS, INC | RF tagging system including RF tags with variable frequency resonant circuits |
5448110, | Jun 17 1992 | Round Rock Research, LLC | Enclosed transceiver |
5448242, | Apr 26 1994 | Texas Instruments Incorporated | Modulation field detection, method and structure |
5461385, | Apr 29 1994 | ASSA ABLOY AB | RF/ID transponder system employing multiple transponders and a sensor switch |
5471212, | Apr 26 1994 | Texas Instruments Incorporated | Multi-stage transponder wake-up, method and structure |
5479172, | Feb 10 1994 | NEW STATE CAPITAL CORP | Power supply and power enable circuit for an RF/ID transponder |
5479416, | Sep 30 1993 | Round Rock Research, LLC | Apparatus and method for error detection and correction in radio frequency identification device |
5489546, | May 24 1995 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method of forming CMOS devices using independent thickness spacers in a split-polysilicon DRAM process |
5500650, | Dec 15 1992 | Round Rock Research, LLC | Data communication method using identification protocol |
5519621, | Jan 17 1991 | IRON OAKS TECHNOLOGIES, LLC | Vehicle locating and communicating method and apparatus |
5521600, | Sep 06 1994 | Lawrence Livermore National Security LLC | Range-gated field disturbance sensor with range-sensitivity compensation |
5525993, | May 12 1995 | The Regents of the University of California | Microwave noncontact identification transponder using subharmonic interrogation and method of using the same |
5572226, | May 15 1992 | Round Rock Research, LLC | Spherical antenna pattern(s) from antenna(s) arranged in a two-dimensional plane for use in RFID tags and labels |
5621412, | Apr 26 1994 | Texas Instruments Incorporated | Multi-stage transponder wake-up, method and structure |
5649296, | Jun 19 1995 | THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT | Full duplex modulated backscatter system |
5656978, | Dec 11 1995 | AURORA NETWORKS, INC | Control circuit and method for direct current controlled attenuator |
5668560, | Jan 30 1995 | NCR Corporation | Wireless electronic module |
5719586, | May 15 1992 | Round Rock Research, LLC | Spherical antenna pattern(s) from antenna(s) arranged in a two-dimensional plane for use in RFID tags and labels |
5894266, | May 30 1996 | Round Rock Research, LLC | Method and apparatus for remote monitoring |
5970398, | Jul 30 1996 | Round Rock Research, LLC | Radio frequency antenna with current controlled sensitivity |
6122494, | Jul 30 1996 | Round Rock Research, LLC | Radio frequency antenna with current controlled sensitivity |
6243013, | Jan 08 1999 | Intermec IP CORP; Intermec IP Corporation | Cascaded DC voltages of multiple antenna RF tag front-end circuits |
6292153, | Aug 27 1999 | HANGER SOLUTIONS, LLC | Antenna comprising two wideband notch regions on one coplanar substrate |
6434368, | Oct 27 1998 | Unwired Planet, LLC | Diode-based switch for a radio transceiver |
6466131, | Jul 30 1996 | Round Rock Research, LLC | Radio frequency data communications device with adjustable receiver sensitivity and method |
6466634, | May 13 1996 | Round Rock Research, LLC | Radio frequency data communications device |
6574454, | Jul 30 1996 | Round Rock Research, LLC | Radio frequency antenna with current controlled sensitivity |
7450076, | Jun 28 2007 | Cheng Uei Precision Industry Co., Ltd.; CHENG UEI PRECISION INDUSTRY CO , LTD | Integrated multi-band antenna |
20030174099, | |||
20050083179, | |||
20060007044, | |||
20070152831, | |||
20090058649, | |||
20100123629, | |||
20100277376, | |||
RE32856, | Nov 19 1987 | Peter, Miller | Alarm system |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 23 2009 | Micron Technology, Inc | Round Rock Research, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030863 | /0543 | |
Oct 18 2010 | Round Rock Research, LLC | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Sep 25 2014 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Dec 17 2018 | REM: Maintenance Fee Reminder Mailed. |
Jun 03 2019 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Apr 26 2014 | 4 years fee payment window open |
Oct 26 2014 | 6 months grace period start (w surcharge) |
Apr 26 2015 | patent expiry (for year 4) |
Apr 26 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 26 2018 | 8 years fee payment window open |
Oct 26 2018 | 6 months grace period start (w surcharge) |
Apr 26 2019 | patent expiry (for year 8) |
Apr 26 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 26 2022 | 12 years fee payment window open |
Oct 26 2022 | 6 months grace period start (w surcharge) |
Apr 26 2023 | patent expiry (for year 12) |
Apr 26 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |