Disclosed are various embodiments of a mountain bike frame and method of making a mountain bike frame where a rear suspension shock absorber is configured to compress when a rear triangle moves upwardly with respect to a force channelling top tube and a seat tube. At least portions of forces generated by upward movement of the rear triangle with respect to the force channelling top tube and the seat tube are transmitted through elongated front and rear torque conversion devices to the shock absorber, a shock absorber mount and the force channelling top tube. An upper portion of the front torque conversion device and a rear portion of the rear torque conversion device, when the mountain bike frame is viewed from a right side view, each rotate in a clockwise direction when the rear triangle moves upwardly with respect to the force channelling top tube and the seat tube.
|
1. A mountain bike frame, comprising:
(a) a force channelling top tube comprising a front portion and a rear portion;
(b) a shock absorber mount attached to or forming a portion of the top tube;
(c) a down tube comprising front and rear portions, a front torque conversion device mount attached to or forming a portion of the down tube;
(d) a head tube having the front portion of the top tube attached to an upper portion of the head tube and the front portion of the down tube attached to a lower portion of the head tube;
(e) a seat tube comprising top and bottom portions, the rear portion of the top tube being attached to the top portion of the seat tube, the rear portion of the down tube being attached to the bottom portion of the seat tube;
(f) a rear triangle comprising upper seat stays and lower chain stays, the upper seat stays comprising at least one forward portion located forward of the seat tube;
(g) an elongated rear torque conversion device having a front portion pivotally attached to the bottom portion of the seat tube and a rear portion pivotally attached to the lower chain stays;
(h) a shock absorber comprising forward and rearward portions, the forward portion of the shock absorber being attached to the shock absorber mount, and a distance between the rearward portion of the shock absorber and the top tube being substantially shorter than a distance between the rearward portion of the shock absorber and the down tube, and
(i) an elongated front torque conversion device comprising upper and lower portions, the lower portion of the front torque conversion device being pivotally attached to the front torque conversion device mount, the upper portion of the front torque conversion device being pivotally attached to the at least one forward portion of the upper seat stays and to the rearward portion of the shock absorber;
wherein the shock absorber is configured to compress when the rear triangle moves upwardly with respect to the force channelling top tube and the seat tube, at least portions of forces generated by upward movement of the rear triangle with respect to the force channelling top tube and the seat tube are transmitted through the front and rear torque conversion devices to the shock absorber, the shock absorber mount and the force channelling top tube, and wherein the upper portion of the front torque conversion device and the rear portion of the rear torque conversion device, when the mountain bike frame is viewed from a right side view, each rotate in a clockwise direction when the rear triangle moves upwardly with respect to the force channelling top tube and the seat tube.
2. The mountain bike frame of
3. The mountain bike frame of
4. The mountain bike frame of
5. The mountain bike frame of
6. The mountain bike frame of
8. The mountain bike frame of
|
This patent application is a continuation-in-part of, and claims priority and other benefits from, U.S. patent application Ser. No. 12/098,399 entitled “Force Channelling Mountain Bike Rear Suspension” to Tanouye et al. filed Apr. 4, 2008 (hereafter “the '399 patent application) and U.S. patent application Ser. No. 12/256,152 entitled “Center of Mass Technology for Mountain Bike Frame” to Tanouye et al. filed Oct. 22, 2008 (hereafter “the '152 patent application). The respective entireties of the '399 and '152 patent applications are hereby incorporated by reference herein.
Various embodiments of the invention described herein relate to the field of mountain bikes, mountain bike frames, and methods of making and using the same.
Bicycles designed to traverse rugged terrain, commonly known as mountain bikes, have been available for many years. An increasingly common feature of mountain bikes is their rear suspension systems. The rear suspension system prevents certain forces from being transferred by the terrain, against the bike, to the rider. It also increases rider control by maximizing tire contact with the terrain.
Mountain bike rear suspension systems that use shock-absorbing elements have placed great emphasis on correcting the problem of “jacking.” See, for example, U.S. Pat. No. 5,899,480 to Leitner, which describes the “jacking” than can occur because of the design of “swingarm” rear suspension systems (“[i]n simple swingarm rear suspension [systems], the swing arms pivot sharply upward when a surge of power is supplied to the rear wheel, and pivot downward again when the power is backed off”). When a mountain bike is ridden over rough terrain, such “jacking” can reduce the contact of the rear wheel with the riding surface, which can severely compromise the rider's control over the bike. Additionally, in some prior art designs, forces are imparted to the seat tube (or any other area of the main frame that is not properly aligned with a key structural member of the frame), which creates forces on the bike that work against the forward propulsion induced by pedaling.
The rear suspensions of some prior art mountain bike designs can suffer from various deficiencies and inadequacies. For example, some frame designs require complicated manufacturing techniques to work around an uninterrupted seat tube and seat mast to mount a shock-activating link on the seat tube. This is due to the shape of the frame, which requires the seatpost to be constructed of two separate elements, thereby increasing the time needed to manufacture and assemble the components of the frame. This increases the cost of manufacturing and decreases the efficiency of workers and use of materials. Some frame designs utilize a link system that is not a structurally robust frame member, thereby creating a weak structural element. The rear shock in some frame designs is mounted to the frame by a means of an attached throughshaft, where one end of the shock rests and is bolted to the opposing side of the frame. This throughshaft can form a weak element of the frame. Other prior art mountain bike frame designs provide no or inadequate conduits or channels for the forces generated by the rider and the ground to be directed into strong load bearing structures.
What is needed is a mountain bike capable of efficiently channelling the external forces operating thereon, that does not jack or that exhibits a reduced tendency to jack, that is stronger, and that is lighter.
In one embodiment, there is provided a mountain bike frame comprising a force channelling top tube comprising a front portion and a rear portion, a shock absorber mount attached to or forming a portion of the top tube, a down tube comprising front and rear portions, a front torque conversion device mount attached to or forming a portion of the down tube, a head tube having the front portion of the top tube attached to an upper portion of the head tube and the front portion of the down tube attached to a lower portion of the head tube, a seat tube comprising top and bottom portions, the rear portion of the top tube being attached to the top portion of the seat tube, the rear portion of the down tube being attached to the bottom portion of the seat tube, a rear triangle comprising upper seat stays and lower chain stays, the upper seat stays comprising at least one forward portion located forward of the seat tube, an elongated rear torque conversion device having a front portion pivotally attached to the bottom portion of the seat tube and a rear portion pivotally attached to the lower chain stays, a shock absorber comprising forward and rearward portions, the forward portion of the shock absorber being attached to the shock absorber mount, and a distance between the rearward portion of the shock absorber and the top tube being substantially shorter than a distance between the rearward portion of the shock absorber and the down tube, and an elongated front torque conversion device comprising upper and lower portions, the lower portion of the front torque conversion device being pivotally attached to the front torque conversion device mount, the upper portion of the front torque conversion device being pivotally attached to the at least one forward portion of the upper seat stays and to the rearward portion of the shock absorber, wherein the shock absorber is configured to compress when the rear triangle moves upwardly with respect to the force channelling to tube and the seat tube, at least portions of forces generated by upward movement of the rear triangle with respect to the force channelling top tube and the seat tube are transmitted through the front and rear torque conversion devices to the shock absorber, the shock absorber mount and the force channelling top tube, and wherein the upper portion of the front torque conversion device and the rear portion of the rear torque conversion device, when the mountain bike frame is viewed from a right side view, each rotate in a clockwise direction when the rear triangle moves upwardly with respect to the force channelling top tube and the seat tube.
In another embodiment, there is provided a method of making a mountain bike frame comprising attaching, or forming as a portion of, a shock absorber mount to a force channelling top tube comprising a front portion and a rear portion, attaching, or forming as a portion of, a front torque conversion device mount to a down tube comprising front and rear portions, attaching the front portion of the top tube to an upper portion of a head tube and attaching the front portion of the down tube to a lower portion of the head tube, attaching the rear portion of the top tube to a top portion of a seat tube, and the rear portion of the down tube to a bottom portion of the seat tube, pivotally mounting a front portion of an elongated rear torque conversion device to the bottom portion of the seat tube and pivotally mounting a rear portion of the rear torque conversion device to lower chain stays of a rear triangle, the rear triangle further comprising upper seat stays, attaching a forward portion of a shock absorber to the shock absorber mount, pivotally attaching an upper portion of an elongated front torque conversion device to at least one forward portion of the upper seat stays located forward of the seat tube, pivotally attaching a lower portion of the front torque conversion device to the front torque conversion device mount, attaching the upper portion of the front torque conversion device to a rearward portion of the shock absorber, wherein a distance between the rearward portion of the shock absorber and the top tube is substantially shorter than a distance between the rearward portion of the shock absorber and the down tube, wherein the shock absorber is configured to compress when the rear triangle moves upwardly with respect to the force channelling top tube and the seat tube, at least portions of forces generated by upward movement of the rear triangle with respect to the force channelling top tube and the seat tube are transmitted through the front and rear torque conversion devices to the shock absorber, the shock absorber mount and the force channelling top tube, and wherein the upper portion of the front torque conversion device and the rear portion of the rear torque conversion device, when the mountain bike frame is viewed from a right side view, each rotate in a clockwise direction when the rear triangle moves upwardly with respect to the force channelling top tube and the seat tube.
Different aspects of the various embodiments of the invention will become apparent from the following specification, drawings and claims in which:
The drawings are not necessarily to scale. Like numbers refer to like parts or steps throughout the drawings.
Referring now to
Continuing to refer to
As further shown in
In
In the Figures, bottom bracket 43 is located at or near an intersection of seat tube 59 and down tube 37 in a structural configuration well known in the art. In a configuration operable by a user on a mountain bike trail, mountain bike frame 10 may further comprise front and rear wheels operably attached thereto, a crank assembly operably attached thereto, a front fork and corresponding front shock absorber operably attached thereto, front and rear brakes operably attached thereto, and front and rear derailleurs operably attached thereto, thereby forming a complete mountain bike.
Referring again to
Mountain bike frame 10 employs two torque conversion devices—front torque conversion device 23 and rear torque conversion device 45. As previously described, when viewed from the right side of the mountain bike frame 10, both torque conversion devices 23 and 45 pivot in a clockwise direction, as indicated by arrows 67 and 69 shown in
In addition, the various embodiments of mountain bike frame 10 disclosed herein are amendable to be manufactured using simple and low-cost manufacturing techniques, unlike many other designs known in the art which can require the use of forging or shape manipulation of seat tubes and down tubes. Such specialized and expensive manufacturing techniques can also lead to a requirement for the use of special front derailleurs, monocoque pieces, or expensive tooling. In the various embodiments of the mountain bike frame 10 described herein, all tubes and torque conversion devices can be fabricated using standardized bicycle production equipment.
Note further that included within the scope of the present invention are methods of making and having made the various components, devices and systems described herein. For example, according to one embodiment there is provided a method of making a mountain bike frame comprising attaching, or forming as a portion of, a shock absorber mount to a force channelling top tube comprising a front portion and a rear portion, attaching, or forming as a portion of, a front torque conversion device mount to a down tube comprising front and rear portions, attaching the front portion of the top tube to an upper portion of a head tube and attaching the front portion of the down tube to a lower portion of the head tube, attaching the rear portion of the top tube to a top portion of a seat tube, and the rear portion of the down tube to a bottom portion of the seat tube, pivotally mounting a front portion of an elongated rear torque conversion device to the bottom portion of the seat tube and pivotally mounting a rear portion of the rear torque conversion device to lower chain stays of a rear triangle, the rear triangle further comprising upper seat stays, attaching a forward portion of a shock absorber to the shock absorber mount, pivotally attaching an upper portion of an elongated front torque conversion device to at least one forward portion of the upper seat stays located forward of the seat tube, pivotally attaching a lower portion of the front torque conversion device to the front torque conversion device mount, attaching the upper portion of the front torque conversion device to a rearward portion of the shock absorber, wherein a distance between the rearward portion of the shock absorber and the top tube is substantially shorter than a distance between the rearward portion of the shock absorber and the down tube, wherein the shock absorber is configured to compress when the rear triangle moves upwardly with respect to the force channelling top tube and the seat tube, at least portions of forces generated by upward movement of the rear triangle with respect to the force channelling top tube and the seat tube are transmitted through the front and rear torque conversion devices to the shock absorber, the shock absorber mount and the force channelling top tube, and wherein the upper portion of the front torque conversion device and the rear portion of the rear torque conversion device, when the mountain bike frame is viewed from a right side view, each rotate in a clockwise direction when the rear triangle moves upwardly with respect to the force channelling top tube and the seat tube.
The above-described embodiments should be considered as examples of the present invention, rather than as limiting the scope of the invention. In addition to the foregoing embodiments of the invention, review of the detailed description and accompanying drawings will show that there are other embodiments of the present invention. Accordingly, many combinations, permutations, variations and modifications of the foregoing embodiments of the present invention not set forth explicitly herein will nevertheless fall within the scope of the present invention.
1
head tube
3
force channelling top tube
5
front portion of force channelling top tube
7
rear portion of force channelling top tube
9
shock absorber mount
10
force channelling centralization mountain bike frame
11
front portion of shock absorber mount
12
rear triangle
13
rear portion of shock absorber mount
15
shock absorber mount pivot or attachment point
17
shock absorber
19
rearward portion of shock absorber
21
forward portion of shock absorber
23
front torque conversion device
24
upper portion of front torque conversion device
25
bottom pivot of front torque conversion device
26
lower portion of front torque conversion device
27
top pivot of front torque conversion device/forward
pivot of upper seat stays
28
at least one forward portion of upper seat stays
29
attachment joining front torque conversion device
and shock absorber;
31
front torque conversion device mount
33
front portion of front torque conversion device mount
35
rear portion of front torque conversion device mount
37
down tube
39
front portion of down tube
41
rear portion of down tube
43
bottom bracket
45
rear torque conversion device
47
front pivot of rear torque conversion device
49
rear pivot of rear torque conversion device
51
lower chain stays
53
dropouts or wheel attachment points
55
upper seat stays
57
stay stabilization and force channelling member
59
seat tube
61
top portion of seat tube
63
bottom portion of seat tube
65
seat tube to top tube strut
67
direction of rotation of front torque conversion device
when an upward force is applied to the rear triangle
69
direction of rotation of rear torque conversion device
when an upward force is applied to the rear triangle
Kang, Alan H., Tanouye, Ted K.
Patent | Priority | Assignee | Title |
10227105, | Mar 15 2013 | LITECYCLE, INC | Vehicle and vehicle components |
10293881, | Sep 15 2004 | Yeti Cycling, LLC | Rear suspension system for a bicycle |
10336398, | Feb 27 2015 | CMH PLUS HOLDINGS LTD | Rear suspension system for a bicycle |
10343742, | Aug 20 2010 | Yeti Cycling, LLC | Link suspension system |
10766563, | Jan 16 2013 | YETI CYCLYING, LLC; Yeti Cycling, LLC | Rail suspension with integral shock and dampening mechanism |
10822048, | Aug 20 2010 | Yeti Cycling, LLC | Reciprocating rail movement suspension system |
10926830, | Jul 07 2017 | Yeti Cycling, LLC | Vehicle suspension linkage |
11034408, | Mar 15 2013 | LiteCycle, Inc. | Vehicle and vehicle components |
11173983, | Mar 17 2017 | Yeti Cycling, LLC | Vehicle suspension linkage |
11485447, | Aug 20 2010 | Yeti Cycling, LLC | Reciprocating rail movement suspension system |
8801023, | May 14 2010 | Specialized Bicycle Components, Inc. | Bicycle frame |
9156521, | Dec 23 2013 | SPOT BRAND CO , LLC | Bicycle frame rear suspension with flexing frame segment |
9334011, | May 14 2010 | Specialized Bicycle Components, Inc. | Bicycle frame |
9359039, | Dec 23 2013 | SPOT BRAND CO , LLC | Bicycle frame rear suspension with flexing frame segment |
9669894, | Mar 15 2013 | LITECYCLE, INC | Vehicle and vehicle components |
9701361, | Dec 23 2013 | SPOT BRAND CO , LLC | Bicycle frame rear suspension with flexing frame segment |
9908583, | Jun 23 2012 | MATHESON, W HANK; HEIM, JONATHAN R | Bicycle rear suspension with a two axis wheel path |
Patent | Priority | Assignee | Title |
5611557, | May 02 1994 | Bicycle suspension system | |
5685553, | Sep 21 1994 | BANK ONE, WISCONSIN | Suspension for a bicycle having a Y shaped frame |
5725227, | Jul 20 1995 | SCOTT USA, INC | Suspension system for a bicycle |
5791674, | Mar 13 1997 | BLACKROCK KELSO CAPITAL CORPORATION, AS AGENT | Bicycle suspension system |
5899480, | Jan 21 1992 | GENERAL ELECTRIC CAPITAL CORPORATION, AS ADMINISTRATIVE AGENT | Rear suspension for bicycles |
6161858, | Jun 14 1999 | Merida Industry Co., Ltd. | Mountain bike frame |
6244610, | Oct 28 1996 | INDUSTRIES RAD INC | Two wheeled vehicle, especially a bicycle |
6581950, | Sep 10 1999 | Single pivot bicycle suspension apparatus and related methods | |
6712374, | Jul 26 2001 | Decathlon | Two-wheeled vehicle with rear suspension |
6969081, | Nov 01 2001 | ATB Sales Limited | Bicycle rear suspension |
7210695, | Nov 21 2002 | Suspension systems | |
7395892, | Mar 23 2004 | EVANS, DAVID | Cycle suspension assembly |
7717212, | Aug 25 2006 | SPLIT PIVOT, INC | Vehicle suspension systems for seperated acceleration responses |
7784810, | Nov 14 2005 | Santa Cruz Bicycles, Inc. | Bicycle rear wheel suspension system with controlled variable shock rate |
7806422, | May 11 2007 | Giant Manufacturing Co. Ltd. | Bicycle with a common pivot shock absorber |
7815207, | Jun 28 2007 | Rear wheel suspension system for a two-wheeled vehicle | |
7918472, | Apr 15 2009 | Dual Lever Suspension, LLC | Dual-lever compression suspension system |
7938425, | Jun 30 2009 | Specialized Bicycle Components, Inc. | Bicycle assembly with rear shock |
8033558, | Sep 19 2007 | A-Pro Tech Co., Ltd. | Bicycle rear suspension system |
20040061305, | |||
20050285367, | |||
20080054595, | |||
20090001685, | |||
20090102158, | |||
20100007113, | |||
20110278818, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 15 2013 | AJ BUSINESS ENTERPRISES LLC | 888 SPORTS GROUP LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030248 | /0019 |
Date | Maintenance Fee Events |
Oct 30 2015 | REM: Maintenance Fee Reminder Mailed. |
Mar 20 2016 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 20 2015 | 4 years fee payment window open |
Sep 20 2015 | 6 months grace period start (w surcharge) |
Mar 20 2016 | patent expiry (for year 4) |
Mar 20 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 20 2019 | 8 years fee payment window open |
Sep 20 2019 | 6 months grace period start (w surcharge) |
Mar 20 2020 | patent expiry (for year 8) |
Mar 20 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 20 2023 | 12 years fee payment window open |
Sep 20 2023 | 6 months grace period start (w surcharge) |
Mar 20 2024 | patent expiry (for year 12) |
Mar 20 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |