In one embodiment, a semiconductor package includes a first insulating body and a first semiconductor chip having a first active surface and a first back surface opposite the first active surface. The first semiconductor chip is disposed within the first insulating body. The first active surface is exposed by the first insulating body. The first back surface is substantially surrounded by the first insulating body. The semiconductor package includes a post within the first insulating body and adjacent to a side of the first semiconductor chip.
|
37. A semiconductor device, comprising:
a first insulating body;
a first semiconductor chip having an active surface and a back surface opposite the active surface, the first semiconductor chip disposed within the first insulating body, the active surface exposed by the first insulating body; and
a post disposed within the first insulating body and adjacent to a side of the first semiconductor chip, the post having a top surface, a bottom surface and a side surface connecting the top surface and the bottom surface,
wherein the first insulating body covers the bottom surface and the side surface of the post.
45. A semiconductor device, comprising:
a first insulating body;
a first semiconductor chip having a first active surface and a first back surface opposite the first active surface, the first semiconductor chip disposed within the first insulating body, the first active surface exposed by the first insulating body, the first back surface located within the first insulating body; and
a post disposed within the first insulating body and adjacent to a side of the first semiconductor chip, the post having a top surface, a bottom surface and a side surface connecting the top surface and the bottom surface,
wherein the top surface of the post is located at the same level as the first active surface of the semiconductor chip.
30. A semiconductor device, comprising:
a first insulating body:
a first semiconductor chip having a first active surface and a first back surface opposite the first active surface, the first semiconductor chip disposed within the first insulating body, the first active surface exposed by the first insulating body, the first back surface substantially surrounded by the first insulating body; and
a post disposed within the first insulating body and adjacent to a side of the first semiconductor chip, the post having a top surface, a bottom surface and a side surface connecting the top surface and the bottom surface,
wherein the bottom surface of the post is intermediate between the first active surface and the first back surface of the first semiconductor chip.
43. A system comprising:
a semiconductor device, comprising:
an insulating body;
a semiconductor chip having an active surface and a back surface opposite the active surface, the semiconductor chip disposed within the insulating body, the active surface exposed by the insulating body;
a post disposed within the insulating body and adjacent to a side of the semiconductor chip, the post having a top surface, a bottom surface and a side surface connecting the top surface and the bottom surface; and
a conductive pattern disposed on the insulating body and on the top surface of the post exposed by the insulating body, the conductive pattern electrically connected to the semiconductor chip,
wherein the bottom surface of the post is not connected to any circuitry;
a microprocessor; and
an input/out device electrically coupled to the microprocessor and the semiconductor device.
1. A semiconductor device, comprising:
a first insulating body;
a first semiconductor chip having a first active surface and a first back surface opposite the first active surface, the first semiconductor chip disposed within the first insulating body, the first active surface exposed by the first insulating body, the first back surface located within the first insulating body; and
a post disposed within the first insulating body and adjacent to a side of the first semiconductor chip, the post having a top surface, a bottom surface and a side surface connecting the top surface and the bottom surface,
wherein a length of the post in a first direction extending from the top surface of the post toward the bottom surface of the post is smaller than the distance in the first direction between the first active surface of the first semiconductor chip and the first back surface opposite the first active surface.
41. A system comprising:
a semiconductor device, comprising:
an insulating body;
a semiconductor chip having an active surface and a back surface opposite the active surface, the semiconductor chip disposed within the insulating body, the active surface exposed by the insulating body, the back surface located within the insulating body;
a post disposed within the insulating body and adjacent to a side of the semiconductor chip, the post having a top surface, a bottom surface and a side surface connecting the top surface and the bottom surface, wherein the bottom surface is located at a level between a level of the active surface and a level of the back surface opposite the active surface; and
a first conductive pattern disposed on the insulating body and on the top surface of the post exposed by the insulating body, the first conductive pattern electrically connected to the semiconductor chip; and
a controller in electrical communication with the semiconductor device.
33. A semiconductor device, comprising:
a first insulating body having an upper surface and a lower surface opposite the upper surface;
a first semiconductor chip comprising an active surface, a back surface and a plurality of peripheral surfaces connecting the active surface and the back surface, wherein the first insulating body covers the back surface and at least one of the plurality of peripheral surfaces of the first semiconductor chip;
a post disposed within the first insulating body and adjacent to one of the plurality of peripheral surfaces of the first semiconductor chip; and
a first conductive pattern disposed on the upper surface of the first insulating body and extending over the active surface of the first semiconductor chip, wherein the first conductive pattern is connected to the upper surface of the first semiconductor chip,
wherein the post includes an upper surface, a lower surface and a plurality of side surfaces connecting the upper surface and the lower surface, wherein the first insulating body substantially surrounds the lower surface and the plurality of side surfaces of the post, and wherein the lower surface of the post is not connected to any electrically conductive material.
7. A semiconductor device, comprising:
a first insulating body;
a first semiconductor chip having a first active surface and a first back surface opposite the first active surface, the first semiconductor chip disposed within the first insulating body, the first active surface exposed by the first insulating body, the first back surface substantially surrounded by the first insulating body;
a post disposed within the first insulating body and adjacent to a side of the first semiconductor chip, the post having a top surface, a bottom surface and a side surface connecting the top surface and the bottom surface;
a first conductive pattern disposed on the first insulating body and on the top surface of the post exposed by the first insulating body, the first conductive pattern electrically connected to the first semiconductor chip;
a second semiconductor chip disposed over the first semiconductor chip; and
a second conductive pattern electrically connected to the second semiconductor chip and the first conductive pattern,
wherein the second semiconductor chip has a second back surface and a second active surface opposite the second back surface, and the second semiconductor chip includes a first chip pad formed on the second back surface and a second chip pad formed on the second active surface, the first chip pad and the second chip pad being electrically connected to each other via the second conductive pattern.
38. A semiconductor device, comprising:
a first insulating body having an upper surface and a lower surface opposite the upper surface;
a first semiconductor chip comprising an active surface, a back surface and a plurality of peripheral surfaces connecting the active surface and the back surface, wherein the first insulating body substantially surrounds the back surface and at least one of the plurality of peripheral surfaces of the first semiconductor chip;
a post disposed within the first insulating body and adjacent to one of the plurality of peripheral surfaces of the first semiconductor chip;
a first conductive pattern disposed on the upper surface of the first insulating body and extending over the active surface of the first semiconductor chip, wherein the first conductive pattern is connected to the active surface of the first semiconductor chip and a lower surface of the first conductive pattern is connected to the post; and
a second semiconductor chip disposed over the first semiconductor chip, wherein the second semiconductor chip comprises a first external terminal formed on a lower surface thereof,
wherein the first external terminal is connected to a portion of an upper surface of the first conductive pattern directly opposite the portion of the lower surface of the first conductive pattern connected to the post, and
wherein a length of the post in a first direction extending from the upper surface of the first insulating body toward the lower surface opposite the upper surface is smaller than the distance in the first direction between the upper surface of the first insulating body and the lower surface opposite the upper surface.
2. The semiconductor device of
3. The semiconductor device of
4. The semiconductor device of
5. The semiconductor device of
6. The semiconductor device of
a second semiconductor chip disposed over the first semiconductor chip; and
a second conductive pattern electrically connected to the second semiconductor chip and the first conductive pattern.
8. The semiconductor device of
9. The semiconductor device of
10. The semiconductor device of
11. The semiconductor device of
12. The semiconductor device of
a second insulating body disposed over the first insulating body, the second insulating body comprising a first cavity extending from an upper surface thereof to a lower surface of the second insulating body, wherein
the second semiconductor chip is disposed within the second insulating body,
the second conductive pattern and the first conductive pattern are electrically connected to each other through the first cavity, and
a location of the first cavity within the second insulating body substantially corresponds to a location of the post within the first insulating body.
13. The semiconductor device of
an adhesion layer disposed between the first semiconductor chip and the second semiconductor chip.
14. The semiconductor device of
a third insulating body disposed over the second insulating body, the third insulating body comprising a second cavity extending from an upper surface thereof to a lower surface thereof;
a third semiconductor chip disposed within the third insulating body; and
a third conductive pattern electrically connected to the third semiconductor chip, wherein the third conductive pattern and the second conductive pattern are electrically connected to each other through the second cavity.
15. The semiconductor device of
16. The semiconductor device of
17. The semiconductor device of
18. The semiconductor device of
19. The semiconductor device of
the second conductive pattern is disposed outside the first cavity,
the third conductive pattern is disposed over the third insulating body, along sidewalls of the second cavity, along sidewalls of the first cavity and on a portion of the first conductive pattern, and
the third conductive pattern contacts an edge of the second conductive pattern,
the semiconductor device further comprising a conductive plug on the third conductive pattern, the conductive plug extending through the first and second cavities.
20. The semiconductor device of
21. The semiconductor device of
22. The semiconductor device of
a location of the second cavity in the third insulating body substantially corresponds to a location of the first cavity in the second insulating body,
the second conductive pattern is disposed outside the first cavity, and
the third conductive pattern is disposed over the third insulating body and outside the second cavity,
the semiconductor device further comprising a conductive plug extending through the first and second cavities and contacting edges of the first and second conductive patterns.
23. The semiconductor device of
24. The semiconductor device of
25. The semiconductor device of
a location of the second cavity in the third insulating body substantially corresponds to a location of the first cavity in the second insulating body,
the second conductive pattern is disposed over the conductive plug, and
the third conductive pattern is disposed over the third insulating body, along sidewalls of the second cavity and on a portion of the first conductive pattern.
26. The semiconductor device of
27. The semiconductor device of
28. The semiconductor device of
29. The semiconductor device of
31. The semiconductor device of
32. The semiconductor device of
34. The semiconductor device of
35. The semiconductor device of
an external terminal connected to an upper surface of the first conductive pattern,
wherein the post is connected to a lower surface of the first conductive pattern, and
wherein the external terminal is directly above the post.
36. The semiconductor device of
an external terminal connected to a portion of an upper surface of the first conductive pattern,
wherein the post is connected to a portion of a lower surface of the first conductive pattern directly opposite the portion of the upper surface of the first conductive pattern connected to the external terminal.
39. The semiconductor device of
40. The semiconductor device of
another external terminal formed on an upper surface thereof; and
a conductive chip via electrically connecting the first external terminal and the second external terminal.
44. The system of
46. The semiconductor device of
|
This U.S. non-provisional patent application claims priority under 35 U.S.C. §119 to Korean Patent Application No. 2007-0080595 filed on Aug. 10, 2007, the entire contents of which are hereby incorporated by reference.
1. Field of Invention
Embodiments exemplarily described herein generally relate to semiconductor packages and methods of manufacturing the same. More particularly, embodiments exemplarily described herein relate to semiconductor packages having increased adhesive strength between the components within the semiconductor packages such as an encapsulation material, redistribution patterns and/or a dielectric material, and to methods of manufacturing the same. Other embodiments exemplarily described herein relate to semiconductor packages having increased interconnection characteristics and reliability, and to methods of manufacturing the same.
2. Description of the Related Art
In the semiconductor industry, integrated circuit (IC) packaging technologies continue to develop to meet the demand for scaling down of size, high density and improved mounting reliability.
Package stacking technology and chip stacking technology are examples of such IC packaging technologies. In the package stacking technology, semiconductor packages typically are stacked using solder balls. In the chip stacking technology, semiconductor chips are typically stacked using plugs formed through the semiconductor chips.
In particular, the semiconductor chip typically includes a plurality of pad areas disposed on an active surface thereof. The solder balls are generally connected to the pad areas. However, following the decrease in design rules, the need for high pin count packages, and a smaller pad pitch, according to recent trends in the electronics industry, it can be difficult to ensure that adjacent solder balls do not contact each other.
Consequently, fan-out type semiconductor packages have been developed. A typical fan-out type semiconductor package includes a plurality of redistribution patterns formed over the active surface of the semiconductor chip that electrically redistribute the locations of the pad areas on the active surface of the semiconductor chip to regions outside an area defined by the active surface of the semiconductor chip.
In a typical fan-out type semiconductor package, the redistribution patterns are arranged over the active area of the semiconductor chip and are attached to the encapsulation material that encapsulates the semiconductor chip. The redistribution patterns can be formed by, for example, forming an interlevel dielectric (ILD) over the encapsulation material. Then, the ILD is patterned to form a groove therein. Next, a conductive material is formed over the resulting structure and within the groove to form the redistribution patterns.
However, the ILD is susceptible to delamination from the encapsulation material because the ILD is typically very thin and as a result, the interface between the encapsulation material and the ILD can be vulnerable to physical impacts or moisture or stress. Furthermore, for the same reason, the redistribution patterns can also be susceptible to delamination from the encapsulation material.
In addition, multi-chip packages (i.e., semiconductor packages incorporating a plurality of stacked semiconductor chips or packages) can be formed by patterning encapsulation material to create an opening enabling electrical connections to external terminals. The encapsulation material can be patterned via a laser drilling process using an infrared (IR) laser. IR lasers have a relatively long wavelength. Accordingly, light emitted by IR lasers during the laser drilling process is scattered as it passes through the encapsulation material. As a result, sidewalls of the opening in the encapsulation material can become damaged which, in turn, leads to poor adhesion between a subsequently formed conductive pattern therein and the encapsulation material.
These and other problems are addressed by the embodiments of the present invention exemplarily described herein.
One embodiment of the present invention can be exemplarily characterized as a semiconductor package that includes a first insulating body; a first semiconductor chip having a first active surface and a first back surface opposite the first active surface, the first semiconductor chip disposed within the first insulating body, the first active surface exposed by the first insulating body, the first back surface substantially surrounded by the first insulating body; and a post disposed within the first insulating body and adjacent to a side of the first semiconductor chip.
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings, in which:
Exemplary embodiments of the present invention will now be described more fully hereinafter with reference to the accompanying drawings. These embodiments may, however, be realized in many different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the thicknesses of layers and regions are exaggerated for clarity. Like numbers refer to like elements throughout the specification.
Referring to
In one embodiment, the insulating body 108 may include an encapsulation material such as an epoxy resin or other suitable encapsulation material known to one skilled in the art. The insulating body 108 may be characterized as having an upper surface and a lower surface opposite the upper surface.
In one embodiment, the semiconductor chip 106 may be characterized as having an active surface (also referred to herein as a “first active surface”), a back surface (also referred to herein as a “first back surface”) opposite the active surface, and peripheral surfaces or side surfaces connecting the active surface and the back surface. The semiconductor chip 106 may be disposed within the insulating body 108 such that the active surface is exposed by the insulating body 108. In one embodiment, the active surface of the semiconductor chip 106 may be substantially coplanar with the upper surface of the insulating body 108.
In one embodiment, the back surface of the semiconductor chip 106 may be substantially surrounded by the insulating body 108. In another embodiment, the back surface and the side surfaces of the semiconductor chip 106 may be substantially surrounded by the insulating body 108.
In one embodiment, the posts 104 may include an electrically conductive material (e.g., Cu, Fe, Ag, Au, Al, a conductive polymer, or the like or a combination thereof). In another embodiment, substantially all of the posts 104 may be composed of electrically conductive material. In one embodiment, the posts 104 may include an electrically insulative material (e.g., a dielectric material). In another embodiment, substantially all of the posts 104 may be composed of electrically insulative material.
The posts 104 may be disposed within the insulating body 108 at a location adjacent to sides of the semiconductor chip 106. Each post 104 may be characterized as having a top surface, a bottom surface and a side surface connecting the top surface and the bottom surface. In one embodiment, the top surface of each post 104 may be exposed by the insulating body 108 and the bottom surface of each post 104 may be located at a region that is intermediate between the active surface and the back surface of the semiconductor chip 106.
The post 104 may be characterized as having a thickness (i.e., the distance between the top surface and the bottom surface thereof) and a width (i.e., the distance between adjacent side surfaces). In one embodiment, the thickness of each post 104 may be smaller than the width thereof.
In one embodiment, the insulating body 108 may surround the bottom surface of each post 104. In another embodiment, the insulating body 108 may surround the bottom surface and the side surface of each post 104. In this case, the post 104 does not extend through the insulating body 108. In other words, the bottom surface of the post 104 is intermediate between the first active surface and the first back surface of the semiconductor chip 106.
In one embodiment, the conductive patterns 110 may be disposed on the insulating body 108 and on the top surface of the post 104. The conductive patterns 110 may be connected (e.g., electrically connected) to the semiconductor chip 106. In one embodiment, a bottom surface of the conductive pattern 110 may be characterized as being within substantially the same plane as the active surface of the semiconductor chip 106. Accordingly, the bottom surface of the conductive pattern 110 may directly contact at least a portion of the active surface of the semiconductor chip 106. Although not shown in
In one embodiment, each of the conductive patterns 110 may be characterized as extending straight from the edge of the active surface of the semiconductor chip 106 to corresponding ones of the posts 104 (e.g., to top surfaces of corresponding ones of the posts 104). In another embodiment, the lower surfaces of each of the conductive patterns 110 may be connected (e.g., directly connected) to corresponding ones of the posts 104.
In one embodiment, the posts 104 and the conductive patterns 110 can be an integral body. In another embodiment, the posts 104 and the conductive patterns 110 can be separate bodies. Accordingly, the posts 104 and the conductive patterns 110 may include the same material or substantially the same material. Alternatively, the posts 104 and the conductive patterns 110 may include different materials.
In one embodiment, the external terminals 112 may be provided as conductive bumps or conductive balls such as solder balls connected (e.g., electrically connected) to corresponding ones of the conductive patterns 110. In one embodiment, the external terminals 112 may be connected to upper surfaces (or a portions thereof) of corresponding ones of the conductive patterns 110.
As exemplarily illustrated, each of the external terminals 112 is disposed above the posts 104. In one embodiment, each of the external terminals 112 may be in vertical alignment with corresponding ones of the posts 104. Accordingly, the external terminals 112 and posts 104 are arranged such that at least a portion of each external terminal 112 and at least a portion of a corresponding post 104 are is disposed within substantially the same vertical plane. Accordingly, the external terminals 112 can, in one embodiment, be characterized as being located directly above corresponding one of the posts 104. Similarly, the external terminal 112 can, in another embodiment, be characterized as being connected to a portion of the upper surface of a conductive pattern 110 that is directly opposite the portion of the lower surface of the conductive pattern 110 that is connected to a post 104.
As described above in the Description of the Related Art, the conductive patterns 110 or the redistribution patterns can be formed by, for example, forming a patterned insulating layer or a patterned interlevel dielectric (ILD) having a groove, for example, 144C of
The posts 104 in the semiconductor package 200, however, have a greater adhesion with the aforementioned patterned insulating layer, e.g., 144C of
Therefore, problems associated with delamination between the insulating body 108 and the aforementioned patterned insulating layer can either be eliminated or significantly reduced. As a result, the reliability of the semiconductor package 200 can be increased relative to conventional semiconductor packages.
Referring to
As exemplarily illustrated, the through vias 114 extend through the insulating body 108 such that an upper portion of each through via 114 contacts a portion of a corresponding one of the posts 104 (e.g., the bottom surface of a corresponding one of the posts 104) and such that a lower portion of each through via 114 is exposed by the lower surface of the insulating body 108.
In one embodiment, the through vias 114 include a conductive material. In another embodiment, the auxiliary wiring patterns 116 include a conductive material. External terminals 112 may also be electrically connected to corresponding ones of the auxiliary wiring patterns 116. Accordingly, in some embodiments, the structure of a through-chip via 114 (e.g., through-silicon via) contacting a post 104 may electrically connect a conductive pattern 110 with an auxiliary wiring pattern 116. As a result, the external terminals 112 on opposite sides of the semiconductor package 202 may be electrically connected to each other. Constructed as exemplarily described above, the semiconductor package 202 may be characterized as a package-on-package type (POP-type) semiconductor package.
Referring to
In one embodiment, the second insulating body 122 is disposed over the first insulating body 108. The second insulating body 122 may include an encapsulation material. The second insulating body 122 may further include first cavities 124 extending from an upper surface thereof to a lower surface thereof. In one embodiment, a location of each of the first cavities 124 within the second insulating body 122 substantially corresponds to a location of corresponding ones of the posts 104 within the first insulating body 108. Accordingly, the first cavities 124 may be disposed at locations directly above corresponding ones of the posts 104.
In one embodiment, the second semiconductor chip 118 is disposed over the first semiconductor chip 106. In another embodiment, the second semiconductor chip 118 may be disposed within the second insulating body 122. A portion of the second semiconductor chip 118 may be exposed by a lower surface of the second insulating body 122. In one embodiment, the second semiconductor chip 118 is substantially the same size as the first semiconductor chip 106. It will be appreciated, however, that the second semiconductor chip 118 may be smaller or larger than the first semiconductor chip 106.
In some embodiments, the second conductive pattern 126 is electrically connected to the second semiconductor chip 118 and the first conductive pattern 110. In another embodiment, corresponding ones of the second conductive patterns 126 and corresponding ones of the first conductive patterns 110 are electrically connected to each other through corresponding ones of first cavities 124.
In one embodiment, the adhesion layer 120 (e.g., an adhesive) is disposed between the first semiconductor chip 106 and the second semiconductor chip 118 to adhere the first semiconductor chip 106 to the second semiconductor chip 118. As exemplarily illustrated, the adhesion layer 120 may also be disposed between the second semiconductor chip 118 and the conductive patterns 110.
Referring to
Referring to
In one embodiment, the second insulating body 122 is disposed over the first insulating body 108. The second insulating body 122 may include an encapsulation material such as an epoxy resin known to one skilled in the art.
In one embodiment, the second semiconductor chip 118a is disposed over the first semiconductor chip 106. In another embodiment, the second semiconductor chip 118a may be disposed within the second insulating body 122. A portion of the second semiconductor chip 118a may be exposed by a lower surface of the second insulating body 122. In one embodiment, the second semiconductor chip 118 is larger than the first semiconductor chip 106.
In another embodiment, the second semiconductor chip 118 may be characterized as having an active surface (also referred to as a “second active surface”) and a back surface (also referred to as a “second back surface”) opposite the second active surface. The first chip pads 115a are disposed on the second back surface and second chip pads 115b are disposed on the second active surface.
Alternatively, the surface of the second semiconductor chip 118a that faces the first active surface of the first semiconductor chip 106 may be the second active surface contrary to the above described embodiment. In this case, the first chip pads 115a are disposed on the second active surface and second chip pads 115b are disposed on the second back surface. The first chip pads 115a and the second chip pads 115b may be electrically connected to each other via the through-chip vias 114a.
In one embodiment, a location of each of the through-chip vias 114a within the second insulating body 122 substantially corresponds to locations of corresponding ones of the posts 104 within the first insulating body 108. Accordingly, the through-chip vias 114a may be disposed at locations directly above corresponding ones of the posts 104.
The first conductive patterns 110 may be electrically connected to corresponding ones of the first chip pads 115a and the external terminals 112 may be electrically connected to corresponding ones of the second chip pads 115b.
In one embodiment, the adhesion layer 120 (e.g., an adhesive) is disposed between the first semiconductor chip 106 and the second semiconductor chip 118a to adhere the first semiconductor chip 106 to the second semiconductor chip 118a. As exemplarily illustrated, the adhesion layer 120 may also be disposed between the second semiconductor chip 118a and the conductive patterns 110.
In one embodiment, the adhesion layer 120 may be provided as an anisotropic conductive film (ACF). For example, the semiconductor package 208 shown in
Referring to
According to some embodiments, the additional semiconductor chips, the additional adhesion layers, the additional insulating bodies, and the additional conductive patterns may be provided in a manner similar to the second semiconductor chip 118, first adhesion layer 120, second insulating body 122, second conductive patterns 126 described above with respect to
For example, the third insulating body 132 may be disposed over the second insulating body 122 and include second cavities 133 extending from an upper surface thereof to a lower surface thereof. The third semiconductor chip 128 may be disposed within the third insulating body 132 and the third conductive patterns 134 may be electrically connected to the third semiconductor chip 128. The second adhesion layer 130 is disposed between the second semiconductor chip 118 and the third semiconductor chip 128 to adhere the second semiconductor chip 118 to the third semiconductor chip 128. Further, corresponding ones of the third conductive patterns 134 and corresponding ones of the second conductive patterns 126 may be electrically connected to each other through corresponding ones of second cavities 133.
Similarly, the fourth insulating body 140 may be disposed over the third insulating body 132 and include third cavities 141 extending from an upper surface thereof to a lower surface thereof. The fourth semiconductor chip 136 may be disposed within the fourth insulating body 140 and the fourth conductive patterns 142 may be electrically connected to the fourth semiconductor chip 136. The third adhesion layer 138 is disposed between the third semiconductor chip 128 and the fourth semiconductor chip 136 to adhere the third semiconductor chip 128 to the fourth semiconductor chip 136. Further, corresponding ones of the fourth conductive patterns 142 and corresponding ones of the third conductive patterns 134 may be electrically connected to each other through corresponding ones of third cavities 141.
In the semiconductor package 210 shown in
Referring to
In one embodiment, the posts 104′ may be disposed within the second insulating body 122 at locations laterally between the first cavities 124 and sides of the second semiconductor chip 118. In another embodiment, the posts 104′ may be disposed within the second insulating body 122 at locations adjacent to the first cavities 124 such that the first cavities 124 are disposed laterally between the posts 104′ and sides of the second semiconductor chip 118.
In one embodiment, the posts 104″ may be disposed within the third insulating body 132 at locations adjacent to the second cavities 133 such that the second cavities 133 are disposed laterally between the posts 104″ and sides of the third semiconductor chip 128. In another embodiment, the posts 104″ may be disposed within the third insulating body 132 at locations laterally between the second cavities 133 and sides of the third semiconductor chip 128.
According to some embodiments, the posts 104′ and 104″ may be formed by, for example, forming recesses within the upper surfaces of corresponding ones of the second and third insulating bodies 122 and 132, respectively, followed by filling the recesses with conductive or insulative material. However, the present invention is not limited to this particular method of forming the posts 104′ and 104″ and other suitable methods can be used instead within the spirit and scope of the present invention.
Referring to
As mentioned above, a patterned insulating layer may be interposed between the first conductive patterns 110 and the first insulating body 108. Such a patterned insulating layer (also referred to herein as a “first patterned insulating layer”) is identified in
Referring to the embodiment exemplarily illustrated in
In one embodiment, the second conductive patterns 126 may be disposed over the second patterned insulating layer 144B, as well as along edges of the second insulating body 122 defining sidewalls of the first cavities 124 and on a portion (e.g., a top surface) of corresponding ones of the first conductive patterns 110. Accordingly, the first cavities 124 can be characterized as being lined with a conductive material. Similarly, the third conductive patterns 134 may be disposed over the third patterned insulating layer 144A, as well as along edges of the third insulating body 132 defining sidewalls of the second cavities 133 and on a portion (e.g., a top surface) of corresponding ones of the second conductive patterns 126. Accordingly, the second cavities 133 can be characterized as being lined with a conductive material.
In another embodiment, the fourth insulating body 140 is formed within the second cavities 133. Accordingly, the second cavities 133 can also be characterized as being filled with an insulating material.
In still another embodiment, portions of the third insulating body 132 are disposed within the first cavities 124 and locations of the second cavities 133 within the third insulating body 132 substantially correspond to locations of the first cavities 124 within the second insulating body 122. Therefore, locations of the second cavities 133 within the third insulating body 132 may substantially correspond to locations of the posts 104 within the first insulating body 108. Accordingly, second cavities 133 may be disposed at locations directly above corresponding ones of the posts 104.
In yet another embodiment, the third conductive patterns 134 electrically contact portions (e.g., top surfaces) of corresponding ones of the second conductive patterns 126 that are disposed within the first cavities 124. Accordingly, the third conductive patterns 134 can be characterized as being disposed within corresponding ones of the first cavities 124.
Referring to the embodiment exemplarily illustrated in
In one embodiment, the third conductive patterns 134 electrically contact portions (e.g., top surfaces) of corresponding ones of the second conductive patterns 126 that are disposed outside the first cavities 124. Accordingly, the third conductive patterns 134 may electrically contact portions of corresponding ones of the second conductive patterns 126 that overlie the second patterned insulating layer 144B.
Referring to the embodiment exemplarily illustrated in
Referring to
Due to the presence of the conductive plug 146, portions of the third insulating body 132 are disposed directly over—but not within, the first cavities 124. In addition, the third conductive patterns 134 electrically contact portions (e.g., top surfaces) of corresponding ones of the conductive plugs 146 that are disposed within the first cavities 124.
Referring to the embodiment exemplarily illustrated in
In one embodiment, locations of the second cavities 133 within the third insulating body 132 substantially correspond to locations of the first cavities 124 within the second insulating body 122. Therefore, locations of the second cavities 133 within the third insulating body 132 may substantially correspond to locations of the posts 104 within the first insulating body 108. Accordingly, second cavities 133 may be disposed at locations directly above corresponding ones of the posts 104.
In one aspect, the second conductive patterns 126 may be disposed over the second patterned insulating layer 144B, but not along edges of the second insulating body 122 defining sidewalls of the first cavities 124 or on portions (e.g., top surfaces) of corresponding ones of the first conductive patterns 110. In yet another aspect, the second conductive patterns 126 may be provided as line-type patterns, extending primarily along a single direction away from the second semiconductor chip 118.
The third insulating body 132 may be disposed over the second insulating body 122, but not within the first cavities 124.
In one embodiment, the first and second cavities 124 and 133 may be formed in a single patterning process. For example, after the second insulating body 122, second patterned insulating layer 144B, second conductive patterns 126, third insulating body 132 and third patterned insulating layer 144A are formed, the resultant structure may be subjected to a patterning process that successively forms the second cavities 133 within the third insulating body 132 and first cavities 124 within the second insulating body 122. Thus, the first and second cavities 124 and 133 may be characterized as a single cavity extending contiguously through the second and third insulating bodies 122 and 132. In one embodiment, the patterning process may be a laser drilling process performed with a UV laser. Accordingly, sidewalls of the first and second first and second cavities 124 and 133 may be substantially vertical.
As described above in the Description of the Related Art, conventional laser drilling processes employ IR lasers which can create openings with sidewalls that create adhesion problems with subsequently formed conductive patterns. Light emitted by UV lasers, however, has a relatively short wavelength. Consequently, UV laser light scatters less as it passes through encapsulation material. Accordingly, the UV laser drilling process may produce cavities 124 with sidewalls that are substantially less damaged. As a result, the adhesion between the first insulating body 108 (or the encapsulant material) and conductive plugs 148 of
Furthermore, during the high power UV laser drilling process, as the post 104 is disposed below the location of the cavities 124 acting as a buffer, even if the UV laser damages or punctures the first conductive patterns 110, the post 104 still remains under the first conductive patterns 110.
Consequently, the electrical signal connection between the semiconductor chips, e.g., 118 and the external terminals 112 can be secured, thereby improving the reliability of the resulting electronic products. In other words, with the presence of the post 104, the UV laser drilling process can now be used instead of the conventional IR laser process which has many reliability issues described above.
Also, UV laser drilling processes may be used to produce cavities 124 having substantially vertical sidewalls. By forming cavities 124 with substantially vertical sidewalls, the distance between adjacent external terminals 112, i.e., pitch, can be reduced. Therefore, more external terminals can be provided within the same area, thereby increasing the signal density and design margin of the semiconductor package.
In another embodiment, the third conductive patterns 134 may be disposed over the third patterned insulating layer 144A, as well as along edges of the third insulating body 132 defining sidewalls of the second cavities 133, along edges of the second conductive patterns 126 disposed outside the first cavities 124, along edges of the second insulating body 122 defining sidewalls of the first cavities 124 and on portions (e.g., top surfaces) of corresponding ones of the first conductive patterns 110 disposed below the first cavities 124. Accordingly, the third conductive patterns 134 can be characterized as being disposed within corresponding ones of the first cavities 124 and the second cavities 133.
In yet another embodiment, the conductive plugs 148 may be formed on the third conductive patterns 134 so as to extend through the second and first cavities 133 and 124, respectively. Accordingly, the first and second cavities 124 and 133 may be filled with a conductive material. In one embodiment, upper surfaces of the conductive plugs 148 may be substantially coplanar with upper surfaces of the third conductive patterns 134.
Referring to
Referring to the embodiment exemplarily illustrated in
In one embodiment, locations of the second cavities 133 within the third insulating body 132 substantially correspond to locations of the first cavities 124 within the second insulating body 122. Therefore, locations of the second cavities 133 within the third insulating body 132 may substantially correspond to locations of the posts 104 within the first insulating body 108. Accordingly, the second cavities 133 may be disposed at locations directly above corresponding ones of the posts 104.
In one embodiment, conductive plugs 146 are formed within the first cavities 124. Accordingly, the first cavities 124 can be characterized as being filled with a conductive material. In one embodiment, upper surfaces of the conductive plugs 146 may be substantially coplanar with an upper surface of the second patterned insulating layer 144B.
In one embodiment, the second conductive patterns 126 are formed over the conductive plugs 146.
In another embodiment, the third insulating body 132 is disposed over the second conductive patterns 126 so as to overlap at least a portion of the second insulating body 122 and a portion of the conductive plugs 146. A third patterned insulating layer 144A is formed over the second insulating body 132. The third conductive patterns 134 may then be disposed over the third patterned insulating layer 144A, as well as along edges of the third insulating body 132 defining sidewalls of the second cavities 133 and on portions (e.g., top surfaces) of corresponding ones of the second conductive patterns 126. Accordingly, the second cavities 133 can be characterized as being lined with a conductive material. The third conductive patterns 134 may be disposed over portions of corresponding ones of the conductive plugs 146.
