A switch assembly selectively couples an antenna communication circuit to a first feed point of a first antenna, and selectively couples the antenna communication circuit to a second feed point of a second antenna. Each feed point is selected based on polarization of an electromagnetic wave to be radiated from or received by the corresponding antenna.

Patent
   7932867
Priority
Apr 26 2007
Filed
Oct 18 2010
Issued
Apr 26 2011
Expiry
Apr 26 2027
Assg.orig
Entity
Large
7
100
EXPIRED
1. A system comprising:
a first antenna having a first feed point;
a second antenna having a second feed point;
an antenna communication circuit configured to selectively tune and de-tune at least one of the first antenna and the second antenna; and
a switch assembly that selectively couples the antenna communication circuit to the first feed point of the first antenna, and that selectively couples the antenna communication circuit to the second feed point of the second antenna,
wherein the first antenna transmits an electromagnetic wave having a first polarization when the first antenna is selectively tuned and de-tuned with respect to the first feed point, and
wherein the second antenna transmits an electromagnetic wave having a second polarization when the second antenna is selectively tuned and de-tuned with respect to the second feed point.
20. A radio frequency identification (rfid) tag comprising:
a first tag antenna;
a second tag antenna;
a rfid circuit configured to selectively tune and de-tune the first tag antenna and the second tag antenna; and
a switch assembly that selectively couples the rfid circuit to a first feed point of the first tag antenna, and that selectively couples the rfid circuit to a second feed point of the second tag antenna,
wherein the first feed point is associated with a first polarization of the first tag antenna, and the second feed point is associated with a second polarization of the second tag antenna,
wherein the first tag antenna transmits an electromagnetic wave having the first polarization when the first tag antenna is selectively tuned and de-tuned with respect to the first feed point, and
wherein the second tag antenna transmits an electromagnetic wave having the second polarization when the second tag antenna is selectively tuned and de-tuned with respect to the second feed point.
9. A system comprising:
a first reading antenna having a first feed point associated with a first polarization of the first reading antenna;
a second reading antenna having a second feed point associated with a second polarization of the second reading antenna;
a radio frequency identification (rfid) reader circuit configured to generate an interrogation signal; and
a switch assembly that selectively couples the rfid reader circuit to the first feed point of the first reading antenna, and that selectively couples the rfid reader circuit to the second feed point of the second reading antenna,
wherein when the interrogation signal is applied to the first reading antenna through the first feed point, the first reading antenna produces electromagnetic radiation with the first polarization, and
wherein when the interrogation signal is applied to the second reading antenna through the second feed point, the second reading antenna produces electromagnetic radiation with the second polarization.
13. A radio frequency identification (rfid) tag comprising:
a first tag antenna;
a second tag antenna;
a rfid circuit configured to generate a responsive signal, wherein the responsive signal is responsive to an interrogation of the rfid tag; and
a switch assembly that selectively couples the rfid circuit to a first feed point of the first tag antenna, and that selectively couples the rfid circuit to a second feed point of the second tag antenna,
wherein the first feed point is associated with a first polarization of the first tag antenna, and the second feed point is associated with a second polarization of the second tag antenna,
wherein when the responsive signal is applied to the first tag antenna by way of the first feed point, the first tag antenna produces electromagnetic radiation with the first polarization, and
wherein when the responsive signal is applied to the second tag antenna through the second feed point, the second tag antenna produces electromagnetic radiation with the second polarization.
17. A system comprising:
a first antenna having a first feed point;
a second antenna having a second feed point;
a first antenna communication circuit configured to produce an electrical signal proportional to electromagnetic radiation incident upon the first antenna;
a second antenna communication circuit configured to produce an electrical signal proportional to electromagnetic radiation incident upon the second antenna; and
a switch assembly that selectively couples the first antenna communication circuit to the first feed point, and that selectively couples the second antenna communication circuit to the second feed point,
wherein when the electrical signal is conducted between the first feed point and the first antenna communication circuit, the electrical signal is predominantly proportional to electro-magnetic radiation incident on the first antenna having a first polarization, and
wherein when the electrical signal is conducted between the second feed point and the second antenna communication circuit, the electrical signal is predominantly proportional to electro-magnetic radiation incident on the second antenna having a second polarization.
21. A radio frequency identification (rfid) tag comprising:
a first tag antenna;
a second tag antenna;
a rfid circuit configured to receive a first interrogating signal from the first tag antenna and a second interrogating signal from the second tag antenna, wherein the first interrogating signal is proportional to electromagnetic radiation incident upon the first tag antenna, and wherein the second interrogating signal is proportional to electromagnetic radiation incident upon the second tag antenna; and
a switch assembly that selectively couples the rfid circuit to a first feed point of the first tag antenna, and that selectively couples the rfid circuit to a second feed point of the second tag antenna,
wherein the first feed point is associated with a first polarization of the first tag antenna, and the second feed point is associated with a second polarization of the second tag antenna,
wherein when the first interrogating signal is received by way of the first feed point, the first interrogating signal is predominantly proportional to the electromagnetic radiation incident on the first tag antenna having the first polarization, and
wherein when the second interrogating signal is received by way of the second feed point, the second interrogating signal is predominantly proportional to the electromagnetic radiation incident on the second tag antenna having the second polarization.
19. A system comprising:
a first reading antenna having a first feed point associated with a first polarization of the first reading antenna;
a second reading antenna having a second feed point associated with a second polarization of the second reading antenna;
a radio frequency identification (rfid) reader circuit configured to receive at least one of a first electrical signal from the first reading antenna and a second electrical signal from the second reading antenna, wherein the first electrical signal is proportional to electromagnetic radiation incident upon the first reading antenna and the second electrical signal is proportional to electromagnetic radiation incident upon the second reading antenna; and
a switch assembly that selectively couples the rfid reader circuit to the first feed point of the first reading antenna, and that selectively couples the rfid reader circuit to the second feed point of the second reading antenna,
wherein when the first electrical signal is received through the first feed point of the first reading antenna, the first electrical signal is predominantly proportional to electromagnetic radiation incident on the first reading antenna having the first polarization, and
wherein when the second electrical signal is received through the second feed point, the second electrical signal is predominantly proportional to electromagnetic radiation incident on the second reading antenna having the second polarization.
2. The system according to claim 1 wherein the switch assembly further comprises a mechanical switch whose switch positions are changed by physical manipulation.
3. The system according to claim 1 wherein the switch assembly further comprises an electrically controlled switch.
4. The system according to claim 1 wherein the switch assembly is one or more selected from the group consisting of: solenoid operated relay, field effect transistor, junction transistor, and silicon controlled rectifier pair.
5. The system according to claim 1 wherein the switch assembly comprises a first switch and a second switch; and wherein the antenna communication circuit controls a switch position of each of the first and second switches.
6. The system according to claim 1 wherein the first antenna and the second antenna each further comprises:
an antenna element that defines a perimeter;
a ground plane; and
a radiative element suspended over the ground plane,
wherein the corresponding feed point is one or more selected from the group consisting of: within the perimeter and disposed on the perimeter.
7. The system according to claim 6 wherein the first antenna and the second antenna each further comprises a dielectric material disposed between the radiative element and the ground plane.
8. The system according to claim 1 wherein the antenna communication circuit is one or more selected from the group consisting of: a radio frequency identification (rfid) reader and a rfid circuit within an rfid tag.
10. The system according to claim 9 wherein when the interrogation signal is applied to the first feed point, the interrogation signal is not applied to the second feed point.
11. The system according to claim 10 wherein when the interrogation signal is applied to the second feed point, the interrogation signal is not applied the first feed point.
12. The system according to claim 9 wherein the switch assembly comprises a first switch and a second switch, and wherein the rfid reader circuit controls the switch position of each of the first and second switches.
14. The rfid tag according to claim 13 wherein when the responsive signal is applied to the first feed point, the responsive signal is not applied to the second feed point.
15. The rfid tag according to claim 14 wherein when the responsive signal is applied to the second feed point, the responsive signal is not applied the first feed point.
16. The rfid tag according to claim 13 wherein the switch assembly comprises a first switch and a second switch, and wherein the rfid reader circuit controls the switch position of each of the first and second switches.
18. The system according to claim 17 wherein first polarization is one or more selected from the group consisting of: vertical polarization, horizontal polarization, right-circular polarization, or left circular polarization.

This application is a continuation of U.S. application Ser. No. 11/740,393, filed on Apr. 26, 2007, the disclosure of which is incorporated herein by reference.

At least some of the various embodiments are directed to systems and methods to selectively radiate and/or receive electromagnetic waves having varying electric field polarizations.

Many systems have a need to radiate (i.e., send) or receive electromagnetic waves with varying electric field polarizations (hereafter just polarization). In some systems, radiating or receiving electromagnetic waves with varying polarization dictates having multiple antennas, with each antenna configured to transmit an electromagnetic wave with a particular polarization (e.g. multiple dipole antennas in different physical orientations, multiple patch antennas in different physical orientations).

To provide varying polarizations, other systems use a single patch antenna having multiple active feed points, with all the active feed points used simultaneously to radiate or receive the electromagnetic waves. Radiating electromagnetic waves with patch antennas having multiple active feed points dictates simultaneously generating several phase-delayed versions of the antenna driving signal, with the multiple phase-delayed antenna driving signals applied one each to the multiple feed points. The amount of phase delay and physical spacing of the feed points on the patch antenna control the polarization of the electromagnetic waves transmitted. Receiving electromagnetic waves with patch antenna having multiple active feed points likewise dictates phase-correcting received signals, and conglomerating the phase-corrected signals to produce a received signal that is proportional to the desired polarization. The amount of phase correction applied to each signal and the physical spacing of the feed points on the patch antenna from which the receive signals originate control the polarization to which the patch antenna is most sensitive.

For a detailed description of various embodiments, reference will now be made to the accompanying drawings in which:

FIG. 1 shows a radio frequency identification (RFID) system in accordance with at least some embodiments;

FIG. 2 shows a more detailed system in accordance with at least some embodiments;

FIG. 3 shows a patch antenna with multiple feed points in accordance with at least some embodiments;

FIG. 4 shows an electrical block diagram of a system in accordance with at least some embodiments;

FIG. 5 shows a patch antenna in accordance with other embodiments;

FIG. 6 shows an electrical block diagram of a system in accordance with other embodiments;

FIG. 7 shows a RFID tag in accordance with at least some embodiments;

FIG. 8 shows a method in accordance with at least some embodiments;

FIG. 9 shows a patch antenna with ground points in accordance with at least some embodiments;

FIG. 10 shows an electrical block diagram of a system in accordance with at least some embodiments; and

FIG. 11 shows a RFID tag in accordance with at least some embodiments.

Certain terms are used throughout the following description and claims to refer to particular system components. As one skilled in the art will appreciate, design and manufacturing companies may refer to the same component by different names. This document does not intend to distinguish between components that differ in name but not function. In the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . .

Also, the term “couple” or “couples” is intended to mean either an indirect or direct connection. Thus, if a first device couples to a second device, that connection may be through a direct connection or through an indirect connection via other intermediate devices and connections. Moreover, the term “system” means “one or more components” combined together. Thus, a system can comprise an “entire system,” “subsystems” within the system, a radio frequency identification (RFID) tag, a RFID reader, or any other device comprising one or more components.

The various embodiments disclosed herein are discussed in the context of radio frequency identification (RFID) tags and antennas for RFID tags; however, the systems, antennas and methods discussed herein have application beyond RFID tags to other types of electromagnetic wave-based technologies. The discussion of any embodiment in relation to RFID tags is meant only to be illustrative of that embodiment, and not intended to intimate that the scope of the disclosure, including the claims, is limited to that embodiment.

FIG. 1 illustrates a system 1000 in accordance with at least some embodiments. In particular, system 1000 comprises an electronic system 10 coupled to a RFID reader 12. In some embodiments, electronic system 10 comprises a computer system. By way of antenna 14, the RFID reader 12 communicates with one or more RFID tags 16A-16C proximate to the RFID reader (i.e., within communication range). The RFID reader 12 may be equivalently referred as an interrogator. The RFID reader 12 passes data obtained from the various RFID tags 16 to the electronic system 10, which performs any suitable function. For example, the electronic system 10, based on the data received from the RFID tags 16, may allow access to a building or parking garage, note the entrance of an employee to a work location, direct a parcel identified by the RFID tag 16 down a particular conveyor system, or display an advertisement customized or targeted to the person identified by the RFID tag 16.

There are several types of RFID tags operable in the illustrative system 1000. For example, RFID tags may be active tags, meaning each RFID tag comprises its own internal battery. Using power from the internal battery, an active RFID tag monitors for interrogating signals from the RFID reader 12. When an interrogating signal is sensed, a response comprising a data or identification value is transmitted by the active RFID tag using power from its internal battery. A semi-active tag may likewise have its own internal battery, but a semi-active tag stays dormant most of the time. When an antenna of a semi-active tag receives an interrogating signal, the power received is used to wake or activate the semi-active tag, and a response comprising an identification value is sent by the semi-active RFID tag using power from its internal battery.

A third type of RFID tag is a passive tag, which, unlike active and semi-active RFID tags, has no internal battery. The antenna of the passive RFID tag receives an interrogating signal, and the power extracted from the received interrogating signal is used to power the tag. Once powered, the passive RFID tag may accept a command, send a response comprising a data or identification value, or both; however, the value is sent in the form of backscattered electromagnetic waves to the RFID reader 12 antenna 14 from the antenna 17 of the RFID tag 16. In particular, the RFID reader 12 and antenna 14 continue to transmit power after the RFID tag is awake. While the RFID reader 12 transmits, the antenna 17 of the RFID tag is selectively tuned and de-tuned with respect to the carrier frequency. When tuned, significant incident power is absorbed by the antenna 17 of the RFID tag 16 (and is used to power the underlying circuits). When de-tuned, significant power is reflected by the antenna 17 of the RFID tag 16 to the antenna 24 of the RFID reader 12. The data or identification value thus modulates the carrier in the form of reflected or backscattered electromagnetic wave. The RFID reader 12 reads the data or identification value from the backscattered electromagnetic waves. Thus, in this specification and in the claims, the terms transmitting and transmission include not only sending from an antenna using internally sourced power, but also sending in the form of backscattered signals.

FIG. 2 shows a more detailed system 2000 in accordance with some embodiments. In particular, system 2000 shows an object 20 on a conveyor system 22, and in some embodiments with the object 20 selectively moving in the direction indicated by arrow 14. Conveyor system 22 is merely illustrative of any situation where an object 20 may be in a plurality of positions relative to a system for reading the RFID tag 16, such as reading by RFID reader 12. For example, the object 20 and conveyor system 22 are illustrative of wafer boats in semiconductor manufacturing production line, luggage in an automated luggage handling system, parcels in an automated sorting facility, consumer goods in a shopping cart, or participants in a war game. The object 20 has an associated RFID tag 16, which as illustrated is visible both from in front of the object 20, and from behind the object 20. In some embodiments, the RFID tag 16 uses a dual-sided patch antenna, such as described in co-pending and commonly assigned application Ser. No. 11/691,822 titled “Multi-Antenna Element Systems and Related Methods,” incorporated by reference herein as if reproduced in full below. In other embodiments, however, any suitable antenna may be used on the RFID tag 16. As illustrated, one antenna element 26 of the RFID tag 16 is visible, with the antenna element 26 having a feed point 28. A second antenna element (not visible in FIG. 2), may also be present, and the second antenna element likewise has a feed point.

The system 2000 further comprises a reading antenna 24 positioned downstream of the direction of travel of the object 20. In other embodiments, the reading antenna 24 may be placed at any suitable position (e.g. upstream of the path of travel), or there may be reading antennas at any position relative to the path of travel. Electronic system 10 and RFID reader 12 couple to the reading antenna 24, and the RFID reader 12 reads the RFID tag 16 by way of an antenna element of the RFID tag 16 (e.g., antenna element 26).

In accordance with various embodiments, the RFID reader 12 and/or electronic system 10 determine certain physical characteristics of the RFID tag 16 and attached object 20. For example, the RFID reader 12 and/or electronic system 10 may be implemented in a system which determines which face or side of the object 20 (e.g., face 30 or 32) is exposed to the reading antenna 24. Likewise, the RFID reader 12 and/or electronic system 10 may be implemented in a system which determines the rotational orientation of the object 20 (e.g. which side 34, 36 faces upwards). These and possibly other physical characteristics of the RFID tag 16 and attached object 20 may be determined by polarization of electromagnetic waves or signals transmitted by the RFID tag 16. Co-pending and commonly assigned application Ser. No. 11/692,538 titled, “Methods and Systems of Determining Physical Characteristics Associated with Objects Tagged with RFID Tags,” incorporated by reference herein as if reproduced in full below, describes a plurality of mechanisms to detect physical characteristics of RFID tags and attached objects, some of which are based on polarization of electromagnetic signals received from RFID tags.

As an example of determining physical characteristics of the RFID tag 16 and attached object 20, consider a situation where each face 30, 32 of the object 20 is associated with a particular polarization of electromagnetic signal transmitted from the RFID tag 16 (or possibly multiple RFID tags, one each on each face of the object 20). When interrogated by reading antenna 24, the RFID tag 16 responds with an electromagnetic signal having a particular polarization, and in these embodiments the polarization identifies the which face of the object 20 is exposed to or facing the reading antenna 24. As another example, consider a situation where the polarization of an antenna of the RFID tag 16 is aligned with a rotational orientation of the object 20 (e.g. vertical polarization aligned with upright orientation of the object 20). When interrogated by the reading antenna 24, the RFID tag 16 responds with an electromagnetic signal having a particular polarization, and in these illustrative embodiments the polarization identifies the rotational orientation of the object 20 (e.g. a horizontally polarized electromagnetic signal from the RFID tag 16 indicates the object 20 is laying on its side).

In accordance with at least some embodiments, receiving electromagnetic signals from the RFID tag 16, with the electromagnetic signals having varying polarization, is enabled by a patch antenna having multiple polarizations. In some embodiments, the multiple polarizations are based on multiple feed points, where each feed point is associated with a different polarization of the patch antenna. FIG. 3 illustrates a patch antenna 300 in accordance with at least some embodiments. In particular, patch antenna 300 comprises a radiative patch or antenna element 40. In the embodiments shown, the antenna element 40 comprises a sheet of metallic material (e.g. copper) that defines a perimeter. In the embodiments of FIG. 3, the antenna element 40 is in the form of a square or rectangle. The length (“L” in the figure) and width (“W” in the figure) of the illustrative antenna element 40 is dictated by the wavelength of the radio frequency signal that will be driven to the antenna element 40 (or that will be received by the antenna element 40). More particularly, the length and width of the antenna element 40 are each an integer ratio of the wavelength of the signal to be transmitted (or received). For example, the length L and width W may be approximately half the wavelength (λ/2) or a quarter of the wavelength (λ/4).

The patch antenna 300 also comprises a ground plane or ground element 42. The antenna element 40 and the ground element 42 each define a plane, and those planes are substantially parallel in at least some embodiments. In FIG. 3, the ground element 42 length and width are shown to be greater than the length and width of the antenna element 40; however, the ground element length and width may be smaller in other embodiments. Although the antenna element 40 and ground element 42 may be separated by air, in some embodiments a dielectric material 44 (e.g., printed circuit board material, silicon, plastic) separates the antenna element 40 from the ground element 42.

Radio frequency signals are driven to the antenna element 40 by way of probe feeds or feed points (i.e., the locations where the radio frequency signals couple to the antenna element 40), such as feed point 46 or feed point 48. The feed points are shown (in dashed lines) to extend through the antenna element 40, dielectric 44 and ground plane 42, and then to couple to respective leads 50 (for feed point 46) and 52 (for the feed point 48). In other embodiments, the leads 50, 52 may extend to their respective feed points through the dielectric material 44, but not through the ground element 42 (i.e., the leads emerge from the dielectric material). In either case, the feed points are electrically isolated from the ground element 42.

Considering first feed point 46, illustrative feed point 46 resides within the perimeter defined by the antenna element 40, and placement of the feed point is selected based on several criteria. One such criterion is the impedance seen by a radio frequency source that drives the antenna element 40. For example, shifting the feed point 46 toward the center of the antenna element 40 along its length (“L” in the figure) tends to lower the impedance seen by the radio frequency source, while shifting along the length towards an edge (e.g., edge 54) tends to increase impedance seen by the radio frequency source. Moreover, the placement of the feed point 46 also controls polarity of the electromagnetic wave or signal created. For example, illustrative feed point 46 as shown creates an electromagnetic signal with a particular electric field polarization (e.g. horizontal polarization (along the length L)). Shifting the feed point toward a corner (e.g. corner 56) creates a different polarization (e.g. circular polarization).

Illustrative feed point 48 also resides within the perimeter defined by the antenna element 40. Shifting the illustrative feed point 48 toward the center of the antenna element 40 along its width (“W” in the figure) tends to lower the impedance seen by the radio frequency source, while shifting along the width towards an edge (e.g. edge 58) tends to increase impedance seen by the radio frequency source. Moreover, illustrative feed point 48 as shown creates an electromagnetic signal with a particular polarization (e.g. a vertical polarization (along the length W)). Shifting the feed point toward a corner (e.g. corner 60) creates an electromagnetic wave having a different polarization (e.g. circularly polarized). Thus, the feed points are internal to the length and width to meet these, and possibly other, design criteria.

Returning to FIG. 2, the illustrative patch antenna 300 may be used as the reading antenna 24. In this way, a single antenna 24 can be used to radiate electromagnetic waves of varying polarization (e.g. to radiate interrogating signals to an RFID tag), and likewise to receive electromagnetic waves of varying polarization (e.g. receive responses from RFID tags). The discussion now turns to various mechanisms to control which feed point or points are active, and which feed point or points are inactive, for a particular transmission or reception.

FIG. 4 shows an electrical block diagram that illustrates coupling of the RFID reader 12 to the reading antenna 24 in accordance with at least some embodiments. In particular, reading antenna 24 is illustrated as two antennas and 72. Antenna 70 is schematically shown upright to signify polarization associated with a first feed point (e.g. feed point 48 which, when used, may transmit or receive electromagnetic signals having an illustrative vertical polarization). Likewise, antenna 72 is shown prone to signify polarization associated with a second feed point (e.g. feed point 46 which, when used, may transmit or receive electromagnetic signals having an illustrative horizontal polarization). The RFID reader 12 couples to each feed point through a switch assembly 75, which is illustrated as individual single-pole single-throw switches 74 and 76. However, in embodiments where the switch assembly 75 couples the RFID reader 12 to the feed points of the patch antenna 24 in a mutually exclusive manner (i.e., one and only one at a time), the switch assembly 75 could be a single-pole double-throw switch.

Consider first a situation where the RFID reader 12 and/or electronic system 10 are configured to transmit electromagnetic signals having an illustrative vertical polarization. In order to make feed point 48 the active feed point, switch 74 is closed or made conducting, while switch 76 is opened or made non-conducting. The RFID reader 12 generates an antenna feed signal, and the antenna feed signal is applied to the first feed point 48 through the switch 74. In turn, the reading antenna 24 radiates an electromagnetic wave having the illustrative vertical polarization. Stated otherwise, the antenna feed signal generated by the RFID reader 12 is applied to feed point 48 to the exclusion of other feed points (i.e., the antenna feed signal is not applied to feed point 46 in the illustration of FIG. 4). Now consider a similar situation, except where the RFID reader 12 and/or electronic system 10 are configured to receive vertically polarized electromagnetic signals. In order to make feed point 48 the active feed point, switch 74 is again closed or made conducting, while switch 76 is again opened or made non-conducting. The reading antenna 24 produces an electrical signal that moves between the feed point 48 and the RFID reader 12, the electrical signal predominantly proportional to vertically polarized electromagnetic radiation incident upon the reading antenna 24.

Next consider situations where the RFID reader 12 and/or electronic system 10 are configured to transmit electromagnetic signals having an illustrative horizontal polarization. In order to make feed point 46 the active feed point, switch 76 is closed or made conducting, while switch 74 is opened or made non-conducting. The RFID reader 12 generates an antenna feed signal, and the antenna feed signal is applied to the feed point 46 through the switch 76. In turn, the reading antenna radiates an electromagnetic wave having the illustrative horizontal polarization. Stated otherwise, the antenna feed signal generated by the RFID reader 12 is applied to feed point 46 to the exclusion of other feed points (i.e., the antenna feed signal is not applied to feed point 48 in the illustration of FIG. 4). Now consider a similar situation, except where the RFID reader 12 and/or electronic system 10 are configured to receive horizontally polarized electromagnetic signals. In order to make feed point 46 the active feed point, switch 46 is again closed or made conducting, while switch 74 is again opened or made non-conducting. The reading antenna 24 produces an electrical signal that moves between the feed point 46 and the RFID reader 12, the electrical signal predominantly proportional to horizontally polarized electromagnetic radiation incident upon the reading antenna 24.

The switch assembly 75 used to selectively to couple the RFID reader 12 to the reading antenna 24 may take many forms. For example, in some embodiments one or more mechanical switches are used, where the mechanic switches are closed (made conducting) or opened (made non-conducting) by physical manipulation of the switches (e.g. knife blade switches). In other embodiments, the switch assembly 75 is one or more electrically controlled switches. Examples of electrically controlled switches that may be used are solenoid operated relays, or solid state switches (e.g., transistors, silicon controlled rectifier pairs). Moreover, there are different types of transistors that may be used, for example metal oxide semiconductor field effect transistors (MOSFETs) or junction transistors. The device that controls the electrically controlled switches 74 and 76 may vary as well. In some embodiments, the RFID reader 12 controls the switch positions of the illustrative switches 74 and 76, as shown by dashed line 78 in FIG. 4. In other embodiments, the electronic system 10 controls the switch positions of the illustrative switches 74 and 76, as shown by dashed lines 80 in FIG. 4.

The embodiments discussed to this point have been in reference to an antenna having two feed points, where each feed point is used to the exclusion of the other. However, in other embodiments three or more feed points are used to increase the number of possible polarizations of the reading antenna, and those polarizations may be formed by use of feed points individually, or use of the feed points in groups. For example, FIG. 5 shows a patch antenna 500 in accordance with further embodiments. In particular, patch antenna 500 comprises an antenna element 40 and ground element 42 separated by dielectric 44. Patch antenna 500 further comprises an illustrative three feed points 90, 92 and 94. When feed point 92 is used alone during transmission, the patch antenna 500 creates an electromagnetic wave with a particular polarization (e.g. horizontal polarization). When feed point 94 is used alone during transmission, the patch antenna 500 creates an electromagnetic wave with a different polarization (e.g. vertical polarization). When feed points 90 and 92 are used together (to the exclusion of feed point 94), the patch antenna 500 creates an electromagnetic wave with yet another polarization (e.g., circular polarization). Likewise, when feed points 90 and 94 are used together (to the exclusion of feed point 92), the patch antenna 500 creates an electromagnetic wave with yet still another polarization (e.g. circular polarization, but where the rotational orientation of the polarization is different than that produced when feed points 90 and 92 are used). Thus, a system (such as system 2000 of FIG. 2) may selectively use any polarization that may be transmitted or received by a reading antenna 24.

FIG. 6 shows an electrical block diagram that illustrates coupling of the RFID reader 12 to the reading antenna 24 in embodiments where feed points are used in groups. In particular, reading antenna 24 is illustrated in this figure as three antennas 96, 98 and 100 (e.g. associated with feed points 94, 90 and 92 respectively of patch antenna 500 of FIG. 5). The RFID reader 12 couples to the reading antenna through a switch assembly 101, which is illustrated as individual single-pole single-throw switches 102 and 104. However, in embodiments where the switch assembly 101 couples the RFID reader 12 to the feed point 94 or a feed point group (comprising feed points 90 and 92) mutually exclusively, the switch assembly 101 could be a single-pole double-throw switch. In the example of FIG. 6, the RFID reader 12 couples to feed point 94 through switch 102, and the RFID reader 12 couples to feed points 90 and 92 through switch 104. The switches 102 and 104 may be of the same type and construction as those discussed with respect to the switch assembly 75 of FIG. 4.

In the configuration illustrated in FIG. 6, a single feed point or group of feed points may be used to radiate and receive electromagnetic waves of particular polarization, with the single feed point or group of feed points selected based on operation of the illustrative switches 102 and 104. For example, when the RFID reader 12 is configured to be sensitive to or send electromagnetic waves of a first polarization (e.g., vertical polarization), switch 102 is closed or made conducting, while switch 104 is opened or made non-conducting. Likewise, when the RFID reader 12 is configured to be sensitive to or send electromagnetic waves having another polarization (e.g. circular polarization), switch 104 is closed on made conducting, while switch 102 is opened or made non-conducting. In yet other embodiments, each feed point may have an associated switch, and when a group of feed points is desired, multiple switches may be made conducting. Like the embodiments discussed with respect to FIG. 4, when illustrative switches 102 and 104 are electrically controlled, control of the switches may be by either the RFID reader 12 (as illustrated by dashed line 106), or by the electronic system (as illustrated by dashed line 108).

The various embodiments discussed to this point have been in relation to the reading antenna 24 having multiple feed points, and having the ability to radiate and receive electromagnetic waves of varying polarization. However, the ability to radiate and receive electromagnetic waves of varying polarization is not limited to the illustrative reading antennas 24 and RFID readers 12, and indeed may also be implemented in RFID tags. FIG. 7 shows an RFID tag 16 in accordance with other embodiments. In particular, the RFID tag 16 comprises a tag antenna 17 having at least two feed points 120 and 122, each feed point associated with a different polarization of the tag antenna 17. The feed points 120 and 122 couple to the RFID circuit 124 by way of a switch assembly 126, which as illustrated is a single-pole double-throw switch, controlled by the RFID circuit 124. In other embodiments, the switch assembly 126 may comprise individual switches (e.g. two single-pole single-throw switches). RFID tags are, in most but not all cases, relatively small (e.g. credit card sized) objects, and thus while mechanical switches and solenoid controlled relays may be used as the switch assembly 126, for size considerations the switch assembly 126 in most situations is solid state.

The RFID circuit 124 may be configured in many ways. In some embodiments the RFID circuit 124 controls the switch assembly 126 and transmits electromagnetic signals with particular polarization responsive to specific commands from an RFID reader. In other embodiments, the RFID circuit is pre-programmed to transmit electromagnetic signals of varying polarization, such as in a progression after each interrogation, or alternating polarizations based on successive interrogations.

FIG. 8 shows a method in accordance with at least some embodiments. In particular, the method starts (block 800) and proceeds to transmitting an electromagnetic wave with a first polarization by applying an antenna feed or time-varying electrical signal to a first feed point of an antenna (block 804). In some embodiments, applying the time-varying electrical signal comprises coupling the time-varying electrical signal to the first feed point by way of switch. Switch may take many forms, for example: a mechanical switch; a solenoid operated relay; a fuel effect transistor; a junction transistor, or a silicon control rectifier pair. Likewise, the reason for the transmitting may take many forms. In some embodiments, the transmitting electromagnetic wave with the first polarization may be from an antenna communication circuit to read a RFID tag coupled to an object, here the antenna communication circuit being an RFID reader 12. In other embodiments, an antenna communication circuit being an RFID circuit 124 on an RFID tag 16 may transmit the electromagnetic wave with the first polarization, such as in response to an interrogating signal from an RFID reader.

Regardless of the physical mechanism of applying the time-varying electrical signal to the first feed point of the antenna, or the reason for transmitting the electromagnetic wave, the next step in the illustrative method may be transmitting an electromagnetic with a second polarization (different from the first polarization), the transmitting the second electromagnetic wave by applying a time-varying electrical signal to a second feed point and not the first feed point of the antenna (block 808), and the illustrative method ends (block 812). Much like transmitting the electromagnetic wave with the first polarization, applying a time-varying electrical signal to the second feed point may comprise coupling the time-varying electrical signal to the second feed point by way of a switch. Likewise, the reason for transmitting an electrical magnetic wave with a second polarization may be, for example, to read a RFID tag coupled to an object. In other embodiments, the RFID tag may transmit the electromagnetic wave with the second polarization, such as an additional response to the interrogating signal from an RFID reader or in response to another interrogating single from the RFID reader.

Consider, for example, a manufacturing facility where articles are transported from place to place on a conveyor, and where the physical orientation of each object is important. The object could be tagged with a RFID tag that, when interrogated, responds with an electromagnetic signal whose polarization is aligned with a particular orientation of the object. For example, if the object is upright, the polarization of the electromagnetic signal of the RFID tag could be vertically polarized, and if the object is on its side, the polarization could be horizontal. A system, such as system 2000 of FIG. 2, could thus determine the physical orientation of the object by the polarization of the electromagnetic signal produced by the RFID tag. Rather than have two reading antennas (one vertically polarized and one horizontally polarized), a single reading antenna (such as patch antenna 300 of FIG. 3) could be used to determine the polarization of the signal from the RFID tag, and thus determine the physical orientation of the object.

With regard to each of the transmitting steps discussed above, in some embodiments transmitting is by way a patch antenna having a plurality of feed points, where each feed point is disposed either within an area defined by the length and width of an antenna element of the patch antenna, or along the perimeter. The feed points, alone or in combination, produce electromagnetic waves having a plurality of polarizations such as: vertical polarization; horizontal polarization; right-circular polarization; or left-circular polarization.

The various embodiments discussed to this point have been in relation to antennas where various feed points are selectively used to create varying polarization. Other embodiments create varying polarizations by the selective use of ground points on the antenna element (with a single feed point, or with multiple feed points as discussed above). In particular, FIG. 9 illustrates a partial cut-away view of a patch antenna 900 in accordance with at least some embodiments. In particular, patch antenna 900 comprises a radiative patch or antenna element 150. In the embodiments shown, the antenna element 150 comprises a sheet of metallic material (e.g., copper) in the form of a square or rectangle that defines a perimeter. The patch antenna 900 also comprises a ground plane or ground element 152. The antenna element 150 and the ground element 152 each define a plane, and those planes are substantially parallel in at least some embodiments. Although the antenna element 150 and ground element 152 may be separated by air as shown, in other embodiments a dielectric material (e.g., printed circuit board material, silicon, plastic) separates the antenna element 150 from the ground element 152. Radio frequency signals are driven to the antenna element 150 by way of a feed point 154, illustrated in FIG. 9 as an edge feed; however, in other embodiments multiple feed points along the edge or within the perimeter defined by the antenna element 150 may be used.

FIG. 9 also illustrates a plurality of ground posts 156 and 158 extending between and electrically coupling the ground element 152 to the antenna element 150 at the ground points 160 and 162 respectively. Although only two ground points 160, 162 and two ground posts 156, 158 are shown, any number of ground points may be equivalently used. In these embodiments polarization of the patch antenna 900 is controlled, at least in part, by the number, placement and selective use of ground points. Thus, the polarization may be controlled not only by varying the feed points used, but also by varying quantity and/or location of ground points on the antenna element 150.

FIG. 10 shows an electrical block diagram that illustrates coupling of the RFID reader 12 to the antenna element 150 in accordance with at least some embodiments. In particular, antenna element 150 comprises an illustrative two ground points 160 and 162, along with illustrative edge feed point 154, as discussed with respect to FIG. 9. Each ground point 160, 162 selectively couples to ground through a switch assembly 164, which is illustrated as individual single-pole single-throw switches 166 and 168. However, in embodiments where the switch assembly 164 couples the ground points to ground in a mutually exclusive manner, the switch assembly 164 could be a single-pole double-throw switch. In some embodiments, the switch assembly 164 and/or the individual switches 166, 168 physically reside between the antenna element 150 and the ground element 154 (FIG. 9) to shorten the lead lengths between the ground points and the ground connection, but the switch assembly and/or switches may equivalently reside at any convenient location.

Consider first situations where the RFID reader 12 and/or electronic system 10 are configured to transmit electromagnetic signals having an illustrative first polarization. In order to ground the ground point 160, switch 166 is closed or made conducting, while switch 168 is opened or made non-conducting. The RFID reader 12 generates an antenna feed signal, and the antenna feed signal is applied to the illustrative edge feed point 154. In turn, the antenna element 150 radiates an electromagnetic wave having the first polarization. Now consider a similar situation, except where the RFID reader 12 and/or electronic system 10 are configured to receive electromagnetic signals with the first polarization. In order to ground the ground point 160, switch 166 is again closed or made conducting, while switch 168 is again opened or made non-conducting. The antenna element 150 produces an electrical signal that moves between the illustrative edge feed point 154 and the RFID reader 12, the electrical signal predominantly proportional to electromagnetic radiation incident upon the antenna element 150 having the first polarization.

Next consider situations where the RFID reader 12 and/or electronic system 10 are configured to transmit electromagnetic signals having an illustrative second polarization, different than the first polarization. In order to ground the ground point 162, switch 168 is closed or made conducting, while switch 166 is opened or made non-conducting. The RFID reader 12 generates an antenna feed signal, and the antenna feed signal is applied to the illustrative edge feed point 154. In turn, the antenna element radiates an electromagnetic wave having the illustrative second polarization. Now consider a similar situation, except where the RFID reader 12 and/or electronic system 10 are configured to receive electromagnetic signals with the second polarization. In order to ground the ground point 162, switch 168 is again closed or made conducting, while switch 166 is again opened or made non-conducting. The antenna element 150 produces an electrical signal that moves between the illustrative edge feed point 154 and the RFID reader 12, the electrical signal predominantly proportional to the electromagnetic radiation incident upon the antenna element 120 having the second polarization.

The switch assembly 164 used to selectively to ground the ground points 160, 162 may take many forms. For example, in some embodiments one or more mechanical switches are used, where the mechanic switches are closed (made conducting) or opened (made non-conducting) by physical manipulation of the switches (e.g. knife blade switches). In other embodiments, the switch assembly 164 is one or more electrically controlled switches. Examples of electrically controlled switches that may be used are solenoid operated relays, or solid state switches (e.g. transistors, silicon controlled rectifier pairs). Moreover, there are different types of transistors that may be used, for example metal oxide semiconductor field effect transistors (MOSFETs) or junction transistors. The device that controls the electrically controlled switches 166 and 168 may vary as well. In some embodiments, the RFID reader 12 controls the switch positions of the illustrative switches, as shown by dashed line 170 in FIG. 10. In other embodiments, the electronic system 10 controls the switch positions of the illustrative switches, as shown by dashed lines 172 in FIG. 10.

The ability to radiate and receive electromagnetic waves of varying polarization based on selectively grounding the ground points is not limited to the antennas used with RFID readers 12, and indeed may also be implemented in RFID tags. FIG. 11 shows an RFID tag 16 in accordance with other embodiments. In particular, the RFID tag 16 comprises antenna element 150 having at least two ground points 160 and 162, each ground point associated with a different polarization antenna element 150. The ground points 160 and 162 couple to ground by way of a switch assembly 180, which as illustrated is a single-pole double-throw switch, controlled by the RFID circuit 182. In other embodiments, the switch assembly 180 may comprise individual switches (e.g. two single-pole single-throw switches). RFID tags are, in most but not all cases, relatively small (e.g. credit card sized) objects, and thus while mechanical switches and solenoid controlled relays may be used as the switch assembly 180, for size considerations the switch assembly 180 in most situations is solid state.

The RFID circuit 182 may be configured in many ways. In some embodiments the RFID circuit 182 controls the switch assembly 180 and transmits electromagnetic signals with particular polarization responsive to specific commands from an RFID reader. In other embodiments, the RFID circuit is pre-programmed to transmit electromagnetic signals of varying polarization, such as in a progression after each interrogation, or alternating polarizations based on successive interrogations.

The above discussion is meant to be illustrative of the principles and various embodiments of the present invention. Numerous variations and modifications will become apparent to those skilled in the art once the above disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such variations and modifications.

Tuttle, John R.

Patent Priority Assignee Title
10374326, Mar 14 2014 SEESCAN, INC Dual antenna systems with variable polarization
10490908, Mar 14 2014 SEESCAN, INC Dual antenna systems with variable polarization
10608348, Mar 31 2012 SEESCAN, INC Dual antenna systems with variable polarization
10651565, Apr 29 2019 Microsoft Technology Licensing, LLC Antenna polarization diversity
11030512, Sep 06 2007 DEKA Products Limited Partnership RFID system and method
11593605, Sep 06 2007 DEKA Products Limited Partnership RFID system and method
9443121, Mar 31 2014 Symbol Technologies, LLC Locally-powered, polarization-insensitive antenna for RFID reader, and RFID system for, and method of, scanning item tags with one or more such antennas
Patent Priority Assignee Title
2256619,
3721990,
3727230,
3859652,
3967202, Jul 25 1974 Northern Illinois Gas Company Data transmission system including an RF transponder for generating a broad spectrum of intelligence bearing sidebands
4016553, Jun 27 1975 Knogo Corporation Article detection system with near field electromagnetic wave control
4075632, Aug 27 1974 The United States of America as represented by the United States Interrogation, and detection system
4260983, Jan 11 1978 Tag Radionics Limited Presence sensing detector and system for detecting a receiver/transmitter device affixed to an article
4274083, Dec 16 1977 Apparatus for identifying moving objects
4333072, Aug 06 1979 AVID INDENTIFICATION SYSTEMS, INC Identification device
4510495, Aug 09 1982 Cornell Research Foundation, Inc. Remote passive identification system
4525713, Mar 01 1983 Lockheed Electronics Co., Inc. Electronic tag identification system
4539660, Dec 26 1980 Hitachi, Ltd.; Hitachi Maxell, Ltd. Semiconductor integrated circuit
4572976, Dec 10 1982 N.V. Nederlandsche Apparatenfabriek NEDAP Transponder for electromagnetic detection system with non-linear circuit
4596988, Jun 10 1983 Remote controlled tracking transmitter and tracking support system
4630044, Dec 23 1982 ANT Nachrichtentechnik GmbH Programmable inductively coupled transponder
4641374, Aug 10 1984 Kabushiki Kaisha Toshiba Information medium
4646090, Aug 12 1983 RCA Corporation Codeable identifying tag and method of identification thereof
4651157, May 07 1985 Harris Corporation Security monitoring and tracking system
4654658, Aug 03 1984 Identification system with vector phase angle detection
4656472, Jan 23 1985 Proximity identification system with power aided identifier
4724427, Jul 18 1986 B I INCORPORATED Transponder device
4730188, Feb 15 1984 Digital Angel Corporation Identification system
4740792, Aug 27 1986 HUGHES AIRCRAFT COMPANY, A DE CORP Vehicle location system
4782342, Aug 04 1986 Proximity identification system with lateral flux paths
4809009, Jan 25 1988 CRALE, INC Resonant antenna
4819053, May 09 1986 ENERGETICS, INC , A CORP OF DE Single-point locating system
4822990, Nov 29 1985 Kabushiki Kaisha Toshiba Admission control system having a transponder actuated by an inquiry signal
4854328, Mar 23 1987 Animal monitoring telltale and information system
4857893, Jul 18 1986 B I INCORPORATED Single chip transponder device
4862160, Dec 29 1983 Revlon Consumer Products Corporation Item identification tag for rapid inventory data acquisition system
4870419, Feb 13 1980 CANADIAN NATIONAL RAILWAY COMPANY CANADIAN NATIONAL Electronic identification system
4888591, Oct 06 1988 Intermec IP CORP Signal discrimination system
4890072, Feb 03 1988 Freescale Semiconductor, Inc Phase locked loop having a fast lock current reduction and clamping circuit
4890075, Jul 31 1986 The United States of America as represented by the Secretary of the Army Optical radiation limiter
4904983, Jun 05 1986 Security Services PLC Alarm system
4912471, Nov 03 1983 Mitron Systems Corporation Interrogator-responder communication system
4918458, May 30 1979 Eads Deutschland GmbH Secondary radar transponder
4920450, Jun 23 1989 Motorola, Inc.; Motorola, Inc Temperature dependent capacitor
4926182, May 30 1986 Sharp Kabushiki Kaisha Microwave data transmission apparatus
4937581, Feb 13 1980 Canadian National Electronic identification system
5046130, Aug 08 1989 Motorola, Inc.; MOTOROLA, INC , A CORP OF DELAWARE Multiple communication path compatible automatic vehicle location unit
5051726, Aug 14 1990 SENSORMATIC ELECTRONICS, LLC Electronic article surveillance system with antenna array for enhanced field falloff
5055851, May 16 1988 COMCAST TM, INC Vehicle location system
5084699, May 26 1989 ALGERNON PROMOTIONS,INC ; ALGERNON PROMOTIONS INC Impedance matching coil assembly for an inductively coupled transponder
5086389, May 17 1990 TC LICENSE LTD Automatic toll processing apparatus
5103235, Dec 30 1988 Checkpoint Systems, Inc. Antenna structure for an electronic article surveillance system
5126749, Aug 25 1989 Individually fed multiloop antennas for electronic security systems
5134085, Nov 21 1991 Micron Technology, Inc. Reduced-mask, split-polysilicon CMOS process, incorporating stacked-capacitor cells, for fabricating multi-megabit dynamic random access memories
5136719, Dec 05 1988 Seiko Instruments Inc Automatic antenna tubing method and apparatus
5142292, Aug 05 1991 Checkpoint Systems, Inc. Coplanar multiple loop antenna for electronic article surveillance systems
5144314, Oct 23 1987 Allen-Bradley Company, Inc. Programmable object identification transponder system
5164985, Oct 27 1987 CEDCOM NETWORK SYSTEMS PTY LIMITED Passive universal communicator system
5175774, Oct 16 1990 Micron Technology, Inc. Semiconductor wafer marking for identification during processing
5198826, Sep 22 1989 Nippon Sheet Glass Co., Ltd. Wide-band loop antenna with outer and inner loop conductors
5272367, May 02 1988 Micron Technology, Inc. Fabrication of complementary n-channel and p-channel circuits (ICs) useful in the manufacture of dynamic random access memories (drams)
5287112, Apr 14 1993 Texas Instruments Incorporated High speed read/write AVI system
5300875, Jun 08 1992 Round Rock Research, LLC Passive (non-contact) recharging of secondary battery cell(s) powering RFID transponder tags
5323150, Jun 11 1992 Round Rock Research, LLC Method for reducing conductive and convective heat loss from the battery in an RFID tag or other battery-powered devices
5334974, Feb 06 1992 SIMMS SECURITY CORPORATION Personal security system
5365551, Dec 15 1992 Round Rock Research, LLC Data communication transceiver using identification protocol
5374930, Apr 14 1993 Texas Instruments Incorporated High speed read/write AVI system
5406263, Jul 27 1992 Round Rock Research, LLC Anti-theft method for detecting the unauthorized opening of containers and baggage
5420757, Feb 11 1993 ASSA ABLOY AB Method of producing a radio frequency transponder with a molded environmentally sealed package
5446447, Feb 16 1994 MOTOROLA SOLUTIONS, INC RF tagging system including RF tags with variable frequency resonant circuits
5448110, Jun 17 1992 Round Rock Research, LLC Enclosed transceiver
5448242, Apr 26 1994 Texas Instruments Incorporated Modulation field detection, method and structure
5461385, Apr 29 1994 ASSA ABLOY AB RF/ID transponder system employing multiple transponders and a sensor switch
5471212, Apr 26 1994 Texas Instruments Incorporated Multi-stage transponder wake-up, method and structure
5479172, Feb 10 1994 NEW STATE CAPITAL CORP Power supply and power enable circuit for an RF/ID transponder
5479416, Sep 30 1993 Round Rock Research, LLC Apparatus and method for error detection and correction in radio frequency identification device
5489546, May 24 1995 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method of forming CMOS devices using independent thickness spacers in a split-polysilicon DRAM process
5500650, Dec 15 1992 Round Rock Research, LLC Data communication method using identification protocol
5519621, Jan 17 1991 IRON OAKS TECHNOLOGIES, LLC Vehicle locating and communicating method and apparatus
5521600, Sep 06 1994 Lawrence Livermore National Security LLC Range-gated field disturbance sensor with range-sensitivity compensation
5525993, May 12 1995 The Regents of the University of California Microwave noncontact identification transponder using subharmonic interrogation and method of using the same
5572226, May 15 1992 Round Rock Research, LLC Spherical antenna pattern(s) from antenna(s) arranged in a two-dimensional plane for use in RFID tags and labels
5621412, Apr 26 1994 Texas Instruments Incorporated Multi-stage transponder wake-up, method and structure
5649296, Jun 19 1995 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Full duplex modulated backscatter system
5656978, Dec 11 1995 AURORA NETWORKS, INC Control circuit and method for direct current controlled attenuator
5668560, Jan 30 1995 NCR Corporation Wireless electronic module
5719586, May 15 1992 Round Rock Research, LLC Spherical antenna pattern(s) from antenna(s) arranged in a two-dimensional plane for use in RFID tags and labels
5894266, May 30 1996 Round Rock Research, LLC Method and apparatus for remote monitoring
5970398, Jul 30 1996 Round Rock Research, LLC Radio frequency antenna with current controlled sensitivity
6122494, Jul 30 1996 Round Rock Research, LLC Radio frequency antenna with current controlled sensitivity
6243013, Jan 08 1999 Intermec IP CORP; Intermec IP Corporation Cascaded DC voltages of multiple antenna RF tag front-end circuits
6292153, Aug 27 1999 HANGER SOLUTIONS, LLC Antenna comprising two wideband notch regions on one coplanar substrate
6434368, Oct 27 1998 Unwired Planet, LLC Diode-based switch for a radio transceiver
6466131, Jul 30 1996 Round Rock Research, LLC Radio frequency data communications device with adjustable receiver sensitivity and method
6466634, May 13 1996 Round Rock Research, LLC Radio frequency data communications device
6574454, Jul 30 1996 Round Rock Research, LLC Radio frequency antenna with current controlled sensitivity
7450076, Jun 28 2007 Cheng Uei Precision Industry Co., Ltd.; CHENG UEI PRECISION INDUSTRY CO , LTD Integrated multi-band antenna
20030174099,
20050083179,
20060007044,
20070152831,
20090058649,
20100123629,
20100277376,
RE32856, Nov 19 1987 Peter, Miller Alarm system
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Dec 23 2009Micron Technology, IncRound Rock Research, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0308630543 pdf
Oct 18 2010Round Rock Research, LLC(assignment on the face of the patent)
Date Maintenance Fee Events
Sep 25 2014M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Dec 17 2018REM: Maintenance Fee Reminder Mailed.
Jun 03 2019EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Apr 26 20144 years fee payment window open
Oct 26 20146 months grace period start (w surcharge)
Apr 26 2015patent expiry (for year 4)
Apr 26 20172 years to revive unintentionally abandoned end. (for year 4)
Apr 26 20188 years fee payment window open
Oct 26 20186 months grace period start (w surcharge)
Apr 26 2019patent expiry (for year 8)
Apr 26 20212 years to revive unintentionally abandoned end. (for year 8)
Apr 26 202212 years fee payment window open
Oct 26 20226 months grace period start (w surcharge)
Apr 26 2023patent expiry (for year 12)
Apr 26 20252 years to revive unintentionally abandoned end. (for year 12)