An erasure resilient coding (ERC) distributed data storage system and method for storing data in a reliable and survivable fashion while minimizing hardware and associated costs. The system and method includes forming multiple protection groups both within and across storage nodes of the storage system. data is segmented into original data blocks and ERC data blocks. Load balancing occurs by interleaving storage nodes with equal numbers of original data blocks and ERC data blocks while ensuring each node has an equal number of combined read and write operations. Unique read and write operations on data block can be performed independent of other data blocks in a protection group. The write operation uses galois field arithmetic and ERC transform to either write or append a new data block to a storage node. The read operation recovers data in a variety of ways using ERC decoding.

Patent
   8051362
Priority
Jun 15 2007
Filed
Jun 15 2007
Issued
Nov 01 2011
Expiry
Aug 31 2030
Extension
1173 days
Assg.orig
Entity
Large
265
17
all paid
1. A method for processing an original data piece having a plurality of data blocks in a distributed data storage system, comprising:
forming multiple protection groups within the distributed data storage system such that each of the multiple protection groups contains more than one of the plurality of data blocks; and
writing and reading each of the plurality of data blocks independently of other data blocks in a same multiple protection group to reconstruct any one of the plurality of data blocks on demand.
12. A computer-readable medium having computer-executable instructions for writing a data piece to a multiple protected data blocks contained in storage nodes of a distributed data storage system, comprising:
replacing an old data block with a new data block;
perform a first galois field add operation on the new data block and the old data block to obtain a modified data block;
perform a mathematical transform on the modified data block to generate a transformed data block; and
writing the transformed data block to each of the storage nodes that contained the old data block.
16. A computer-implemented process for reading a data block that is part of an original data piece having a plurality of data blocks, the data block stored on a storage node in a distributed data storage system having multiple protection groups, comprising:
determining whether the data block is live on the storage node;
if the data block is live, then reading the data block from the storage node;
if the data block is not live, then finding one multiple protection group having all the live data blocks of the original data piece; and
decoding each of the live plurality of data blocks using an erasure resilient coding (ERC) decoding process to recover the data block.
2. The method of claim 1, wherein the plurality of data blocks include original data blocks and erasure resilient coding (ERC) data blocks generated using erasure resilient coding.
3. The method of claim 2, further comprising forming the multiple protection groups such that any one of the plurality of data blocks belongs to more than one protection group.
4. The method of claim 3, wherein the distributed data storage system includes a plurality of storage nodes, and further comprising:
forming multiple protection groups within a storage node; and
forming protection groups across storage nodes.
5. The method of claim 4, further comprising interleaving original data blocks and ERC data blocks among the multiple protection groups such that each storage node performs approximately a same number of combined read and write operations.
6. The method of claim 5, further comprising using an index server containing an index table to track a location of the original data blocks and the ERC data blocks on the storage nodes.
7. The method of claim 6, further comprising writing a new data block over an old data block, the writing further comprising:
reading out the old data block from each storage node containing the old data block; and
replacing the old data block with the new data block.
8. The method of claim 7, further comprising:
performing a first galois field add operation on the new data block and the old data block to obtain a modified data block;
performing a mathematical transform on the modified data block to generate a transformed data block; and
performing a second galois field add operation on the transformed data block and the old data block to write the new data block.
9. The method of claim 6, wherein reading a data block further comprises:
determining whether the data block is alive on its storage node; and
reading directly from the data block from the storage node if it is alive.
10. The method of claim 9, further comprising:
determining that the data block is not alive;
determining whether any one of the multiple protection groups contains live plurality of data blocks;
performing a distributed read from a multiple protection group containing all live plurality of data blocks; and
using erasure resilient coding (ERC) decoding to recover the data block.
11. The method of claim 10, further comprising:
determining that none of the multiple protection groups contain all live plurality of data blocks; and
performing another type of decoding other than ERC decoding to attempt to recover the data block.
13. The computer-readable medium of claim 12, further comprising reading out the old data block from each of the storage nodes containing the old data block.
14. The computer-readable medium of claim 13, further comprising performing a second galois field add operation on the transformed data block and the old data block before writing the transformed data block to each of the storage nodes containing the old data block.
15. The computer-readable medium of claim 14, further comprising:
forming protection groups in the distributed data storage system such that the protection groups are formed both across the storage nodes and within storage nodes; and
interleaving the multiple protected data blocks having both original data blocks and ERC data blocks such that each storage node contains a relatively equal number of original data blocks and ERC data blocks.
17. The computer-implemented process of claim 16, further comprising performing a distributed read from the multiple protection group having all of the live plurality of data blocks prior to decoding.
18. The computer-implemented process of claim 17, further comprising performing another type of decoding other than ERC decoding on the plurality of data blocks if a multiple protection group cannot be found having all of the plurality of data blocks that are live.
19. The computer-implemented process of claim 18, further comprising writing the data block by:
reading out an old data block from a storage nodes containing the old data block;
replacing the old data fragment with the data block;
performing a first galois field add operation on the data block and the old data fragment to create a modified data block;
performing a mathematical transform on the modified data block to create a transformed data block; and
performing a second galois field add operation on the transformed data block to write the transformed data block to the storage nodes that contained the old data blocks.
20. The computer-implemented process of claim 19, further comprising:
forming the multiple protection groups such that protection groups are formed both across and within storage nodes in the in the distributed data storage system; and
writing and reading the data block independently of other data blocks in a same multiple protection group.

Enterprises and consumers today face the problem of storing and managing an ever-increasing amount of data on non-volatile data storage systems such as hard disk drives. One promising direction in computer storage systems is to harness the collective storage capacity of massive commodity computers to form a large distributed data storage system. When designing such distributed data storage system an important factor to consider is data reliability. Once data is stored a user typically does not want or cannot afford to lose any of the stored data. Unfortunately, the data management chain is prone to failures at various links that can result in permanent data loss or a temporary unavailability of the data. For example, any one of a number of individual components of a massive distributed data storage system may fail for a variety of reasons. Hard drive failures, computer motherboard failures, memory problems, network cable problems, loose connections (such as a loose hard drive cable, memory cable, or network cable), power supply problems, and so forth can occur leaving the data inaccessible.

For distributed data storage systems to be useful in practice, proper redundancy schemes must be implemented to provide high reliability, availability and survivability. One type of redundancy scheme is replication, whereby data is replicated two, three, or more times to different computers in the system. As long as any one of the replica is accessible, the data is available. Most distributed data storage systems use replication for simplified system design and low access overhead.

One problem, however, with the replication technique is that the cost of storing a duplication of data can become prohibitively expense. Large storage cost directly translates into high cost in hardware (hard drives and associated machines), as well as the cost to operate the storage system, which includes the power for the machine, cooling, and maintenance. For example, if the data is replicated three times then the associated costs of storing the data are tripled.

One way to decrease this storage cost is by using another type of redundancy scheme called erasure resilient coding (ERC). Erasure resilient coding enables lossless data recovery notwithstanding loss of information during storage or transmission. The basic idea of the ERC technique is to use certain mathematical transforms and map k original data blocks from an original data piece into n total data blocks, where n>k. The original data piece includes the k original data blocks and the n−k parity (or ERC) data blocks. When there are no more than n−k failures all original data can be retrieved using the inverse of the mathematical transforms. At retrieval time the n data blocks are retrieved to recover the original data piece. Currently, the main use of the ERC technique in distributed data storage systems is in the form of large peer-to-peer (P2P) systems.

A protection group is often used in ERC to provide an added measure of protection to the data. Typically, each of the n data blocks is placed in a single protection group. One problem, however, with using the ERC technique in distributed data storage systems is that because the data is fragmented and stored in a plurality of blocks multiple protection groups cannot be created. Another problem is that when a data block is modified each of the data blocks belonging to the same protection group must also be modified. In other words, whenever a data block is written or read then all the other data blocks in the protection group also must be modified.

This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.

The erasure resilient coding (ERC) distributed data storage system and method includes using ERC in a distributed data storage environment to achieve the same level of reliability as data replication with much less hardware. The system and method use software instead of hardware to improve data reliability and survivability. More specifically, the system and method allows the formation of multiple protection groups that contain a plurality of data blocks. The multiple protection groups are formed both across and within storage nodes. Because of the unique read and write operations based on erasure resilient coding, the reading and writing of each data block can be performed independent of other data blocks in the same protection group.

The ERC distributed data storage system and method also achieves load balancing over the ERC distributed data storage system. In particular, an original data piece is segmented into a plurality of data blocks, including original data blocks and ERC data blocks. The system includes several storage nodes that store both types of data blocks. The system and method interleaves original data blocks and ERC data blocks among the storage nodes so that the load is balanced between nodes. In some embodiments, this balancing is achieved by dispersing the data blocks such that each storage node performs approximately the same number of read and write operations. In other embodiments, the balancing is achieved by ensuring that each storage node contains a relatively equal number of original data blocks and ERC data blocks.

The ERC distributed data storage system and method reads and writes a data block independent of other data blocks with the same protection group. The unique write operation is capable of a true write operation (when there is an existing data block) or an append operation (when there is not an existing data block). In the first case, the write operation replaces an old data block with a new data block and performs Galois field arithmetic on the new and old data blocks. Further mathematical operations are performed, including a mathematical transform using erasure resilient coding and a second Galois field arithmetic operation. The resultant transformed data block is written to each of the storage nodes containing the old data block. In the second case, there is no old data block and the new data block is appended to either the front or back of the data after being mathematically processed as described above.

The unique read operation of the ERC distributed data storage system and method is capable of recovering a data block in a variety of ways. First, any data block that is live and fresh on its storage node is directly read out of the node. Second, if the data block is stale then a search is made for one protection group having all the live data blocks of the original data piece. Stale means that a failure has occurred or that the machine is in the process of recovering from such a failure. If such a protection group is found, then a distributed read and ERC decoding are performed to recover the data block. Third, if such a protection group cannot be found then another type of decoding is performed to attempt to recover the data block.

It should be noted that alternative embodiments are possible, and that steps and elements discussed herein may be changed, added, or eliminated, depending on the particular embodiment. These alternative embodiments include alternative steps and alternative elements that may be used, and structural changes that may be made, without departing from the scope of the invention.

Referring now to the drawings in which like reference numbers represent corresponding parts throughout:

FIG. 1 is a block diagram illustrating the erasure resilient coding (ERC) distributed data storage system and method disclosed herein implemented in a distributed data storage environment.

FIG. 2 is a block diagram illustrating an exemplary implementation of the ERC distributed data storage system disclosed herein.

FIG. 3 is a flow diagram illustrating the general operation of the method used in the ERC distributed data storage system shown in FIGS. 1 and 2.

FIG. 4 is a flow diagram illustrating the detailed operation of the multiple protection group module shown in FIG. 2.

FIG. 5 is a block diagram illustrating an example of multiple protection groups formed both across and within storage nodes.

FIG. 6 is a flow diagram illustrating the detailed operation of the data block allocation module shown in FIG. 2.

FIG. 7 is a flow diagram illustrating the detailed operation of the data write module shown in FIG. 2.

FIG. 8 is a flow diagram illustrating the detailed operation of the data read module shown in FIG. 2.

FIG. 9 illustrates an example of a suitable computing system environment in which the ERC distributed data storage system and method shown in FIGS. 1-8 may be implemented.

In the following description of the erasure resilient coding (ERC) distributed data storage system and method reference is made to the accompanying drawings, which form a part thereof, and in which is shown by way of illustration a specific example whereby the ERC distributed data storage system and method may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the claimed subject matter.

I. System and Operational Overview

FIG. 1 is a block diagram illustrating the ERC distributed data storage system and method disclosed herein implemented in a distributed data storage environment. Referring to FIG. 1, the distributed data storage environment includes a plurality of storage nodes labeled as storage node (1) to storage node (N). Each of these storage nodes is a computing device. The storage nodes are in communication with an index server 100 through a network 110. As explained in detail below, the index server 100 contains an index table (not shown) for tracking the location of data blocks dispersed throughout the storage nodes. The data blocks are fragments of an original piece of data (or data piece). As shown in FIG. 2, the ERC distributed data storage system and method described in detail below is running on each of the storage nodes.

FIG. 2 is a block diagram illustrating an exemplary implementation of the ERC distributed data storage system 200 disclosed herein. It should be noted that FIG. 2 is merely one of several ways in which the ERC distributed data storage system 200 may be implemented and used. The ERC distributed data storage system 200 may be implemented on various types of processing systems, such as on a central processing unit (CPU) or multi-core processing systems.

Referring to FIG. 2, the ERC distributed data storage system 200 is shown implemented on a storage node computing device 210. It should be noted that the storage node computing device 210 may include a single processor (such as a desktop or laptop computer) or several processor and computers connected to each other. The input to the ERC distributed data storage system 200 is an original data piece (box 220). As explained in detail below, the ERC distributed data storage system 200 processes this original data piece, breaks the original data piece into several blocks, performs ERC processing on the blocks to obtain multiple protected blocks of the original data piece (box 230), and stores the multiple protected blocks such that even in the event of failures the original data piece can be recovered.

The ERC distributed data storage system 200 includes software or program modules for execution on the storage node computing device 210. In particular, the ERC distributed data storage system 200 includes a multiple protection group module 240 and a data block allocation module 250. The multiple protection group module 240 generates multiple protection groups for the original data piece 220. The data block allocation module 250 allocates both original data blocks and ERC data blocks among the storage nodes such the computation load is equally balanced between the storage nodes.

The ERC distributed data storage system 200 also includes a data write module 260 and a data read module 270. The data write module 260 appends a data block to storage nodes by performing mathematical modifications to the data blocks and replacing the old data block with the new data block. The data read module 270 recovers data by determining whether a data block is alive or dead on a storage node and acting accordingly. The operation of each of these modules will be discussed in detail below.

FIG. 3 is a flow diagram illustrating the general operation of the method used in the ERC distributed data storage system shown in FIGS. 1 and 2. In general, the ERC distributed data storage method processes an original data piece to ensure that the data piece can be reconstructed even in the case of hardware failures. More specifically, the ERC distributed data storage method begins by inputting an original data piece (box 300). The original data piece then is segmented into a plurality of data block (box 310). These plurality of data blocks include original data blocks and ERC data blocks. The ERC data blocks are obtained using erasure resilient coding, which is well known in the art.

The method then forms multiple protection group each having more than a single data block (box 320). These multiple protection groups add another layer of data reliability. Next, each of the plurality of data blocks can be written independently of other data blocks in the same protection group (box 330). Similarly, each of the plurality of data blocks also can be read independently of other data blocks in the same protection group (box 340). The read and write operations can be used to reconstruct the data piece on demand (box 350). Once requested, the method reconstructs the data piece and outputs a reconstructed data piece (box 360).

II. Operational Details

Each of the mentioned above will now be discussed in further detail. In particular, details of the multiple protection group module 240, the data block allocation module 250, the data write module 260, and the data read module 270 will be discussed to further clarify the details of the ERC distributed data storage system and method.

Multiple Protection Group Module

FIG. 4 is a flow diagram illustrating the detailed operation of the multiple protection group module 240 shown in FIG. 2. In general, the module 240 generates multiple protection groups for protecting data. The operation begins by inputting original data blocks and ERC data blocks (box 400). Some multiple protection groups are formed within storage nodes (box 410), while some multiple protection groups are formed across storage nodes (box 420). The output of the module are the multiple protection groups (box 430).

FIG. 5 is a block diagram illustrating an example of multiple protection groups formed both across and within storage nodes. The example of FIG. 5 illustrates N storage node clusters, from storage node cluster (1) to storage node cluster (N). Note that in the example of FIG. 5, N=10. It should be noted that each storage node cluster can be data centers located in different geographic locations.

The idea behind forming the protection groups is that there are a plurality of data blocks that can be located on different storage nodes. A key concept is that the erasure chunks are interleaved into each data center or storage node cluster. This alleviates the need to dedicate one data center or machine to erasure coding only.

As shown in FIG. 5, a 3D array of storage node clusters is illustrated, such that each block represents a storage node. The 3D planes of the array are labeled as A, B, C. The array includes an A-B face 500, a B-C face 510, and an A-C face 520. The A-B face 500 is shown labeled, where Xi,j represents an original data block, Yi,j represents an erasure-coded data chunk within the same data center or storage node cluster, and Zi,j represents an erasure-coded data chunk across the data center or storage node cluster. It should be noted that the Zi,j's are interleaved with each line such that there is no need to dedicate any single data center or storage node cluster for erasure coding.

Examples of protection groups for this data are shown by the dashed lines. Protection groups can be formed within storage nodes clusters. In particular, a first protection group 530 is formed within storage node cluster (1). In addition, protection groups can also be formed across storage nodes. As shown FIG. 5, a second protection group 540 is formed across the storage node clusters. In addition, some data blocks belong to a single protection group while other data blocks belong to multiple protection groups. For example, the original data blocks X11 belongs to multiple protection groups, while other data blocks may belong to a single protection group. Forming multiple protection groups in this manner provides data protection within a storage node and across a storage node.

Data Block Allocation Module

FIG. 6 is a flow diagram illustrating the detailed operation of the data block allocation module 250 shown in FIG. 2. In general, the module 250 allocates data blocks to different storage nodes by smoothing the load each storage node has to bear. More specifically, the module 250 inputs the multiple protection group and data blocks including the original data blocks and the ERC data blocks (box 600). Some of the data blocks then are assigned to more than one protection group (box 610), while some data blocks are assigned to a single protection group (box 620).

The module 250 then interleaves original data blocks and ERC data blocks among the multiple protection groups so that the load is balanced across the storage nodes (box 630). Specifically, in some embodiments the criteria for load balancing is that each storage node performs approximately the same number of read and write operations. In other embodiments, the criteria for load balancing is that each storage node contains a relatively equal number of original data blocks and ERC data blocks.

Recall from above that the original data piece is split into multiple data blocks. An ERC data block has more complicated operations as compared to an original data block. In particular, the ERC data block has four times the read and write operations of an original data blocks. In addition, an input/output (I/O) operation must be performed any time one of the ERC data blocks is touched. Thus, the ERC data blocks are more heavily loaded that the original data blocks. If there were storage nodes that only stored and processed ERC data blocks, then that node would quickly become overloaded. The idea is to interleave the original data blocks and the ERC data blocks on different storage nodes so that on average each machine has the same number of input/output (I/O) operations. Interleaving the ERC data blocks with the original data blocks on the storage nodes serves to balance the load.

The module 250 then uses an index table located on the index server 100 to track the location of the original data blocks and the ERC data blocks on the storage nodes (box 640). Since the original data piece exist on a plurality of different storage nodes, it is necessary to keep track of where the data objects are located. An index table located on the index server 100 is used to keep track of this information. The index table keeps track of how many data blocks each original data piece has, and, for each original data piece, which storage nodes contain the data blocks. In addition, the index table keeps track of whether the data block is an original data block or an ERC data block.

The allocation information for each data block is stored on the index server 100 in the index table, as described above. It should be noted that it is assumed that the index server 100 is reliable. The index server 100 can achieve this reliability by using the ERC distributed data storage system and method or a replication technique. Since the size of the index table typically is not that large, the replication technique may be used. In some embodiments the index server 100 is a structured query language (SQL) server. Finally, the module 250 outputs the original data blocks and the ERC data blocks assigned to their respective storage nodes and protection groups (box 650).

Data Write Module

FIG. 7 is a flow diagram illustrating the detailed operation of the data write module 260 shown in FIG. 2. In general, the module 260 uses a write operation to replace an old data block with a new data block or append a new data block to existing data. In particular, the module 260 inputs a new data block to be written or appended (box 700). Next, an old data block (if it exists) is read out from each storage node that contains the old data block (box 710). Note that if the old data block does not exists, then the write operation is simply an append. This means that the new data block is appended to the beginning or end of data already stored on a storage node.

The module 260 then makes a determination as to whether the node contains a systematic version of the old data. This determination is made because there are two cases for the write operation. In the first case, a node contains the systematic version of the old data, in which case the module 260 then replaces an old data block with the new data block (box 730). In a second case, the node does not contain the systematic version of the old data, in which case two Galois fields are used. In this second case, a first Galois field add operation is performed on the new data block and the old data block (box 740). Galois field arithmetic is well known to those having ordinary skill in the art. This yields a modified data block. A mathematical transform then is performed on the modified data block using erasure resilient coding to generate a transformed data block (box 750). A second Galois field add operation is performed on the transformed data block and the old data block (box 760). The module 260 then writes the new data block (in the first case) or the transformed data block (in the second case) to each of the storage nodes that contained the old data block (box 770).

During the write operation the write needs to be propagated to all storage nodes within the protection groups to which the nodes belong. By way of example, assume a storage node belongs to two protection groups: a first protection group containing 4 protection nodes, and a second protection group containing 1 protection node. During an erasure write, the write operation is applied to 5 protection nodes over two separate protection groups. The write operation basically performs the first Galois field add on new data block with the old data block. The resultant modified data block then is propagated to each of the protection groups. For each of the protection groups a linear transformation is applied to the modified data block to obtain the transformed data block. If the write operation is an append only (meaning that the old data block is zero), then the new data block is append to either end of the existing data.

Data Read Module

FIG. 8 is a flow diagram illustrating the detailed operation of the data read module 270 shown in FIG. 2. In general, the module 260 uses a read operation to recover a desired data block from the storage nodes. Specifically, the module 270 inputs a request to read a data block (box 800). This data block is part of an original data piece that contains a plurality of data blocks.

The module 270 then makes a determination as to whether the data block is live (or alive) on the storage node (box 810). By “live”, it is meant that there has not been a hardware failure, power failure, shutdown, or some other event that keeps the data block from being accessed. On the other hand, if the data block is “stale” it means that a failure has occurred or the machine is in the process of recovering from a failure. If the data block is live on the storage node, then a single read is performed such that the data block is read directly from the storage node (box 820).

If the data block is not live (or “stale”) on the storage node, then the module 270 makes another determination as to whether one multiple protection group can be found whereby all of the plurality of data blocks are live (box 830). For example, assume that the original data piece was fragmented into k data blocks, where k is a positive integer value. The idea is to find a protection group having all k data blocks that are live.

If a protection group can be found where the plurality of data blocks are live, then the module 270 performs a distributed read from that protection group (box 840). The distributed read operation can succeed if k out of n blocks in the protection group are live. Note that all n blocks of a protection group do not need to be live, only k out of the n blocks. Using the present example, the module 270 would perform a distributed read of all of the k data blocks. Next, an ERC decoding is performed on each of the plurality of live data blocks (box 850). The desired data block then is recovered in this manner (box 860).

If no protection group can be found having all of the live plurality of data blocks, then a decoding using a method other than ERC decoding is performed on the data block (box 870). There is no guarantee that another type of decoding will work to recover the desired data block. If recoverable, however, the module 270 recovers the desired data block (box 880) and outputs the recovered data block (box 890).

III. Exemplary Operating Environment

The erasure resilient coding (ERC) distributed data storage system and method is designed to operate in a computing environment. The following discussion is intended to provide a brief, general description of a suitable computing environment in which the ERC distributed data storage system and method may be implemented.

FIG. 9 illustrates an example of a suitable computing system environment in which the ERC distributed data storage system and method shown in FIGS. 1-8 may be implemented. The computing system environment 900 is only one example of a suitable computing environment and is not intended to suggest any limitation as to the scope of use or functionality of the invention. Neither should the computing environment 900 be interpreted as having any dependency or requirement relating to any one or combination of components illustrated in the exemplary operating environment.

The ERC distributed data storage system and method is operational with numerous other general purpose or special purpose computing system environments or configurations. Examples of well known computing systems, environments, and/or configurations that may be suitable for use with the ERC distributed data storage system and method include, but are not limited to, personal computers, server computers, hand-held (including smartphones), laptop or mobile computer or communications devices such as cell phones and PDA's, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like.

The ERC distributed data storage system and method may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer. Generally, program modules include routines, programs, objects, components, data structures, etc., that perform particular tasks or implement particular abstract data types. The ERC distributed data storage system and method may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in both local and remote computer storage media including memory storage devices. With reference to FIG. 9, an exemplary system for the ERC distributed data storage system and method includes a general-purpose computing device in the form of a computer 910 (the storage node computing device 210 is an example of the computer 910).

Components of the computer 910 may include, but are not limited to, a processing unit 920 (such as a central processing unit, CPU), a system memory 930, and a system bus 921 that couples various system components including the system memory to the processing unit 920. The system bus 921 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures. By way of example, and not limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus also known as Mezzanine bus.

The computer 910 typically includes a variety of computer readable media. Computer readable media can be any available media that can be accessed by the computer 910 and includes both volatile and nonvolatile media, removable and non-removable media. By way of example, and not limitation, computer readable media may comprise computer storage media and communication media. Computer storage media includes volatile and nonvolatile removable and non-removable media implemented in any method or technology for storage of information such as computer readable instructions, data structures, program modules or other data.

Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computer 910. Communication media typically embodies computer readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media.

Note that the term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of any of the above should also be included within the scope of computer readable media.

The system memory 940 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 931 and random access memory (RAM) 932. A basic input/output system 933 (BIOS), containing the basic routines that help to transfer information between elements within the computer 910, such as during start-up, is typically stored in ROM 931. RAM 932 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 920. By way of example, and not limitation, FIG. 9 illustrates operating system 934, application programs 935, other program modules 936, and program data 937.

The computer 910 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only, FIG. 9 illustrates a hard disk drive 941 that reads from or writes to non-removable, nonvolatile magnetic media, a magnetic disk drive 951 that reads from or writes to a removable, nonvolatile magnetic disk 952, and an optical disk drive 955 that reads from or writes to a removable, nonvolatile optical disk 956 such as a CD ROM or other optical media.

Other removable/non-removable, volatile/nonvolatile computer storage media that can be used in the exemplary operating environment include, but are not limited to, magnetic tape cassettes, flash memory cards, digital versatile disks, digital video tape, solid state RAM, solid state ROM, and the like. The hard disk drive 941 is typically connected to the system bus 921 through a non-removable memory interface such as interface 940, and magnetic disk drive 951 and optical disk drive 955 are typically connected to the system bus 921 by a removable memory interface, such as interface 950.

The drives and their associated computer storage media discussed above and illustrated in FIG. 9, provide storage of computer readable instructions, data structures, program modules and other data for the computer 910. In FIG. 9, for example, hard disk drive 941 is illustrated as storing operating system 944, application programs 945, other program modules 946, and program data 947. Note that these components can either be the same as or different from operating system 934, application programs 935, other program modules 936, and program data 937.

Operating system 944, application programs 945, other program modules 946, and program data 947 are given different numbers here to illustrate that, at a minimum, they are different copies. A user may enter commands and information (or data) into the computer 910 through input devices such as a keyboard 962, pointing device 961, commonly referred to as a mouse, trackball or touch pad, and a touch panel or touch screen (not shown).

Other input devices (not shown) may include a microphone, joystick, game pad, satellite dish, scanner, radio receiver, or a television or broadcast video receiver, or the like. These and other input devices are often connected to the processing unit 920 through a user input interface 960 that is coupled to the system bus 921, but may be connected by other interface and bus structures, such as, for example, a parallel port, game port or a universal serial bus (USB). A monitor 991 or other type of display device is also connected to the system bus 921 via an interface, such as a video interface 990. In addition to the monitor, computers may also include other peripheral output devices such as speakers 997 and printer 996, which may be connected through an output peripheral interface 995.

The computer 910 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 980. The remote computer 980 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the computer 910, although only a memory storage device 981 has been illustrated in FIG. 9. The logical connections depicted in FIG. 9 include a local area network (LAN) 971 and a wide area network (WAN) 973, but may also include other networks. Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets and the Internet.

When used in a LAN networking environment, the computer 910 is connected to the LAN 971 through a network interface or adapter 970. When used in a WAN networking environment, the computer 910 typically includes a modem 972 or other means for establishing communications over the WAN 973, such as the Internet. The modem 972, which may be internal or external, may be connected to the system bus 921 via the user input interface 960, or other appropriate mechanism. In a networked environment, program modules depicted relative to the computer 910, or portions thereof, may be stored in the remote memory storage device. By way of example, and not limitation, FIG. 9 illustrates remote application programs 985 as residing on memory device 981. It will be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers may be used.

The foregoing Detailed Description has been presented for the purposes of illustration and description. Many modifications and variations are possible in light of the above teaching. It is not intended to be exhaustive or to limit the subject matter described herein to the precise form disclosed. Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims appended hereto.

Li, Jin, He, Li-wei, Liang, Jian

Patent Priority Assignee Title
10007457, Dec 22 2015 Pure Storage, Inc.; Pure Storage, Inc Distributed transactions with token-associated execution
10082985, Mar 27 2015 Pure Storage, Inc. Data striping across storage nodes that are assigned to multiple logical arrays
10108355, Sep 01 2015 Pure Storage, Inc.; Pure Storage, Inc Erase block state detection
10110676, Aug 22 2014 NEXENTA BY DDN, INC Parallel transparent restructuring of immutable content in a distributed object storage system
10114757, Jul 02 2014 Pure Storage, Inc. Nonrepeating identifiers in an address space of a non-volatile solid-state storage
10140149, May 19 2015 Pure Storage, Inc.; Pure Storage, Inc Transactional commits with hardware assists in remote memory
10141050, Apr 27 2017 Pure Storage, Inc. Page writes for triple level cell flash memory
10178083, Jun 05 2012 Pure Storage, Inc Updating access control information within a dispersed storage unit
10178169, Apr 09 2015 Pure Storage, Inc.; Pure Storage, Inc Point to point based backend communication layer for storage processing
10185506, Jul 03 2014 Pure Storage, Inc. Scheduling policy for queues in a non-volatile solid-state storage
10187083, Jun 26 2015 Microsoft Technology Licensing, LLC Flexible erasure coding with enhanced local protection group structures
10198380, Jul 03 2014 Pure Storage, Inc. Direct memory access data movement
10203903, Jul 26 2016 Pure Storage, Inc.; Pure Storage, Inc Geometry based, space aware shelf/writegroup evacuation
10210926, Sep 15 2017 Pure Storage, Inc. Tracking of optimum read voltage thresholds in nand flash devices
10211983, Sep 30 2015 Pure Storage, Inc. Resharing of a split secret
10216411, Aug 07 2014 Pure Storage, Inc. Data rebuild on feedback from a queue in a non-volatile solid-state storage
10216420, Jul 24 2016 Pure Storage, Inc. Calibration of flash channels in SSD
10261690, May 03 2016 Pure Storage, Inc. Systems and methods for operating a storage system
10277408, Oct 23 2015 Pure Storage, Inc. Token based communication
10303547, Jun 04 2014 Pure Storage, Inc. Rebuilding data across storage nodes
10324812, Aug 07 2014 Pure Storage, Inc. Error recovery in a storage cluster
10353635, Mar 27 2015 Pure Storage, Inc. Data control across multiple logical arrays
10366004, Jul 26 2016 Pure Storage, Inc.; Pure Storage, Inc Storage system with elective garbage collection to reduce flash contention
10372617, Jul 02 2014 Pure Storage, Inc. Nonrepeating identifiers in an address space of a non-volatile solid-state storage
10379763, Jun 04 2014 Pure Storage, Inc. Hyperconverged storage system with distributable processing power
10394484, Feb 26 2016 Hitachi, LTD Storage system
10430306, Jun 04 2014 Pure Storage, Inc. Mechanism for persisting messages in a storage system
10454498, Oct 18 2018 Pure Storage, Inc. Fully pipelined hardware engine design for fast and efficient inline lossless data compression
10467527, Jan 31 2018 Pure Storage, Inc. Method and apparatus for artificial intelligence acceleration
10496295, Apr 10 2015 Pure Storage, Inc. Representing a storage array as two or more logical arrays with respective virtual local area networks (VLANS)
10496330, Oct 31 2017 Pure Storage, Inc. Using flash storage devices with different sized erase blocks
10498580, Aug 20 2014 Pure Storage, Inc. Assigning addresses in a storage system
10515701, Oct 31 2017 Pure Storage, Inc Overlapping raid groups
10528419, Aug 07 2014 Pure Storage, Inc. Mapping around defective flash memory of a storage array
10528488, Mar 30 2017 Pure Storage, Inc. Efficient name coding
10545687, Oct 31 2017 Pure Storage, Inc. Data rebuild when changing erase block sizes during drive replacement
10572176, Jul 02 2014 Pure Storage, Inc. Storage cluster operation using erasure coded data
10574754, Jun 04 2014 Pure Storage, Inc.; Pure Storage, Inc Multi-chassis array with multi-level load balancing
10579474, Aug 07 2014 Pure Storage, Inc. Die-level monitoring in a storage cluster
10599348, Dec 22 2015 Pure Storage, Inc. Distributed transactions with token-associated execution
10649659, May 03 2016 Pure Storage, Inc. Scaleable storage array
10650902, Jan 13 2017 Pure Storage, Inc. Method for processing blocks of flash memory
10671480, Jun 04 2014 Pure Storage, Inc. Utilization of erasure codes in a storage system
10678452, Sep 15 2016 Pure Storage, Inc.; Pure Storage, Inc Distributed deletion of a file and directory hierarchy
10691567, Jun 03 2016 Pure Storage, Inc Dynamically forming a failure domain in a storage system that includes a plurality of blades
10691812, Jul 03 2014 Pure Storage, Inc. Secure data replication in a storage grid
10693964, Apr 09 2015 Pure Storage, Inc. Storage unit communication within a storage system
10705732, Dec 08 2017 Pure Storage, Inc. Multiple-apartment aware offlining of devices for disruptive and destructive operations
10712942, May 27 2015 Pure Storage, Inc. Parallel update to maintain coherency
10719265, Dec 08 2017 Pure Storage, Inc. Centralized, quorum-aware handling of device reservation requests in a storage system
10733053, Jan 31 2018 Pure Storage, Inc. Disaster recovery for high-bandwidth distributed archives
10768819, Jul 22 2016 Pure Storage, Inc.; Pure Storage, Inc Hardware support for non-disruptive upgrades
10776034, Jul 26 2016 Pure Storage, Inc. Adaptive data migration
10809919, Jun 04 2014 Pure Storage, Inc. Scalable storage capacities
10817431, Jul 02 2014 Pure Storage, Inc. Distributed storage addressing
10831594, Jul 22 2016 Pure Storage, Inc. Optimize data protection layouts based on distributed flash wear leveling
10838633, Jun 04 2014 Pure Storage, Inc. Configurable hyperconverged multi-tenant storage system
10853146, Apr 27 2018 Pure Storage, Inc.; Pure Storage, Inc Efficient data forwarding in a networked device
10853243, Mar 26 2015 Pure Storage, Inc. Aggressive data deduplication using lazy garbage collection
10853266, Sep 30 2015 Pure Storage, Inc. Hardware assisted data lookup methods
10853285, Jul 03 2014 Pure Storage, Inc. Direct memory access data format
10860475, Nov 17 2017 Pure Storage, Inc. Hybrid flash translation layer
10877827, Sep 15 2017 Pure Storage, Inc. Read voltage optimization
10877861, Jul 02 2014 Pure Storage, Inc. Remote procedure call cache for distributed system
10884919, Oct 31 2017 Pure Storage, Inc. Memory management in a storage system
10887099, Sep 30 2015 Pure Storage, Inc. Data encryption in a distributed system
10915813, Jan 31 2018 Pure Storage, Inc. Search acceleration for artificial intelligence
10929031, Dec 21 2017 Pure Storage, Inc.; Pure Storage, Inc Maximizing data reduction in a partially encrypted volume
10929053, Dec 08 2017 Pure Storage, Inc. Safe destructive actions on drives
10931450, Apr 27 2018 Pure Storage, Inc. Distributed, lock-free 2-phase commit of secret shares using multiple stateless controllers
10942869, Mar 30 2017 Pure Storage, Inc. Efficient coding in a storage system
10944671, Apr 27 2017 Pure Storage, Inc. Efficient data forwarding in a networked device
10976947, Oct 26 2018 Pure Storage, Inc. Dynamically selecting segment heights in a heterogeneous RAID group
10976948, Jan 31 2018 Pure Storage, Inc.; Pure Storage, Inc Cluster expansion mechanism
10979223, Jan 31 2017 Pure Storage, Inc.; Pure Storage, Inc Separate encryption for a solid-state drive
10983732, Jul 13 2015 Pure Storage, Inc.; Pure Storage, Inc Method and system for accessing a file
10983866, Aug 07 2014 Pure Storage, Inc. Mapping defective memory in a storage system
10990283, Aug 07 2014 Pure Storage, Inc. Proactive data rebuild based on queue feedback
10990566, Nov 20 2017 Pure Storage, Inc. Persistent file locks in a storage system
11016667, Apr 05 2017 Pure Storage, Inc. Efficient mapping for LUNs in storage memory with holes in address space
11024390, Oct 31 2017 Pure Storage, Inc.; Pure Storage, Inc Overlapping RAID groups
11030090, Jul 26 2016 Pure Storage, Inc. Adaptive data migration
11036583, Jun 04 2014 Pure Storage, Inc. Rebuilding data across storage nodes
11057468, Jun 04 2014 Pure Storage, Inc. Vast data storage system
11068363, Jun 04 2014 Pure Storage, Inc. Proactively rebuilding data in a storage cluster
11068389, Jun 11 2017 Pure Storage, Inc. Data resiliency with heterogeneous storage
11070382, Oct 23 2015 Pure Storage, Inc. Communication in a distributed architecture
11074016, Oct 31 2017 Pure Storage, Inc. Using flash storage devices with different sized erase blocks
11079962, Jul 02 2014 Pure Storage, Inc. Addressable non-volatile random access memory
11080140, Feb 25 2014 GOOGLE LLC Data reconstruction in distributed storage systems
11080154, Aug 07 2014 Pure Storage, Inc. Recovering error corrected data
11080155, Jul 24 2016 Pure Storage, Inc. Identifying error types among flash memory
11086532, Oct 31 2017 Pure Storage, Inc. Data rebuild with changing erase block sizes
11099749, Sep 01 2015 Pure Storage, Inc. Erase detection logic for a storage system
11099986, Apr 12 2019 Pure Storage, Inc. Efficient transfer of memory contents
11138082, Jun 04 2014 Pure Storage, Inc. Action determination based on redundancy level
11138103, Jun 11 2017 Pure Storage, Inc. Resiliency groups
11144212, Apr 10 2015 Pure Storage, Inc. Independent partitions within an array
11188269, Mar 27 2015 Pure Storage, Inc. Configuration for multiple logical storage arrays
11188432, Feb 28 2020 Pure Storage, Inc. Data resiliency by partially deallocating data blocks of a storage device
11188476, Aug 20 2014 Pure Storage, Inc. Virtual addressing in a storage system
11190580, Jul 03 2017 Pure Storage, Inc. Stateful connection resets
11204701, Dec 22 2015 Pure Storage, Inc. Token based transactions
11204830, Aug 07 2014 Pure Storage, Inc. Die-level monitoring in a storage cluster
11231858, May 19 2016 Pure Storage, Inc.; Pure Storage, Inc Dynamically configuring a storage system to facilitate independent scaling of resources
11231956, May 19 2015 Pure Storage, Inc. Committed transactions in a storage system
11232079, Jul 16 2015 Pure Storage, Inc.; Pure Storage, Inc Efficient distribution of large directories
11240307, Apr 09 2015 Pure Storage, Inc. Multiple communication paths in a storage system
11256587, Apr 17 2020 Pure Storage, Inc. Intelligent access to a storage device
11275681, Nov 17 2017 Pure Storage, Inc. Segmented write requests
11281394, Jun 24 2019 Pure Storage, Inc. Replication across partitioning schemes in a distributed storage system
11289169, Jan 13 2017 Pure Storage, Inc. Cycled background reads
11294893, Mar 20 2015 Pure Storage, Inc. Aggregation of queries
11301147, Sep 15 2016 Pure Storage, Inc. Adaptive concurrency for write persistence
11307998, Jan 09 2017 Pure Storage, Inc.; Pure Storage, Inc Storage efficiency of encrypted host system data
11310317, Jun 04 2014 Pure Storage, Inc. Efficient load balancing
11327674, Jun 05 2012 Pure Storage, Inc Storage vault tiering and data migration in a distributed storage network
11334254, Mar 29 2019 Pure Storage, Inc. Reliability based flash page sizing
11340821, Jul 26 2016 Pure Storage, Inc. Adjustable migration utilization
11354058, Sep 06 2018 Pure Storage, Inc. Local relocation of data stored at a storage device of a storage system
11385799, Jun 04 2014 Pure Storage, Inc. Storage nodes supporting multiple erasure coding schemes
11385979, Jul 02 2014 Pure Storage, Inc. Mirrored remote procedure call cache
11392522, Jul 03 2014 Pure Storage, Inc. Transfer of segmented data
11399063, Jun 04 2014 Pure Storage, Inc. Network authentication for a storage system
11409437, Jul 22 2016 Pure Storage, Inc. Persisting configuration information
11416144, Dec 12 2019 Pure Storage, Inc. Dynamic use of segment or zone power loss protection in a flash device
11416338, Apr 24 2020 Pure Storage, Inc.; Pure Storage, Inc Resiliency scheme to enhance storage performance
11422719, Sep 15 2016 Pure Storage, Inc. Distributed file deletion and truncation
11436023, May 31 2018 Pure Storage, Inc. Mechanism for updating host file system and flash translation layer based on underlying NAND technology
11438279, Jul 23 2018 Pure Storage, Inc. Non-disruptive conversion of a clustered service from single-chassis to multi-chassis
11442625, Aug 07 2014 Pure Storage, Inc. Multiple read data paths in a storage system
11442645, Jan 31 2018 Pure Storage, Inc. Distributed storage system expansion mechanism
11449232, Jul 22 2016 Pure Storage, Inc. Optimal scheduling of flash operations
11449485, Mar 30 2017 Pure Storage, Inc. Sequence invalidation consolidation in a storage system
11467913, Jun 07 2017 Pure Storage, Inc.; Pure Storage, Inc Snapshots with crash consistency in a storage system
11474986, Apr 24 2020 Pure Storage, Inc. Utilizing machine learning to streamline telemetry processing of storage media
11487455, Dec 17 2020 Pure Storage, Inc. Dynamic block allocation to optimize storage system performance
11489668, Sep 30 2015 Pure Storage, Inc. Secret regeneration in a storage system
11494109, Feb 22 2018 Pure Storage, Inc Erase block trimming for heterogenous flash memory storage devices
11494498, Jul 03 2014 Pure Storage, Inc. Storage data decryption
11500552, Jun 04 2014 Pure Storage, Inc. Configurable hyperconverged multi-tenant storage system
11500570, Sep 06 2018 Pure Storage, Inc. Efficient relocation of data utilizing different programming modes
11507297, Apr 15 2020 Pure Storage, Inc Efficient management of optimal read levels for flash storage systems
11507597, Mar 31 2021 Pure Storage, Inc.; Pure Storage, Inc Data replication to meet a recovery point objective
11513974, Sep 08 2020 Pure Storage, Inc.; Pure Storage, Inc Using nonce to control erasure of data blocks of a multi-controller storage system
11520514, Sep 06 2018 Pure Storage, Inc. Optimized relocation of data based on data characteristics
11544143, Aug 07 2014 Pure Storage, Inc. Increased data reliability
11550473, May 03 2016 Pure Storage, Inc. High-availability storage array
11550752, Jul 03 2014 Pure Storage, Inc. Administrative actions via a reserved filename
11567917, Sep 30 2015 Pure Storage, Inc. Writing data and metadata into storage
11581943, Oct 04 2016 Pure Storage, Inc. Queues reserved for direct access via a user application
11582046, Oct 23 2015 Pure Storage, Inc. Storage system communication
11592985, Apr 05 2017 Pure Storage, Inc. Mapping LUNs in a storage memory
11593203, Jun 04 2014 Pure Storage, Inc. Coexisting differing erasure codes
11604585, Oct 31 2017 Pure Storage, Inc. Data rebuild when changing erase block sizes during drive replacement
11604598, Jul 02 2014 Pure Storage, Inc. Storage cluster with zoned drives
11604690, Jul 24 2016 Pure Storage, Inc. Online failure span determination
11614880, Dec 31 2020 Pure Storage, Inc. Storage system with selectable write paths
11614893, Sep 15 2010 Pure Storage, Inc.; Pure Storage, Inc Optimizing storage device access based on latency
11620197, Aug 07 2014 Pure Storage, Inc. Recovering error corrected data
11630593, Mar 12 2021 Pure Storage, Inc.; Pure Storage, Inc Inline flash memory qualification in a storage system
11650976, Oct 14 2011 Pure Storage, Inc. Pattern matching using hash tables in storage system
11652884, Jun 04 2014 Pure Storage, Inc.; Pure Storage, Inc Customized hash algorithms
11656768, Sep 15 2016 Pure Storage, Inc. File deletion in a distributed system
11656939, Aug 07 2014 Pure Storage, Inc. Storage cluster memory characterization
11656961, Feb 28 2020 Pure Storage, Inc. Deallocation within a storage system
11671496, Jun 04 2014 Pure Storage, Inc. Load balacing for distibuted computing
11675762, Jun 26 2015 Pure Storage, Inc. Data structures for key management
11681448, Sep 08 2020 Pure Storage, Inc.; Pure Storage, Inc Multiple device IDs in a multi-fabric module storage system
11689610, Jul 03 2017 Pure Storage, Inc. Load balancing reset packets
11704066, Oct 31 2017 Pure Storage, Inc. Heterogeneous erase blocks
11704073, Jul 13 2015 Pure Storage, Inc Ownership determination for accessing a file
11704192, Dec 12 2019 Pure Storage, Inc. Budgeting open blocks based on power loss protection
11706895, Jul 19 2016 Pure Storage, Inc. Independent scaling of compute resources and storage resources in a storage system
11714572, Jun 19 2019 Pure Storage, Inc. Optimized data resiliency in a modular storage system
11714708, Jul 31 2017 Pure Storage, Inc. Intra-device redundancy scheme
11714715, Jun 04 2014 Pure Storage, Inc. Storage system accommodating varying storage capacities
11722455, Apr 27 2017 Pure Storage, Inc. Storage cluster address resolution
11722567, Apr 09 2015 Pure Storage, Inc. Communication paths for storage devices having differing capacities
11734169, Jul 26 2016 Pure Storage, Inc. Optimizing spool and memory space management
11734186, Aug 20 2014 Pure Storage, Inc. Heterogeneous storage with preserved addressing
11740802, Sep 01 2015 Pure Storage, Inc. Error correction bypass for erased pages
11741003, Nov 17 2017 Pure Storage, Inc. Write granularity for storage system
11748009, Jun 01 2018 Microsoft Technology Licensing, LLC Erasure coding with overlapped local reconstruction codes
11762781, Jan 09 2017 Pure Storage, Inc. Providing end-to-end encryption for data stored in a storage system
11768763, Jul 08 2020 Pure Storage, Inc. Flash secure erase
11775189, Apr 03 2019 Pure Storage, Inc. Segment level heterogeneity
11775428, Mar 26 2015 Pure Storage, Inc. Deletion immunity for unreferenced data
11775491, Apr 24 2020 Pure Storage, Inc. Machine learning model for storage system
11782625, Jun 11 2017 Pure Storage, Inc.; Pure Storage, Inc Heterogeneity supportive resiliency groups
11789626, Dec 17 2020 Pure Storage, Inc. Optimizing block allocation in a data storage system
11797211, Jan 31 2018 Pure Storage, Inc. Expanding data structures in a storage system
11797212, Jul 26 2016 Pure Storage, Inc. Data migration for zoned drives
11822444, Jun 04 2014 Pure Storage, Inc. Data rebuild independent of error detection
11822807, Jun 24 2019 Pure Storage, Inc. Data replication in a storage system
11832410, Sep 14 2021 Pure Storage, Inc.; Pure Storage, Inc Mechanical energy absorbing bracket apparatus
11836348, Apr 27 2018 Pure Storage, Inc. Upgrade for system with differing capacities
11838412, Sep 30 2015 Pure Storage, Inc. Secret regeneration from distributed shares
11842053, Dec 19 2016 Pure Storage, Inc. Zone namespace
11846968, Sep 06 2018 Pure Storage, Inc. Relocation of data for heterogeneous storage systems
11847013, Feb 18 2018 Pure Storage, Inc. Readable data determination
11847320, May 03 2016 Pure Storage, Inc. Reassignment of requests for high availability
11847324, Dec 31 2020 Pure Storage, Inc. Optimizing resiliency groups for data regions of a storage system
11847331, Dec 12 2019 Pure Storage, Inc. Budgeting open blocks of a storage unit based on power loss prevention
11861188, Jul 19 2016 Pure Storage, Inc. System having modular accelerators
11868309, Sep 06 2018 Pure Storage, Inc. Queue management for data relocation
11869583, Apr 27 2017 Pure Storage, Inc. Page write requirements for differing types of flash memory
11886288, Jul 22 2016 Pure Storage, Inc. Optimize data protection layouts based on distributed flash wear leveling
11886308, Jul 02 2014 Pure Storage, Inc. Dual class of service for unified file and object messaging
11886334, Jul 26 2016 Pure Storage, Inc. Optimizing spool and memory space management
11893023, Sep 04 2015 Pure Storage, Inc. Deterministic searching using compressed indexes
11893126, Oct 14 2019 Hyundai Motor Company; Kia Motors Corporation Data deletion for a multi-tenant environment
11899582, Apr 12 2019 Pure Storage, Inc. Efficient memory dump
8473778, Sep 08 2010 Microsoft Technology Licensing, LLC Erasure coding immutable data
8631269, May 21 2010 INDIAN INSTITUTE OF SCIENCE Methods and system for replacing a failed node in a distributed storage network
9037564, Apr 29 2011 Method and system for electronic content storage and retrieval with galois fields on cloud computing networks
9137250, Apr 29 2011 Method and system for electronic content storage and retrieval using galois fields and information entropy on cloud computing networks
9201600, Jun 04 2014 Pure Storage, Inc. Storage cluster
9213485, Jun 04 2014 Pure Storage, Inc. Storage system architecture
9218244, Jun 04 2014 Pure Storage, Inc. Rebuilding data across storage nodes
9244761, Jun 25 2013 Microsoft Technology Licensing, LLC Erasure coding across multiple zones and sub-zones
9298386, Aug 23 2013 GLOBALFOUNDRIES Inc System and method for improved placement of blocks in a deduplication-erasure code environment
9317363, Nov 06 2013 International Business Machines Corporation Management of a secure delete operation in a parity-based system
9336076, Aug 23 2013 GLOBALFOUNDRIES Inc System and method for controlling a redundancy parity encoding amount based on deduplication indications of activity
9354991, Jun 25 2013 Microsoft Technology Licensing, LLC Locally generated simple erasure codes
9357010, Jun 04 2014 Pure Storage, Inc. Storage system architecture
9361479, Apr 29 2011 Method and system for electronic content storage and retrieval using Galois fields and geometric shapes on cloud computing networks
9378084, Jun 25 2013 Microsoft Technology Licensing, LLC Erasure coding across multiple zones
9454309, Nov 06 2013 International Business Machines Corporation Management of a secure delete operation
9477412, Dec 09 2014 DATAROBOT, INC Systems and methods for automatically aggregating write requests
9477554, Jun 04 2014 Pure Storage, Inc. Mechanism for persisting messages in a storage system
9483346, Aug 07 2014 Pure Storage, Inc. Data rebuild on feedback from a queue in a non-volatile solid-state storage
9495255, Aug 07 2014 Pure Storage, Inc. Error recovery in a storage cluster
9525738, Jun 04 2014 Pure Storage, Inc. Storage system architecture
9529622, Dec 09 2014 DATAROBOT, INC Systems and methods for automatic generation of task-splitting code
9547553, Mar 10 2014 DATAROBOT, INC Data resiliency in a shared memory pool
9563506, Jun 04 2014 Pure Storage, Inc. Storage cluster
9569771, Apr 29 2011 Method and system for storage and retrieval of blockchain blocks using galois fields
9594688, Dec 09 2014 DATAROBOT, INC Systems and methods for executing actions using cached data
9594696, Dec 09 2014 DATAROBOT, INC Systems and methods for automatic generation of parallel data processing code
9612952, Jun 04 2014 Pure Storage, Inc. Automatically reconfiguring a storage memory topology
9632936, Dec 09 2014 DATAROBOT, INC Two-tier distributed memory
9639407, Dec 09 2014 DATAROBOT, INC Systems and methods for efficiently implementing functional commands in a data processing system
9639473, Dec 09 2014 DATAROBOT, INC Utilizing a cache mechanism by copying a data set from a cache-disabled memory location to a cache-enabled memory location
9672125, Apr 10 2015 Pure Storage, Inc.; Pure Storage, Inc Ability to partition an array into two or more logical arrays with independently running software
9690705, Dec 09 2014 DATAROBOT, INC Systems and methods for processing data sets according to an instructed order
9690713, Apr 22 2014 DATAROBOT, INC Systems and methods for effectively interacting with a flash memory
9720826, Dec 09 2014 DATAROBOT, INC Systems and methods to distributively process a plurality of data sets stored on a plurality of memory modules
9733988, Dec 09 2014 DATAROBOT, INC Systems and methods to achieve load balancing among a plurality of compute elements accessing a shared memory pool
9747229, Jul 03 2014 Pure Storage, Inc. Self-describing data format for DMA in a non-volatile solid-state storage
9753873, Dec 09 2014 DATAROBOT, INC Systems and methods for key-value transactions
9768953, Sep 30 2015 Pure Storage, Inc.; Pure Storage, Inc Resharing of a split secret
9781027, Apr 06 2014 DATAROBOT, INC Systems and methods to communicate with external destinations via a memory network
9781225, Dec 09 2014 DATAROBOT, INC Systems and methods for cache streams
9798477, Jun 04 2014 Pure Storage, Inc. Scalable non-uniform storage sizes
9804925, Feb 25 2014 GOOGLE LLC Data reconstruction in distributed storage systems
9817576, May 27 2015 Pure Storage, Inc.; Pure Storage, Inc Parallel update to NVRAM
9836234, Jun 04 2014 Pure Storage, Inc.; Pure Storage, Inc Storage cluster
9836245, Jul 02 2014 Pure Storage, Inc. Non-volatile RAM and flash memory in a non-volatile solid-state storage
9843453, Oct 23 2015 Pure Storage, Inc Authorizing I/O commands with I/O tokens
9923970, Aug 22 2014 NEXENTA BY DDN, INC Multicast collaborative erasure encoding and distributed parity protection
9934089, Jun 04 2014 Pure Storage, Inc. Storage cluster
9940234, Mar 26 2015 Pure Storage, Inc.; Pure Storage, Inc Aggressive data deduplication using lazy garbage collection
9948615, Mar 16 2015 Pure Storage, Inc. Increased storage unit encryption based on loss of trust
9967342, Jun 04 2014 Pure Storage, Inc. Storage system architecture
Patent Priority Assignee Title
5617541, Dec 21 1994 International Computer Science Institute System for packetizing data encoded corresponding to priority levels where reconstructed data corresponds to fractionalized priority level and received fractionalized packets
6138125, Mar 31 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Block coding method and system for failure recovery in disk arrays
6553511, May 17 2000 NetApp, Inc Mass storage data integrity-assuring technique utilizing sequence and revision number metadata
6694479, May 23 2000 Hewlett Packard Enterprise Development LP Multiple drive failure recovery for a computer system having an array of storage drives
6928584, Nov 22 2000 TELECOM HOLDING PARENT LLC Segmented protection system and method
7013364, May 27 2002 Hitachi Global Storage Technologies Japan, Ltd Storage subsystem having plural storage systems and storage selector for selecting one of the storage systems to process an access request
7020823, Mar 19 2002 Matsushita Electric Industrial Co., Ltd. Error resilient coding, storage, and transmission of digital multimedia data
7073115, Dec 28 2001 Network Appliance, Inc Correcting multiple block data loss in a storage array using a combination of a single diagonal parity group and multiple row parity groups
7103824, Jul 29 2002 Multi-dimensional data protection and mirroring method for micro level data
7562253, Nov 22 2000 TELECOM HOLDING PARENT LLC Segmented protection system and method
7653796, Feb 20 2003 Panasonic Corporation Information recording medium and region management method for a plurality of recording regions each managed by independent file system
7676723, Sep 23 2002 Siemens Aktiengesellschaft Method for the protected transmission of data, particularly transmission over an air interface
20050283537,
20050289402,
20060074995,
20060080454,
20060212782,
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jun 13 2007LI, JINMicrosoft CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0194380106 pdf
Jun 13 2007HE, LI-WEIMicrosoft CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0194380106 pdf
Jun 14 2007LIANG, JIANMicrosoft CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0194380106 pdf
Jun 15 2007Microsoft Corporation(assignment on the face of the patent)
Oct 14 2014Microsoft CorporationMicrosoft Technology Licensing, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0345420001 pdf
Date Maintenance Fee Events
Apr 24 2015M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Apr 18 2019M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Apr 21 2023M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Nov 01 20144 years fee payment window open
May 01 20156 months grace period start (w surcharge)
Nov 01 2015patent expiry (for year 4)
Nov 01 20172 years to revive unintentionally abandoned end. (for year 4)
Nov 01 20188 years fee payment window open
May 01 20196 months grace period start (w surcharge)
Nov 01 2019patent expiry (for year 8)
Nov 01 20212 years to revive unintentionally abandoned end. (for year 8)
Nov 01 202212 years fee payment window open
May 01 20236 months grace period start (w surcharge)
Nov 01 2023patent expiry (for year 12)
Nov 01 20252 years to revive unintentionally abandoned end. (for year 12)