In one embodiment, the first and second cavities 124 and 133 may be formed in different patterning processes. For example, after the second insulating body 122 and second patterned insulating layer 144B are formed, the resultant structure may be subjected to a first patterning process that forms the first cavities 124 within the second insulating body 122. Then, after the conductive plugs 146, the second conductive patterns 126, the third insulating body 132 and the third patterned insulating layer 144A are formed, the resultant structure may be subjected to a second patterning process that forms the second cavities 133 within the third insulating body 132. Thus, the first and second cavities 124 and 133 may be characterized as a multiple cavities extending discretely through the second and third insulating bodies 122 and 132. In one embodiment, the first and second patterning processes may be any suitable process.
In some embodiments, sidewalls of the first and second cavities 124 and 133 may be oblique. Also, an upper surface of the conductive plug 146 may be higher than an upper surface of the second insulating body 122.
Referring to
In one embodiment, the active surfaces of the semiconductor chips 106 may be attached to the surface of the carrier substrate 100. Accordingly, the active surfaces of the semiconductor chips 106 face towards the carrier substrate 100 while back surfaces of the semiconductor chips 106, opposite the active surfaces of the semiconductor chips 106 face away from the carrier substrate 100.
In another embodiment, the semiconductor chips 106 may be attached to the surface of the carrier substrate 100 by providing a sacrificial material 102 on the surface of the carrier substrate 100 and then coupling the semiconductor chips 106 to the sacrificial material 102. Similarly, the posts 104 may be attached to the surface of the carrier substrate 100 by coupling the posts 104 to the sacrificial material 102.
In one embodiment, the sacrificial material 102 may be provided as an adhesive material. In another embodiment, the sacrificial material 102 is an adhesive material that is sensitive to at least one of heat and light. That is, upon exposure to at least one of heat and light, the adhesive characteristics of the sacrificial material become degraded.
In one embodiment, the posts 104 may be attached to the surface of the carrier substrate 100 by forming a material layer over the surface of the carrier substrate 100 followed by patterning the material layer. In another embodiment, the posts 104 may be pre-formed before being attached to the surface of the carrier substrate 100 (e.g., as in leads of a lead frame). It will be appreciated that the posts 104 may be attached to the carrier substrate 100 before or after the semiconductor chip 106 is attached to the carrier substrate 100. In one embodiment, the posts 104 may be formed of a conductive material (e.g., Cu, Fe, Ag, Au, Al, conductive polymer having a high adhesive strength with the sacrificial material 102, or the like or a combination thereof) or an insulating material (e.g., a dielectric).
In one embodiment, the carrier substrate 100 may include a material that is transparent to light used in degrading the adhesive characteristics of the sacrificial material 102. In another embodiment, the carrier substrate 100 may include a material that suitably conducts heat used in degrading the adhesive characteristics of the sacrificial material 102. Exemplary materials for the carrier substrate 100 include a metal or polyimide.
Referring to
Referring to
In one embodiment, the carrier substrate 100 is separated from the semiconductor chips 106, the posts 104 and the insulating body 108 by exposing the sacrificial material 102 to at least one of light and heat. Upon exposing the sacrificial material 102 to at least one of light and heat, the adhesive characteristics of the sacrificial material 102 are degraded to thereby facilitate separation of the carrier substrate 100 from the semiconductor chips 106 and the posts 104.
After separating the carrier substrate 100 from the semiconductor chips 106 and the posts 104, a planarization process (e.g., an etch-back process) may be performed to remove the sacrificial material 102 and portions of the insulating body 108 protruding above the active surface of the semiconductor chip and the top surfaces of the posts 104. Accordingly, portions (i.e., the active surfaces) of the semiconductor chips 106, e.g., chip pad regions (not shown) and portions (i.e., top surfaces) of the posts 104 may be exposed by the insulating body 108.
Referring to
In one embodiment, a patterned insulating layer (see, e.g., patterned insulating layer 144C in
After forming the patterned insulating layer as described in the paragraph above, the conductive pattern 110 may be formed. In one embodiment, the conductive pattern 110 may be formed by forming a seed layer on the active surfaces of the semiconductor chips 106 (e.g., on chip pad regions in the active surfaces) as well as on top surfaces of the posts 104 (e.g., by sputtering) followed by forming a conductive layer on the seed layer. The conductive layer may be formed by electroplating, electroless plating, or the like or a combination thereof. It will be appreciated that other known methods can be used to form the conductive patterns 110 within the spirit and scope of the present invention. For example, a conductive layer is deposited using chemical vapor deposition (CVD) over the semiconductor chips 106 and patterned to form the conductive patterns 110.
Referring to
In the embodiment exemplarily shown in
Due to the presence of the conductive pattern 110 and posts 104, the semiconductor chip 106 can be effectively packaged even when the pitch between adjacent chip pad regions in the active surface of the semiconductor chips 106 is small.
In one embodiment, processes for forming the semiconductor package 204 shown in
In one embodiment, back surfaces of the second semiconductor chips 118 face toward the active surfaces of the first semiconductor chips 106 and active surfaces of the second semiconductor chips 118 face away from the active surfaces of the first semiconductor chips 106.
Referring to
In one embodiment, the cavities 124 may be formed in the second insulating body 122 by subjecting the second insulating body 122 to a laser drilling process, a dry etching process, a wet etching process, or the like or a combination thereof. In one embodiment, the laser drilling process includes a process in which the second insulating body 122 is exposed to light emitted from an ultraviolet (UV) laser. In this sense, the laser drilling process can be characterized as a UV laser drilling process.
Because the posts 104 can be located below the second conductive patterns 126, which are connected to the external terminals 112, junction reliability between the external terminals 112 and the second conductive patterns 126 can be improved. Further, in embodiments where the posts 104 are conductive, a reliable electrical connection can be maintained between the second conductive patterns 126 and the first semiconductor chip 106 even when the first cavities 124 extend below the second insulating body 122 as discussed above. In addition, noise between the signal lines can be reduced and power supply or ground can be stabilized, thereby improving reliability of the electronic devices.
Referring to
The second conductive patterns 126 may be formed according to a process similar to that previously described with respect to the formation of the first conductive patterns 110. For example, the second conductive patterns 126 may be formed by first forming a second patterned insulating layer (see, e.g., patterned insulating layer 144B in
Referring to
Referring to
Due to the presence of the conductive pattern 110 and posts 104, the second semiconductor chips 118 can be effectively packaged even when the pitch between adjacent chip pad regions in the active surfaces of the second semiconductor chips 118 are small.
Referring to
In one embodiment, the semiconductor device 720 may include any semiconductor package as exemplarily described above. Accordingly, the semiconductor device may be characterized as including, for example, an insulating body; a semiconductor chip having an active surface and a back surface opposite the active surface, the semiconductor chip disposed within the insulating body, the active surface exposed by the insulating body, the back surface substantially surrounded by the insulating body; a post disposed within the insulating body and adjacent to a side of the semiconductor chip; and a conductive pattern disposed on the insulating body and on the top surface of the post exposed by the insulating body, the conductive pattern electrically connected to the semiconductor chip.
In one embodiment, the card system 700 may be provided as a multimedia card or a secure digital card.
Referring to
In one embodiment, the semiconductor device 820 may include any semiconductor package as exemplarily described above. Accordingly, the semiconductor device 820 may be characterized as including, for example, an insulating body; a semiconductor chip having an active surface and a back surface opposite the active surface, the semiconductor chip disposed within the insulating body, the active surface exposed by the insulating body, the back surface substantially surrounded by the insulating body; a post disposed within the insulating body and adjacent to a side of the first semiconductor chip; and a conductive pattern disposed on the insulating body and on the top surface of the post exposed by the insulating body, the conductive pattern electrically connected to the semiconductor chip.
In one embodiment, the semiconductor device can be provided as, for example, a DRAM, a PRAM, an MRAM, a nonvolatile memory, or the like or a combination thereof.
In one embodiment, the system 800 can be provided as a mobile phone, MP3, navigation, solid state disk (SSD), household appliance, or the like. By incorporating the semiconductor package in accordance with embodiments of the present invention described above in the system 800, the resulting electronic devices are mechanically more robust and the reliability thereof can be significantly improved.
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
Various operations will be described as multiple discrete steps performed in a manner that is most helpful in understanding the invention. However, the order in which the steps are described does not imply that the operations are order-dependent or that the order that steps are performed must be the order in which the steps are presented.
While embodiments of the present invention have been particularly shown and described above, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims.
Kim, Pyoung-Wan, Lee, Teak-Hoon, Jang, Chul-Yong
Patent | Priority | Assignee | Title |
9040361, | Aug 12 2010 | Siliconware Precision Industries Co., Ltd. | Chip scale package with electronic component received in encapsulant, and fabrication method thereof |
9418941, | Aug 10 2010 | JCET SEMICONDUCTOR SHAOXING CO , LTD | Semiconductor device and method of forming B-stage conductive polymer over contact pads of semiconductor die in Fo-WLCSP |
9640517, | Feb 19 2014 | Carsem (M) SDN. BHD.; CARSEM M SDN BHD | Stacked electronic packages |
Patent | Priority | Assignee | Title |
6365513, | Oct 01 1997 | Invensas Corporation | Method of making a semiconductor device including testing before thinning the semiconductor substrate |
6451624, | Jun 05 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Stackable semiconductor package having conductive layer and insulating layers and method of fabrication |
6489676, | Dec 04 2000 | SOCIONEXT INC | Semiconductor device having an interconnecting post formed on an interposer within a sealing resin |
6770971, | Jun 14 2002 | Casio Computer Co., Ltd. | Semiconductor device and method of fabricating the same |
6911392, | Aug 24 2001 | Wafer-Level Packaging Portfolio LLC | Process for making contact with and housing integrated circuits |
6982487, | Mar 25 2003 | Samsung Electronics Co., Ltd. | Wafer level package and multi-package stack |
7071098, | Feb 20 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods of fabricating interconnects for semiconductor components including a through hole entirely through the component and forming a metal nitride including separate precursor cycles |
7215033, | Nov 19 2003 | Samsung Electronics Co., Ltd. | Wafer level stack structure for system-in-package and method thereof |
7511371, | Nov 01 2005 | SanDisk Technologies LLC | Multiple die integrated circuit package |
7525186, | Sep 30 2006 | Hynix Semiconductor Inc. | Stack package having guard ring which insulates through-via interconnection plug and method for manufacturing the same |
7763498, | Jun 18 2007 | Hynix Semiconductor Inc. | Molded reconfigured wafer, stack package using the same, and method for manufacturing the stack package |
20080001276, | |||
CN101330068, | |||
CN1453841, | |||
CN1532924, | |||
CN1929120, | |||
JP200512089, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 04 2008 | KIM, PYOUNG-WAN | SAMSUNG ELECTRONICS CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020834 | /0847 | |
Mar 04 2008 | LEE, TEAK-HOON | SAMSUNG ELECTRONICS CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020834 | /0847 | |
Mar 04 2008 | JANG, CHUL-YONG | SAMSUNG ELECTRONICS CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020834 | /0847 | |
Apr 16 2008 | Samsung Electronics Co., Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jun 26 2015 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jun 24 2019 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jun 28 2023 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jan 10 2015 | 4 years fee payment window open |
Jul 10 2015 | 6 months grace period start (w surcharge) |
Jan 10 2016 | patent expiry (for year 4) |
Jan 10 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 10 2019 | 8 years fee payment window open |
Jul 10 2019 | 6 months grace period start (w surcharge) |
Jan 10 2020 | patent expiry (for year 8) |
Jan 10 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 10 2023 | 12 years fee payment window open |
Jul 10 2023 | 6 months grace period start (w surcharge) |
Jan 10 2024 | patent expiry (for year 12) |
Jan 10 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |