In case there is a malfunction of the magnetic bearing in an electrical machine, in which such magnetic bearings drive a rotary shaft in a stator (10), a safety bearing (14,14′) is provided. According to the present invention, the safety bearing (14,14′) exhibits an outer ring (16,16′) that is mounted on the stator (10), inside of which a revolving ring (22,22′,26) is operated. The safety bearing according to the present invention is particularly suited for machines that have a particularly large and heavy shaft.
|
5. An electrical machine, comprising:
a stator;
a shaft rotatably received in the stator;
a magnetic bearing assembly guiding the shaft;
a safety bearing assembly responsive in the event of a failure of the magnetic bearing assembly by holding and guiding the shaft as the shaft moves to a standstill, said safety bearing assembly comprising an outer ring which is mounted on the stator via a spring or damper assembly and has a U-shaped profile to define a base and two limbs extending from the base, wherein one of the limbs of the U-shaped outer ring is formed by a removable annular web, said safety bearing assembly comprising a rotatable ring which is guided in the spring or damper assembly in a sliding manner; and
a sliding agent introduced between the outer and rotatable rings.
8. An electrical machine, comprising:
a stator;
a shaft rotatably received in the stator;
a magnetic bearing assembly guiding the shaft; and
a safety bearing assembly responsive in the event of a failure of the magnetic bearing assembly by holding and guiding the shaft as the shaft moves to a standstill, said safety bearing assembly comprising an outer ring which is mounted on the stator via a spring or damper assembly and has a U-shaped profile to define a base and two limbs extending from the base, wherein one of the limbs of the U-shaped outer ring is formed by a removable annular web, said safety bearing assembly comprising a rotatable ring which is guided in the spring or damper assembly in a sliding manner,
wherein the outer and rotatable rings are provided with a sliding layer.
1. An electrical machine, comprising:
a stator;
a shaft rotatably received in the stator;
a magnetic bearing assembly guiding the shaft; and
a safety bearing assembly responsive in the event of a failure of the magnetic bearing assembly by holding and guiding the shaft as the shaft moves to a standstill, said safety bearing assembly comprising an outer ring which is mounted on the stator via a spring or damper assembly and has a U-shaped profile to define a base and two limbs extending from the base, wherein one of the limbs of the U-shaped outer ring is formed by a removable annular web, said safety bearing assembly comprising a rotatable ring which is guided in the spring or damper assembly in a sliding manner,
wherein the rotatable ring is comprised of an intermediate ring and an inner ring which surrounds the shaft and is guided in the intermediate ring in a sliding manner.
2. The electrical machine of
3. The electrical machine of
4. The electrical machine of
6. The electrical machine of
7. The electrical machine of
9. The electrical machine of
10. The electrical machine of
|
The invention relates to an electrical machine.
Magnetic bearings are being increasingly used in electrical machines because no friction losses occur on them, as in the case of mechanical bearings. However, magnetic bearings have the disadvantage that disturbances can lead to their failure. (The simplest disturbance situation is a conventional electrical power failure). If the disturbance occurs during operation of the electrical machine, the shaft of the electrical machine is still rotating at high speed when the magnetic bearing fails. It is therefore necessary to provide so-called safety bearings, which hold the shaft in the event of failure of the magnetic bearings, and guide it at least while it is brought to rest, for example during transition from the state in which the shaft is moving to it being brought to rest.
A first approach in the prior art for refinement of the safety bearings was to use essentially conventional roller bearings. In this case, the shaft is guided in the roller bearing with play, in which case it is normally guided by the magnetic bearing, with the roller bearing acting as a safety bearing only when the magnetic bearing fails. Roller bearings are successful, particularly in the case of small electrical machines, in which the shaft is not heavy. Roller bearings have the advantage that the so-called “backward whirl” is suppressed, rotation of the entire shaft in the opposite rotation direction to the rotation applied to it, about its rotation axis.
Roller bearings are not suitable for holding large, heavy rotors: there is only a point or line contact between the roller bodies and the bearing rings, thus resulting in very high surface pressures. These high loads can damage the roller bearings and can block the bearing. In the case of large, heavy shafts, such as those which are used in turbocompressors for feeding gas, dry sliding bearings are nowadays used as safety bearings. Dry sliding bearings essentially comprise a ring which is mounted on the stator and in which the shaft can then rotate in the event of failing of the magnetic bearings. Since the risk of backward whirl rises as the coefficient of friction between the shaft and the safety bearing increases, the aim is to minimize the coefficient of friction by choice of suitable materials for this ring. By way of example, specific bronze alloys are used as friction coatings, but they are subject to severe wear.
The problem of wear in a dry sliding bearing is solved in U.S. Pat. No. 5,739,609 by splitting the ring in two: one ring element is attached to the stator, and a second ring element is mounted in the first ring element. In the event of wear on the inner surface, the second ring element can then be replaced. A sliding means is used in this case in order to make it easier to replace the second ring element. However, during operation the second ring element remains rigid with respect to the first ring element, which is attached to the stator, so that nothing is fundamentally changed with regard to the method of operation as a dry sliding bearing.
The object of the invention is to provide a safety bearing, in particular for large heavy shafts as well, in which the backward whirl is avoided, and which is not subject to severe wear.
According to the invention, the object is achieved by an electrical machine having a stator and a shaft which can rotate therein and is guided by magnetic bearings, with safety bearings being provided in the event of failure of the magnetic bearings, which safety bearings then hold the shaft and guide it while its movement is being brought to rest, wherein the safety bearing of the electrical machine includes an outer ring which is mounted on the stator in which a rotatable ring is guided in a sliding manner.
If the magnetic bearings fail, the rotatable ring is moved on the basis of the transmission of a force or of a torque from the shaft and then results in the shaft not being able to carry out arbitrary movements in an uncontrolled manner, thus suppressing the backward whirl. The rotatable ring is guided in a sliding manner with little friction. The coefficients of friction of the arrangement are thus low overall. (A rolling friction force is conventionally comparatively small). Since the forces are not transmitted at points or on individual lines but over the entire inner surface and outer surface of the ring, the safety bearing has a high load-bearing capability and is particularly suitable for use of large, heavy shafts.
In a first embodiment, the rotatable ring is an inner ring which surrounds the shaft with radial play. If the magnetic bearings fail, the shaft falls downwards under the influence of gravity, then makes contact in the lower area of the inner ring and can accordingly transmit forces and torques.
In an alternative embodiment, the rotatable ring is an intermediate ring. The intermediate ring surrounds a further ring, which is guided in it in a sliding manner. However, in this case, this may be an intermediate ring or directly an inner ring which surrounds the shaft with radial play. The use of one or more intermediate rings has the advantage that, in the event of a fault of the sliding guide, a further option for sliding guidance still remains (in the example between the inner ring and the intermediate ring) at an intermediate point (for example between the intermediate ring and the outer ring).
In one preferred embodiment, the sliding guide has little friction, to be precise in that a sliding means is inserted between the rings, or the rings are provided with a sliding layer. In the latter case, it is sufficient to provide the inside of the outer ring and the outside of the inner ring, and possibly the intermediate ring, internally and externally, with a sliding layer. By way of example, a layer such as this may be composed Teflon or a specific electric chemical coating. In the case of the other alternatives, conventional grease or graphite can be used as the sliding means.
In a further preferred embodiment, the outer ring has a U-shaped profile. One limb of the “U” is in this case removable. In other words, the limb of the U-profile is formed by a removable annular web. The capability to remove it is necessary in order that the inner ring and possibly the intermediate ring can be introduced into the U-shaped profile. The U-shaped profile makes it possible in particular to introduce a sliding means, but may also be worthwhile when using the sliding layer as mentioned above because, in any case, this prevents the inner ring and/or the intermediate ring from being axially torn out with its limbs (and thus also for example tilting of the inner ring). The angle between the two limbs of the “U” in the U-profile on the base of the “U” need not necessarily be 90° in this case, but the limbs can also, for example, be opened somewhat wider in order in this way to provide an opening angle of 100° to 110°.
One preferred embodiment of the invention is described in the following text with reference to the drawing, in which:
An electrical machine according to the invention comprises a stator 10, which is indicated schematically in the
In the case of a first embodiment, which is illustrated in
As can be seen in particular in
In one alternative embodiment, which is illustrated in
As can be seen in
The embodiment shown in FIGS. 1A/1B and FIGS. 2A/2B have the common feature that the forces act in a distributed manner over an entire ring, as a result of which there are no pressure points as in the case of roller bearings. In comparison conventional dry bearings, as a result of the fact that rolling movements are introduced, this means that the main contribution to the coefficient of friction is the rolling resistance, which greatly reduces the friction. The inner ring 22/22′ is therefore subject only to a small amount of wear.
Petereit, Peter, Siegl, Günther, Menz, Ingo
Patent | Priority | Assignee | Title |
8786152, | Jul 06 2009 | Siemens Aktiengesellschaft | Safety bearing for retaining a rotor shaft of a machine |
9169847, | Jul 16 2012 | Solar Turbines Incorporated | Auxiliary bearing landing guard |
Patent | Priority | Assignee | Title |
5714818, | Oct 18 1994 | SMITHS INDUSTRIES AEROSPACE & DEFENSE SYSTEMS, INC | Backup bearing for magnetic bearings |
5739609, | Apr 09 1997 | Koyo Seiko Co., Ltd. | Magnetic bearing apparatus |
6617733, | Mar 31 1999 | Edwards Japan Limited | Magnetic bearing apparatus and vacuum pump having magnetic bearing apparatus |
20040189124, | |||
EP1083349, | |||
FR1016068, | |||
FR2614375, | |||
JP2004132513, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 15 2007 | Siemens Aktiengesellschaft | (assignment on the face of the patent) | / | |||
Oct 13 2008 | MENZ, INGO, DR | Siemens Aktiengesellschaft | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022826 | /0458 | |
Oct 13 2008 | PETEREIT, PETER | Siemens Aktiengesellschaft | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022826 | /0458 | |
Oct 21 2008 | SIEGL, GUNTHER, DR | Siemens Aktiengesellschaft | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022826 | /0458 |
Date | Maintenance Fee Events |
Oct 20 2014 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jan 21 2019 | REM: Maintenance Fee Reminder Mailed. |
Jul 08 2019 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
May 31 2014 | 4 years fee payment window open |
Dec 01 2014 | 6 months grace period start (w surcharge) |
May 31 2015 | patent expiry (for year 4) |
May 31 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 31 2018 | 8 years fee payment window open |
Dec 01 2018 | 6 months grace period start (w surcharge) |
May 31 2019 | patent expiry (for year 8) |
May 31 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 31 2022 | 12 years fee payment window open |
Dec 01 2022 | 6 months grace period start (w surcharge) |
May 31 2023 | patent expiry (for year 12) |
May 31 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |