A machine and methods measure a characteristic of an optical signal incident upon a detector characterized by one or more dynamic response parameters. One method receives an output signal from the detector and compares that output signal and a computationally determined response of the detector to a known optical signal incident upon the detector. The response is based on said one or more dynamic parameters. The method determines the characteristic based on a relationship between the output signal and the computationally determined response. Another method observes an output signal from an optical detector detecting one or more optical signals, accesses a characteristic curve of detector response, compares the observed output signal to the characteristic curve, and calculates at least one characteristic of one or more optical signals based on a relationship of the observed output signal and the characteristic curve.
|
1. A method for measuring a characteristic of an optical signal incident upon a detector characterized by one or more dynamic response parameters, wherein the optical signal comprises a series of laser pulses occurring at a pulse repetition rate, the method comprising:
computationally determining, on the basis of said one or more dynamic parameters, a single-pulse response of the detector to a single laser pulse having a known energy;
superimposing time-shifted versions of the single-pulse response, wherein the time-shift between versions equals the pulse repetition rate thereby resulting in a computationally determined response of the detector;
receiving an output signal from the detector;
comparing the output signal and the computationally determined response of the detector; and
determining the characteristic based on results of the comparing step.
29. A system for measuring a characteristic of an optical signal incident upon a detector characterized by one or more dynamic response parameters, wherein the optical signal comprises a series of laser pulses occurring at a pulse repetition rate, the system comprising:
a means for computationally determining, on the basis of said one or more dynamic parameters, a single-pulse response of the detector to a single laser pulse having a known energy;
a means for superimposing time-shifted versions of the single-pulse response, wherein the time-shift between versions equals the pulse repetition rate thereby resulting in a computationally determined response of the detector;
a means for receiving an output signal from the detector;
a means for comparing the output signal and the computationally determined response of the detector; and
a means for determining the characteristic based on results of the comparing step.
15. A machine for measuring a characteristic of one or more optical pulses incident upon an optical detector characterized by one or more dynamic response parameters, the pulses having a known pulse repetition rate, the machine comprising:
an input connection for receiving an output signal from the detector, the output signal resulting from the pulses being incident upon the detector;
a memory in which are stored data related to said one or more dynamic parameters; and
a processor operatively connected to the memory and to the input connection, the processor being configured to:
calculate, on the basis of the stored data, a response of the detector to a train of optical pulses having the known pulse repetition rate and a known energy by determining on the basis of the stored data an impulse response for the detector, computationally convolving the impulse response with a mathematical representation of a single optical pulse having the known energy to thereby determine a single-pulse response of the detector, and superimposing time-shifted versions of the single-pulse response wherein the time-shift between versions equals the known pulse repetition rate;
compare the output signal from the detector to the calculated response; and
measure the characteristic on the basis of the comparison of the output signal to the calculated response.
28. A non-transitory computer-readable storage device for use with a machine for measuring a characteristic of an optical signal incident upon a detector characterized by one or more dynamic response parameters, wherein the optical signal comprises a series of laser pulses occurring at a pulse repetition rate, the detector producing an output signal in response to the optical signal being incident upon the detector, the machine comprising an interface to the detector for receipt of the output signal, a memory in which are stored data related to said one or more dynamic parameters, and a processor connected to the memory and to the interface, the processor operating according to program instructions embedded on the computer-readable medium storage device, the instructions comprising:
instructions to computationally determine, on the basis of said one or more dynamic parameters, a single-pulse response of the detector to a single laser pulse having a known energy;
instructions to superimpose time-shifted versions of the single-pulse response, wherein the time-shift between versions equals the pulse repetition rate thereby resulting in a computationally determined response of the detector;
instructions to compare the output signal and the computationally determined response of the detector; and
instructions to determine the characteristic based on results of the comparing step.
6. A method as set forth in
7. A method as set forth in
computationally convolving an impulse response of the detector with a mathematical representation of the single optical pulse.
8. A method as set forth in
receiving input comprising said one or more dynamic parameters; and
determining the impulse response on the basis of said one or more dynamic parameters.
10. A method as set forth in
measuring the pulse repetition rate of the series of laser pulses to determine the pulse repetition rate.
11. The method of
12. The method of
13. A method as set forth in
displaying on a display a numerical indicium representing the determined characteristic.
21. A machine as set forth in
22. A machine as set forth in
a data acquisition module connected to the detector, the data acquisition module generating digital samples of the output signal; and
a memory, connected to the data acquisition module, in which are stored the digital samples generated by the data acquisition module.
23. A machine as set forth in
24. A machine as set forth in
an input device into which a user can enter input data.
25. A machine as set forth in
a display on which the characteristic is displayed.
27. A machine as set forth in
a pulse rate measuring circuit to determine the pulse repetition rate.
|
This application claims priority from U.S. Provisional Application No. 60/760,444, filed Jan. 20, 2006, which is hereby incorporated by reference in its entirety.
This disclosure relates generally to measurement of light and more particularly, but not exclusively, to measurement of a characteristic, such as power or energy, of an optical signal, such as a laser pulse.
Optical power or energy meters measure the power and/or energy from a light source, such as a laser. A typical optical meter utilizes a light sensor or detector that converts an optical signal into an electrical signal, such as a voltage signal. Typical detectors include pyroelectric detectors, which are based on the pyroelectric effect of ferro-electric crystals to produce a voltage output signal proportional to the optical energy incident on the detector, and thermopile detectors, which employ thermocouples to produce a voltage output signal proportional to the power in an optical signal incident on the detector.
Conventional optical meters measure the optical signal's attributes by directly observing the detector's output signal and extracting information from that output signal alone. For example, a pyroelectric detector's peak output voltage measured from the signal's baseline is proportional to the optical energy in a pulse incident upon the detector, provided the laser pulse width is small enough that it can be assumed to be an impulse. Circuitry can register that peak voltage and thereby provide a measure of the optical pulse energy. However, the dynamic response of the detector limits how quickly such measurements can be taken, especially when the optical signal incident upon the detector comprises a train of periodic pulses, as is typically the case. Present optical meters are thus limited to operate at pulse repetition rates less than about 2 kHz (2000 pulses per second) in most circumstances.
According to one embodiment, a method measures a characteristic of an optical signal incident upon a detector characterized by one or more dynamic response parameters. The method receives an output signal from the detector and compares that output signal and a computationally determined response of the detector to a known optical signal incident upon the detector. The response is based on said one or more dynamic parameters. The method determines the characteristic based on a relationship between the output signal and the computationally determined response
According to another embodiment, a machine measures a characteristic of an optical signal incident upon a detector characterized by one or more dynamic response parameters. The detector produces an output signal in response to the optical signal being incident upon the detector. The machine comprises an interface to the detector, a memory, and a processor. The interface is for receipt of the output signal. In the memory are stored data related to said one or more dynamic parameters. The processor, which is connected to the memory and to the interface, is configured to compare the output signal from the detector to a response of the detector to a known signal, the processor further being configured to determine, on the basis of the comparison, the characteristic.
According to yet another embodiment, a method observes an output signal from an optical detector detecting one or more optical signals, accesses a characteristic curve of detector response, compares the observed output signal from the detector to the characteristic curve of detector response, and calculates at least one characteristic of one or more optical signals based on a relationship of the observed output signal from the detector and the characteristic curve of detector response.
According to yet another embodiment, a machine measures a characteristic of one or more optical pulses incident upon an optical detector characterized by one or more dynamic response parameters. The pulses have a pulse repetition rate. The machine comprises an input connection, a memory, and a processor. The input connection is for receiving an output signal from the detector. The output signal results from the pulses being incident upon the detector. In the memory are stored data related to said one or more dynamic parameters. The processor, which is operatively connected to the memory and to the input connection, is configured to calculate, on the basis of the stored data, a response of the detector to a train of optical pulses having the pulse repetition rate and a known energy. The processor is further configured to compare the output signal from the detector to the calculated response and to measure the characteristic on the basis of that comparison.
Details concerning the construction and operation of particular embodiments are set forth in the following sections with reference to the below-listed drawings.
With reference to the above-listed drawings, this section describes particular embodiments and their detailed construction and operation. As one skilled in the art will appreciate, certain embodiments may be capable of achieving certain advantages over the known prior art, including some or all of the following: (1) measurement of pulse trains having higher pulse repetition rates is possible; (2) measurements are unconstrained by a detector's dynamic response; (3) measurements, at least preliminary measurements, can be obtained quickly, without having to wait for the detector's response to settle; (4) measurement accuracy and confidence can increase over time; and (5) slower, less expensive data acquisition hardware can be utilized without unduly sacrificing performance. These and other advantages of various embodiments will be apparent upon reading the following.
A cable 70 connects the detector 50 to the meter 100. The cable 70 conveys the detector's output signal to the meter 100 and may also convey other data, such as dynamic response data for the detector 50, to the meter 100. For example, the cable may be a USB (universal serial bus) cable. Alternatively, the detector 50 may communicate wirelessly with the meter 100. The nature of the connection between the detector 50 and the meter 100 is immaterial, so long as it conveys at least the detector's output signal to the meter 100. Multiple detectors (not shown) may connect to the same meter 100, and various meters of the same or different type may be swapped in and out of connection with the meter 100. The detector 50 may be integral with the meter 100 or separate from the meter 100, as shown. The detector 50 may be made by the same or different entity as the meter 100. As a marketing matter, the detector 50 and/or the cable 70 may be bundled with the meter 100 as a suite or system of measurement equipment.
A more detailed block diagram of one illustrative architecture of the meter 100 is depicted in
The data acquisition module 120 may contain an analog-to-digital (A/D) converter 130 if the output signal is in analog form. The analog-to-digital converter 130 may include a sample-and-hold or track-and-hold circuit (not shown) to hold the output signal at discrete times as well as a quantizer (not shown) to convert the held values to digital representations. The data acquisition module 120 may also comprise a signal conditioner 125 that contains analog circuitry to amplify, pre-amplify, buffer, and/or condition the output signal 60 before it is converted to digital form. The signal conditioner 125 may not be needed in some cases, for example when the output signal 60 from the detector 50 is suitable A/D conversion without any conditioning. Similarly, the A/D converter 130 may not be needed in some cases, for example when the output signal 60 is already in digital form.
The output signal 60 or a conditioned and/or converted version thereof (hereafter simply called “the output signal 60” regardless whether signal conditioning and/or A/D conversion takes place) is input to the signal processor 140. The signal processor 140 may comprise an input interface for receipt of the output signal 60. The input interface may be a separate component between the signal conditioner 125 and the signal processor 140, or may not be necessary in some implementations of the meter 100. As one example, memory area 136 within a memory 135 into which the data acquisition module 120 writes its digitized samples and from which the signal processor 140 may read those samples, may be utilized as an input interface.
The signal processor 140 may be any form of processor and is preferably a digital processor, such as a general-purpose microprocessor or a digital signal processor (DSP), for example. The signal processor 140 may be readily programmable; hard-wired, such as an application specific integrated circuit (ASIC); or programmable under special circumstances, such as a programmable logic array (PLA) or field programmable gate array (FPGA), for example. Program memory for the signal processor 140 may be integrated within the signal processor 140 or may be an external memory. For example,
The signal processor 140, and more particularly the processor core 145, performs one or more algorithms to extract information from the output signal 60. The extracted information is preferably metrology information regarding one or more characteristics of the output signal 60 and/or the optical signal 35. For example, the signal processor 140 may perform an algorithm to extract from the output signal 60 the power or energy in a laser pulse or train of laser pulses in the optical signal 35. Details of particular algorithms performed by the signal processor 140 are described below with reference to
The display 180 interfaces with the signal processor 140 and presents in textual and/or graphical form the results calculated by the signal processor 140. The display 180 may also display other information relating to the meter 100. Some versions of the meter 100 may not include the display 180 and may instead provide an interface to send data to another device, which may be a stand-alone display, printer, computer, or the like.
The method 400 also receives, measures, acquires, or otherwise observes (450) the actual detector output signal 60 (or “response”) when an optical signal 35 to be measured is incident upon the detector 50 and then compares (460) the model response to the observed detector output signal 60. On the basis of that comparison, the method 400 determines (470) one or more characteristics of the optical signal 35. The characteristic to be measured may be any signal characteristic, such as power or energy, for example. Because this approach does not depend upon any assumptions that the observed output of the detector is an undistorted impulse response, this approach is largely unconstrained by the detector's dynamic response and the nature of the input optical signal 35. As a result, useful measurements can be taken under a broader range of conditions, such as higher pulse repetition rate of input signal pulse width.
However obtained, the dynamic response parameters are utilized by this version of the model-response-getting step 410 to determine (425) the detector's impulse response. As is well known in the art, an impulse response is the output of a system when the system's input is an infinitesimally short impulse having unit energy (i.e., a Dirac delta function or unit impulse function). For example, an impulse response h(t) can be expressed in terms of various dynamic response parameters as follows:
where the dynamic response parameters ωn and ζ are the undamped natural frequency and damping ratio, respectively. The parameters ωn and ζ are related in well-known ways to other dynamic parameters, such as rise time and fall time, which may be readily available for many common models of the detector 50. For example, the undamped natural frequency ωn and damping ratio ζ can be derived from the rise time Tr and fall time Tf as follows:
The impulse response in Equation 1 is one well-known expression for an impulse response of an underdamped second order linear system (i.e., when ζ<1). Other formulations of a second-order impulse response are also possible. For example, other gain factors can be included. As another example, when ζ>1, then the second-order linear system is overdamped and the impulse response takes the following form:
As yet another example, a first-order linear impulse response like the following can be utilized to model a detector:
h(t)=1−e−1/τ (Equation 5)
where the dynamic response parameter τ is a time constant. These are just two convenient examples of impulse responses. Higher order linear models can be utilized, as can nonlinear models.
According to well known principles of linear system theory, the output y(t) of a system in response to an arbitrary input signal x(t) is the convolution of that input signal with the system's impulse response h(t):
This version of the model-response-getting step 410 exploits that principle by convolving (430) the impulse response determined in step 425 with an assumed input signal consisting of a single pulse of unit energy and other known relevant signal characteristics to determine a single-pulse response. Of course, the computation of the convolution can be approximated using summations over a finite time interval or other numerical techniques. Alternatively, the convolution can be computed in terms of a discrete-time impulse response h[n] and discrete-time or digital signals x[n] and y[n], as follows:
As an alternative to the convolving step 430, which is a computation in the time domain, various other techniques known to skilled artisans can be utilized to compute the single-pulse response. For example, transform-based techniques (e.g., Fourier, fast Fourier transform (FFT), Laplace, wavelet, and z-transforms) can be utilized to perform an equivalent operation in the frequency or other transform domain.
If the input optical signal 35 has a sufficiently narrow pulse width such that it can be approximated by an impulse function, as is most often the case, then the convolution step 430 can be skipped.
Next, this version of the model-response-getting step 410 superimposes (435) time-shifted versions of the single-pulse response determined in step 430 by additively combining those versions of the single-pulse response, for example, as follows:
The time shift T between adjacent versions is set to equal or approximate the known pulse repetition rate. If the optical signal or the pertinent portion thereof is a single pulse, then the superimposing step 435 is unnecessary, in which case the model response is the single-pulse response.
Alternatively, the determining step 425 and the convolving step 430 can be replaced by a step that directly provides a single-pulse response based on an analytical form derived in advance for an assumed form of the optical signal 35. As another alternative, the determining step 425, the convolving step 430, and the superimposing step 435 can be replaced by a step that directly provides a pulse-train response based on an analytical form derived in advance for an assumed form of the optical signal 35. An advantage of performing the steps 425, 430, and 435 separately, as depicted in
In another version of the model-response-getting step 410, a pre-computed characteristic curve for the detector 50 is simply accessed. Such a pre-computed curve may be stored in dynamic response data memory area 137 of the meter 100 or elsewhere. Such a pre-computed curve may be conveyed from the detector 50 to the meter 100. For example, such data may be automatically downloaded as part of the plug-in or start-up procedure for the detector 50 and/or the meter 100. Alternatively, some form of such data may be downloaded from a computer network, such as the Internet, to which the meter 100 may be connected. A search for the detector's characteristic data can be performed based on the detector's serial number or other identification data, which can preferably be read from the detector 50.
Because it is expected that a user of the meter 100 will use the same detector 50 more than once, it is advantageous for the meter 100 to store the characteristic response curves or other dynamic response data for the last N (e.g., N=5) detectors 50 connected to the meter 100. Such data may be stored in the dynamic response data memory area 137, for example. This prevents the meter 100 from having to repeat steps to download or compute the model response for each detector 50.
By comparing the model response 610 to the observed response 620, the energy and/or other characteristic(s) of the actual optical signal 35 can be ascertained. In particular, the ratio of the actual observed response 620 to the model response 610 at any point ideally equals the energy or power of the actual optical signal 35, scaled as necessary by a known gain or sensitivity factor for the detector 50. Because that is true at all points, it does not matter where the ratio is taken. That ratio can be calculated using the first or first few samples to quickly generate a preliminary measurement. To improve accuracy and measurement confidence, multiple ratios can be averaged. Because, noise tends to affect small signals more seriously than large signals, it may be desirable to compute ratios at points where the signals have relatively larger magnitudes, such as near the peaks of each signal. If desired, interpolation, regression, or curve-fitting techniques can be employed to estimate signal values between samples, and ratios of such estimates can be computed.
The method 400 was performed by computer simulation and experimentally verified to assess its performance. Results of those simulations/experiments are depicted in
In a first simulation/experiment, the pulse width was set to be 6.6 ns (6.6 billionths of a second) (as measured at the 4σ width). Because this pulse width is several orders of magnitude smaller than the detector's rise time, one can assume that the optical signal 35 is a unit impulse and that the output of the detector 50 is its impulse response. In other words, the model response or characteristic curve of the detector 50 is its impulse response, and the convolving step 430 is not necessary in this case.
In a second simulation/experiment, the same detector 50 was utilized, but the optical signal 35 was changed to have a pulse width of 168 μs. Because this pulse width is not much less than the detector's rise time, the input signal 35 was not assumed to be an impulse. Instead, the detector's model response was computed by convolving the detector model's impulse response with the 168-μs-wide pulse. The resultant model response 910 as well as the observed response 920, as measured by a DSO, are plotted on the graph 900 of
A third simulation/experiment was performed using the same detector 50 and a pulse having the same 168-μs temporal width but with significantly greater energy. The results were similar.
In a fourth simulation/experiment, the optical signal 35 was assumed to be a pulse train, rather than a single pulse. Using Equations 4 and 8, this simulation computed a model response 1110, which is illustrated on the graph 1100 in
In a fifth simulation/experiment, the detector 50 was a thermopile detector and the quantity to be measured was power in the optical signal 35. This detector 50 was modeled using a first-order linear system model, as in Equation 5, with a known time constant τ=1 sec.
The algorithms for operating the methods and systems illustrated and described herein can exist in a variety of forms both active and inactive. For example, they can exist as one or more software or firmware programs comprised of program instructions in source code, object code, executable code or other formats. Any of the above can be embodied on a computer-readable medium, which include storage devices and signals, in compressed or uncompressed form. Exemplary computer-readable storage devices include conventional computer system RAM (random access memory), ROM (read only memory), EPROM (erasable, programmable ROM), EEPROM (electrically erasable, programmable ROM), flash memory and magnetic or optical disks or tapes. Exemplary computer-readable signals, whether modulated using a carrier or not, are signals that a computer system hosting or running a computer program can be configured to access, including signals downloaded through the Internet or other networks. Concrete examples of the foregoing include distribution of software on a CD ROM or via Internet download. In a sense, the Internet itself, as an abstract entity, is a computer-readable medium. The same is true of computer networks in general.
The terms and descriptions used herein are set forth by way of illustration only and are not meant as limitations. Those skilled in the art will recognize that many variations can be made to the details of the above-described embodiments without departing from the underlying principles of the invention. The scope of the invention should therefore be determined only by the following claims (and their equivalents) in which all terms are to be understood in their broadest reasonable sense unless otherwise indicated.
Nastase, Adrian, Kasturi, Prakash
Patent | Priority | Assignee | Title |
8400623, | Jan 20 2006 | BARCLAYS BANK PLC, AS COLLATERAL AGENT | Machine and method for measuring a characteristic of an optical signal |
Patent | Priority | Assignee | Title |
3761185, | |||
4469943, | Jun 05 1981 | GEC-Marconi Limited | Pyroelectric detector |
4526470, | Mar 05 1982 | BECKMAN INSTRUMENTS, INC , A CORP OF CA | Stray light measurement and compensation |
5267013, | Apr 18 1988 | 3D Systems, Inc. | Apparatus and method for profiling a beam |
5513029, | Jun 16 1994 | CIENA LUXEMBOURG S A R L ; Ciena Corporation | Method and apparatus for monitoring performance of optical transmission systems |
5909278, | Jul 29 1996 | Los Alamos National Security, LLC | Time-resolved fluorescence decay measurements for flowing particles |
6426497, | Dec 30 1999 | Honeywell International Inc | Method and system for optical distance and angle measurement |
6541754, | Jul 05 2000 | Canon Kabushiki Kaisha | Method and apparatus for measuring photoelectric conversion characteristics of photoelectric conversion device |
6653613, | Sep 24 1997 | IMAGINE OPTIC | Method and device for wavefront optical analysis |
6704920, | |||
7002131, | Jan 24 2003 | Lumentum Operations LLC | Methods, systems and apparatus for measuring average received optical power |
7102738, | Jul 05 2001 | The Furukawa Electric Co., Ltd. | Method and apparatus for inspecting optical modules |
7164131, | May 26 2005 | High fidelity electrically calibrated pyroelectric radiometer | |
20020014886, | |||
20020030153, | |||
20030127588, | |||
20040039377, | |||
20060266943, | |||
WO9850767, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 16 2006 | KASTURI, PRAKASH | Newport Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018729 | /0685 | |
Jun 19 2006 | NASTASE, ADRIAN | Newport Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018729 | /0685 | |
Jan 08 2007 | Newport Corporation | (assignment on the face of the patent) | / | |||
Oct 04 2011 | Newport Corporation | BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENT | NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS | 027019 | /0462 | |
Jul 18 2013 | BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENT | Newport Corporation | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 030833 | /0421 | |
Jul 18 2013 | Newport Corporation | JPMORGAN CHASE BANK, NATIONAL ASSOCIATION, AS ADMINISTRATIVE AGENT | SECURITY AGREEMENT | 030847 | /0005 | |
Apr 29 2016 | Newport Corporation | BARCLAYS BANK PLC | SECURITY AGREEMENT | 038663 | /0139 | |
Apr 29 2016 | MKS Instruments, Inc | BARCLAYS BANK PLC | SECURITY AGREEMENT | 038663 | /0139 | |
Apr 29 2016 | JPMORGAN CHASE BANK N A , AS ADMINISTRATIVE AGENT | Newport Corporation | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 038581 | /0112 | |
Apr 29 2016 | Newport Corporation | DEUTSCHE BANK AG NEW YORK BRANCH | SECURITY AGREEMENT | 038663 | /0265 | |
Apr 29 2016 | MKS Instruments, Inc | DEUTSCHE BANK AG NEW YORK BRANCH | SECURITY AGREEMENT | 038663 | /0265 | |
Feb 01 2019 | Newport Corporation | BARCLAYS BANK PLC, AS COLLATERAL AGENT | PATENT SECURITY AGREEMENT ABL | 048211 | /0312 | |
Feb 01 2019 | MKS Instruments, Inc | BARCLAYS BANK PLC, AS COLLATERAL AGENT | CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE U S PATENT NO 7,919,646 PREVIOUSLY RECORDED ON REEL 048211 FRAME 0312 ASSIGNOR S HEREBY CONFIRMS THE PATENT SECURITY AGREEMENT ABL | 055668 | /0687 | |
Feb 01 2019 | Electro Scientific Industries, Inc | BARCLAYS BANK PLC, AS COLLATERAL AGENT | CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE U S PATENT NO 7,919,646 PREVIOUSLY RECORDED ON REEL 048211 FRAME 0312 ASSIGNOR S HEREBY CONFIRMS THE PATENT SECURITY AGREEMENT ABL | 055668 | /0687 | |
Feb 01 2019 | DEUTSCHE BANK AG NEW YORK BRANCH | Newport Corporation | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 048226 | /0095 | |
Feb 01 2019 | DEUTSCHE BANK AG NEW YORK BRANCH | MKS Instruments, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 048226 | /0095 | |
Feb 01 2019 | Electro Scientific Industries, Inc | BARCLAYS BANK PLC, AS COLLATERAL AGENT | PATENT SECURITY AGREEMENT ABL | 048211 | /0312 | |
Feb 01 2019 | MKS Instruments, Inc | BARCLAYS BANK PLC, AS COLLATERAL AGENT | PATENT SECURITY AGREEMENT ABL | 048211 | /0312 | |
Feb 01 2019 | Newport Corporation | BARCLAYS BANK PLC, AS COLLATERAL AGENT | CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE U S PATENT NO 7,919,646 PREVIOUSLY RECORDED ON REEL 048211 FRAME 0312 ASSIGNOR S HEREBY CONFIRMS THE PATENT SECURITY AGREEMENT ABL | 055668 | /0687 | |
Aug 17 2022 | BARCLAYS BANK PLC | Electro Scientific Industries, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 062739 | /0001 | |
Aug 17 2022 | BARCLAYS BANK PLC | Newport Corporation | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 062739 | /0001 | |
Aug 17 2022 | BARCLAYS BANK PLC | MKS Instruments, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 062739 | /0001 |
Date | Maintenance Fee Events |
Jun 08 2015 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jul 29 2019 | REM: Maintenance Fee Reminder Mailed. |
Jan 13 2020 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Dec 06 2014 | 4 years fee payment window open |
Jun 06 2015 | 6 months grace period start (w surcharge) |
Dec 06 2015 | patent expiry (for year 4) |
Dec 06 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 06 2018 | 8 years fee payment window open |
Jun 06 2019 | 6 months grace period start (w surcharge) |
Dec 06 2019 | patent expiry (for year 8) |
Dec 06 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 06 2022 | 12 years fee payment window open |
Jun 06 2023 | 6 months grace period start (w surcharge) |
Dec 06 2023 | patent expiry (for year 12) |
Dec 06 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |