A container compression device and a method for associating a beverage container with the container compression device is provided, wherein the container compression device is configurable between an extended configuration and a compressed configuration, container compression device including a first handle portion, wherein the first handle portion includes a plurality of first handle portion linking members pivotably associated with the first handle portion. The container compression device also includes a second handle portion, wherein the second handle portion includes a plurality of second handle portion linking members pivotably associated with the second handle portion. Additionally, the plurality of second handle portion linking members are rotatably connected to the plurality of first handle portion linking members via at least one releasable locking device, wherein the at least one releasable locking device is configurable between an engaged configuration and a disengaged configuration.
|
10. A manual container compression device defining a container compression device cavity for holding a beverage container, wherein the container compression device is configurable between an extended configuration and a compressed configuration for manually compressing the beverage container, the container compression device comprising:
a plurality of compression surfaces;
a plurality of first linking members; and
a plurality of second linking members, said plurality of first linking members and said plurality of second linking members being pivotably associated with each other to form at least one handle junction having a releasable locking device, said releasable locking device being configurable between an engaged configuration and a disengaged configuration to lockingly configure the container compression device between the extended configuration and the compressed configuration, wherein when the container compression device is configured in the extended configuration the container compression device cavity is larger than when the container compression device is configured in the compressed configuration.
1. A manual container compression device defining a container compression device cavity for holding a beverage container, wherein the container compression device is configurable between an extended configuration and a compressed configuration for manually compressing the beverage container, the container compression device comprising:
a first compression surface;
a plurality of first linking members pivotably connected to said first compression surface;
a second compression surface;
a plurality of second linking members pivotably connected to said second compression surface;
a first handle junction; and
a second handle junction, said first handle junction being located opposite to said second handle junction,
wherein said first handle junction is formed by pivotally connecting one of said plurality of first linking members with one of said plurality of second linking members and said second handle junction is formed by pivotally connecting the other of said plurality of first linking members with the other of said plurality of second linking members, and
wherein at least one of said plurality of first linking members is pivotably connected with at least one of said plurality of second linking members via a releasable locking device, said releasable locking device being configurable between an engaged configuration and a disengaged configuration to lockingly configure the container compression device between the extended configuration and the compressed configuration, wherein when the container compression device is configured in the extended configuration the container compression device cavity is larger than when the container compression device is configured in the compressed configuration.
2. The container compression device of
3. The container compression device of
4. The container compression device of
5. The container compression device of
6. The container compression device of
7. The container compression device of
8. The container compression device of
9. The container compression device of
11. The container compression device of
12. The container compression device of
13. The container compression device of
14. The container compression device of
15. The container compression device of
16. The container compression device of
17. The container compression device of
18. The container compression device of
19. The container compression device of
20. The container compression device of
|
This disclosure relates generally to an apparatus for deforming a plastic bottle and more particularly to an easily operable apparatus for controlling the effervescence of a carbonated liquid sealed within a deformable container to preserve the carbonation of the beverage.
Carbonated beverages and the like are well known and have been in existence in one form or another for over several hundred years. For example, beer is the oldest, most widely consumed carbonated alcoholic beverage and dates back to over one thousand years. Carbonation occurs when carbon dioxide is dissolved in a liquid, such as water or some other aqueous solution (i.e. soda) and can occur as a result of both forced and natural processes. For instance, carbon dioxide can be forcefully and artificially dissolved under pressure into a liquid or carbon dioxide can dissolve into a liquid due to naturally occurring processes, such as through fermentation. In either case, dissolving carbon dioxide into a beverage can have a beneficial effect on the presentation and flavor of the beverage. In many consumer beverages such as soda, carbonation is used to give a ‘crisp’ presentation and a flavor ‘bite’ to the drink by interacting with dilute carbonic or phosphoric acids. And as such, many modern soft drinks, such as soda, wine coolers, sparking waters, etc., contain some measure of carbonation.
However, as is known if a carbonated liquid is not maintained within a controlled sealed environment the carbon dioxide within the liquid will escape via a process referred to as effervescence. This effervescence typically manifests itself as foam or fizz that is caused from the release of gas from the liquid and eventually results in a beverage which has an un-carbonated or ‘flat’ presentation. This is undesirable because this ‘flat’ presentation typically results in a detrimentally modified flavor profile as experienced by the consumer. This problem is addressed incidentally because the FDA requires that manufacturers of carbonated beverages store, ship and sell the carbonated beverages in containers that are sealed to be air tight. Accordingly, the carbonated beverages will maintain their freshness or effervescence until the container is opened and the seal is broken. Referring to
Unfortunately however, once a consumer opens the container 100 the pressure within the container 100 is released and effervescence once again begins to occur. Referring to
One way to prevent carbonated beverages from becoming ‘flat’ is by keeping the volume V2 of the space 106 between the top of the beverage 102 and the top of the container 100 to a minimum (for example, V2=V1) so that the above discussed equilibrium with the container 100 can be achieved with a minimal amount of effervescence. Up until about 35 years ago, this was impractical because carbonated beverage containers 102 were constructed of glass or metal. However, with the advent of deformable plastic beverage containers, several devices have been introduced to help solve this problem. Unfortunately, these devices are complicated, cumbersome, difficult to use and don't achieve the desired result.
A container compression device configurable between an extended configuration and a compressed configuration, container compression device including a first handle portion, wherein the first handle portion includes a plurality of first handle portion linking members pivotably associated with the first handle portion. The container compression device also includes a second handle portion, wherein the second handle portion includes a plurality of second handle portion linking members pivotably associated with the second handle portion. Additionally, the plurality of second handle portion linking members are rotatably connected to the plurality of first handle portion linking members via at least one releasable locking device, wherein the at least one releasable locking device is configurable between an engaged configuration and a disengaged configuration.
A container compression device defining a container compression device cavity for holding a beverage container is provided, wherein the container compression device is configurable between an extended configuration and a compressed configuration. The container compression device includes a plurality of handle portions pivotably associated with each other via at least one releasable locking device configurable between an engaged configuration and a disengaged configuration to lockingly configure the container compression device between the extended configuration and the compressed configuration, wherein when the container compression device is configured in the extended configuration the container compression device cavity is larger than when the container compression device is configured in the compressed configuration.
A method for associating a beverage container containing a beverage with a container compression device defining a container compression device cavity is provided, wherein the container compression device is configurable between an extended configuration and a compressed configuration. The method includes configuring the container compression device into the extended configuration and positioning the beverage container within the container compression device cavity. The method further includes configuring the container compression device into the compressed configuration to compress the beverage container. If beverage is removed from the beverage container, then configuring the container compression device into the compressed configuration is repeated. The method further includes configuring the container compression device into the extended configuration and removing the beverage container from the container compression device cavity.
The foregoing and other features and advantages of the present invention will be more fully understood from the following detailed description of illustrative embodiments, taken in conjunction with the accompanying drawings in which like elements are numbered alike:
Referring to
Referring to
Furthermore, container compression device 200 includes two handle junctions 210 which are formed by connecting the first handle portion linking members 206 with the second handle portion linking members 208. As shown in the figures, one of the first handle portion linking members 206 is connected to one of the second handle portion linking members 208 and the other of the first handle portion linking members 206 is connected to the other of the second handle portion linking members 208 to form a container compression device cavity 212 between the first handle portion 202 and the second handle portion 204. The two handle junctions 210 are configured to allow the first handle portion linking members 206 and the second handle portion linking members 208 to pivot relative to each about a junction axes J1 and J2. Moreover, at least one of the two handle junctions 210 includes a releasable locking device 214 which is easily releasable via a finger of the user. For example, one embodiment includes one of the two handle junctions 210 having a releasable locking device 214 while another embodiment includes both of the two handle junctions 210 having a releasable locking device 214. Still yet other embodiments include a releasable locking device 214 being located in other locations of the container compression device 200, such as at the connection point(s) between at least one of the first handle portion linking members 206 (and/or the second handle portion linking members 208) and the first handle portion 202 (and/or the second handle portion 204). One embodiment of the releasable locking device 214 is illustrated in
In accordance with one embodiment, at least one of the first handle portion 202 and the second handle portion 204 include a compression surface 216 which may be substantially curved in shape to be similar to the form of the side of the deformable beverage container 100. This allows the deformable beverage container 100 to ‘seat’ better within the container compression device cavity 212. However, it is contemplated that only one of the first handle portion 202 and the second handle portion 204 may include a compression surface 216 and the compression surface 216 may be any shape suitable to the desired end purpose. For example, the compression surface 216 may be slightly curved, substantially flat or may be ring shaped with a hollow portion where only the outside perimeter is in contact with the container 100. Additionally, the compression surface 216 may include rounded edges to prevent puncture of the container 102. When the container compression device 200 is in the extended configuration 220 container compression device cavity 212 is sized to receive the beverage container 100. As briefly mentioned hereinabove, it should be appreciated that container compression device 200 is configurable between the extended configuration 220 (as shown in
Referring again to
Referring to
When the actuation button 224 is depressed, the at least one axial member 250 is compressed inward by the semi-annular protrusion 260 until the at least one axial member 250 deflects against the semi-annular protrusion 260 and is positioned below the semi-annular protrusion 260. This causes the at least one compressible radial flex member 252 to be positioned away from and thus disengaged from the locking teeth 262 allowing the drive guide 226 and locking structure 228 to rotate freely in any direction. This allows for the container compression device 200 to be configured back into the extended configuration 220 by pulling the first handle portion 202 and the second handle portion 204 away from each other. Accordingly, any container 202 positioned within the container compression device cavity 212 can be easily removed. When the first handle portion 202 and the second handle portion 204 are pulled away from each other the at least one axial member 250 rotates to a position relative to the locking structure 228, such that the at least one axial member 250 encounters a gap in, and/or is no longer in contact with, the semi-annular protrusion 260. This allows the actuation button 224 to move axially away from the end cap 230 in the direction of the force of the guide spring 257 such that the at least one compressible radial flex member 252 is again positioned adjacent the locking teeth 262. This allows the container compression device 200 to be springingly configurable between the compressed configuration 222 and the extended configuration 220.
In accordance with the present invention, the container compression device 200 operates as follows. As shown in
Each time a portion of the beverage 102 within the beverage container 100 is removed, additional inward force F1 can be applied to at least one of the first and second handle portions 202, 204 to keep the volume V2 of the space L2 minimized. When the container is empty, the actuation button 224 can be depressed to disassociate the at least one compressible radial flex member 252 from the locking teeth 262 as discussed hereinbefore. A force F2 is then applied to at least one of the first and second handle portions 202, 204 to cause the container compression device 200 to be configured from the compressed configuration 222 back into the extended configuration 220 as discussed hereinbefore.
Referring to
While the invention has been described with reference to an exemplary embodiment, it will be understood by those skilled in the art that various changes, omissions and/or additions may be made and equivalents may be substituted for elements thereof without departing from the spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims. Moreover, unless specifically stated any use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another.
Patent | Priority | Assignee | Title |
11117339, | Dec 04 2013 | Ai, Li | Compressor for carbonated beverage containers |
D753997, | Sep 11 2014 | Bottle compressing strap |
Patent | Priority | Assignee | Title |
3901141, | |||
4456134, | Jan 22 1982 | Apparatus for containment of carbonated beverages | |
4475449, | Apr 29 1983 | Method and apparatus for compacting containers | |
4747496, | Apr 27 1987 | RENDINE, RAPHAEL; RENDINE, DENNIS JAMES | Plastic bottle pressurization clip for maintaining carbonation in beverages |
4790361, | Jul 25 1986 | Containers Unlimited | Collapsible carbonated beverage container |
4953750, | Apr 03 1989 | Dispensing method for a variable volume disposable carbonated beverage container | |
4989743, | Dec 28 1989 | Device for storing carbonated beverages | |
5025953, | Oct 17 1988 | Deformable beverage containers for preserving carbonation | |
5233917, | Sep 25 1992 | Plastic bottle crushing device |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 15 2009 | ATIYEH, PHIL, MR | ATIYEH, PHIL, MR | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022360 | /0560 | |
Jan 19 2009 | HAGLER, TY, MR | ATIYEH, PHIL, MR | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022360 | /0560 |
Date | Maintenance Fee Events |
Jul 24 2015 | REM: Maintenance Fee Reminder Mailed. |
Dec 13 2015 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Dec 13 2014 | 4 years fee payment window open |
Jun 13 2015 | 6 months grace period start (w surcharge) |
Dec 13 2015 | patent expiry (for year 4) |
Dec 13 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 13 2018 | 8 years fee payment window open |
Jun 13 2019 | 6 months grace period start (w surcharge) |
Dec 13 2019 | patent expiry (for year 8) |
Dec 13 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 13 2022 | 12 years fee payment window open |
Jun 13 2023 | 6 months grace period start (w surcharge) |
Dec 13 2023 | patent expiry (for year 12) |
Dec 13 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |