A method of making a stent-graft includes providing a self-expanding stent having a collapsed configuration with a first diameter and an expanded configuration with a second diameter greater than the first diameter, the stent including a polymeric coating on at least an inner surface, disposing a graft on a mandrel having a third diameter greater than the second diameter, and contacting an outer surface of the graft with the coated inner surface of the stent, the stent applying a compressive force to the graft.

Patent
   8196279
Priority
Feb 27 2008
Filed
Feb 24 2009
Issued
Jun 12 2012
Expiry
Sep 23 2030
Extension
576 days
Assg.orig
Entity
Large
5
325
all paid
1. A method of making a stent-graft, comprising:
providing a self-expanding stent having a collapsed configuration with a first diameter and an expanded configuration with a second diameter greater than the first diameter, the stent including a polymeric coating on at least an inner surface;
disposing a graft on a mandrel having a third diameter greater than the second diameter; and
contacting an outer surface of the graft with the coated inner surface of the stent, the stent applying a compressive force to the graft.
2. The method according to claim 1, wherein the contacting step comprises expanding the stent to a fourth diameter greater than the third diameter, positioning the stent over the graft and releasing the stent.
3. The method according to claim 1, further comprising the step of heating the stent-graft.
4. The method according to claim 3, wherein the heating step includes processing at a temperature of about 340 degrees C. for a time period in the range of about 10 minutes to about 11 minutes.
5. The method according to claim 1, wherein the disposing step includes sliding a generally tubular ePTFE graft onto the mandrel.
6. The method according to claim 1, wherein the disposing step includes wrapping an ePTFE film about the mandrel, the ePTFE film having a thickness in the range of about 40 microns to about 100 microns.
7. The method according to claim 1, wherein the providing step includes providing a stent comprised of shape memory metal.
8. The method according to claim 1, wherein the third diameter is in the range of about 0.1 mm to about 1 mm greater than the second diameter.
9. The method according to claim 8, wherein the second diameter is in the range of about 4 mm to about 14 mm.
10. The method according to claim 1, wherein the polymeric coating comprises PTFE.
11. The method according to claim 1, wherein the bond strength of the stent-graft is in the range of about 2 gf/mm to about 13 gf/mm.
12. The method according to claim 1, further comprising wrapping ePTFE tape about an outer surface of the stent under tension and heating the stent-graft, wherein the tape is removed from the stent before the heating step.
13. The method according to claim 12, wherein the ePTFE tape is removed from the stent after a period in the range of about 5 minutes to about 10 minutes.
14. The method according to claim 12, wherein the wrapping step comprises helically wrapping a first and second layer of tape about the outer surface of the stent.
15. The method according to claim 12, wherein the bond strength of the stent-graft is in the range of about 4 gf/mm to about 14 gf/mm.

This application claims the benefit of U.S. Provisional Patent Application No. 61/031,818, filed Feb. 27, 2008, which is incorporated by reference in its entirety into this application.

Intraluminal prostheses used to maintain, open, or dilate blood vessels are commonly known as stents. Stent constructions generally include lattice type cylindrical frames that define a plurality of openings. Stents may have self-expanding and/or balloon expandable properties. Stents can be made of various metals and polymers and can include a combination of self-expanding and balloon expandable properties.

Synthetic vascular grafts are routinely used to restore the blood flow in patients suffering from vascular diseases. For example, prosthetic grafts made from expanded polytetrafluoroethylene (ePTFE) are commonly used and have shown favorable patency rates, meaning that depending on a given time period, the graft maintains an open lumen for the flow of blood therethrough. Grafts formed of ePTFE include a microstructure characterized by spaced apart nodes connected by fibrils, the distance between the nodes defined as internodal distance (IND), and are generally extruded either as a tube or as a sheet or film that is fashioned into a tube.

It is known in the art to use stents in combination with vascular grafts or covering layers to form stent-grafts. A vascular graft or covering layer, such as an ePTFE tube, is positioned adjacent an inner and/or outer surface of the stent and adhered thereto. For instance, U.S. Pat. No. 6,004,348 to Banas et al., which is incorporated by reference in its entirety into this application, describes an encapsulated stent formed by providing a first ePTFE graft about a mandrel, concentrically positioning a stent about the first ePTFE graft, and concentrically positioning a second ePTFE graft about the stent. Circumferential pressure is then applied to the assembly by helically wrapping ePTFE tape under tension over the outer surface of the second ePTFE graft. Thereafter, the assembly is heated to bond the first ePTFE graft to the second ePTFE graft through the openings of the stent. Following the sintering process, the ePTFE tape is unwrapped from the assembly.

U.S. Pat. No. 6,214,039 to Banas et al. describes a method of forming a stent-graft with a single graft or covering layer disposed on the abluminal surface of the stent, including sliding an ePTFE graft over a tapered mandrel with an increasing diameter to dilate the ePTFE graft and then sliding the dilated graft onto an unexpanded stent such that the graft is retained about an outer surface of the stent by the inherent recoil properties of the graft. Methods of forming a stent-graft with a single graft or covering layer on the luminal surface of the stent generally involves the use of adhesives or coatings positioned on the stent and/or surface of the graft. For example, an ePTFE graft is placed on a mandrel and a stent with a polymeric coating is positioned over the graft. As with the encapsulation procedure described above, tape is then helically wrapped about the outer surface of the stent under tension and the stent-graft is heated to achieve bonding of the ePTFE graft to the coated stent. However, differently from the encapsulation procedure, removal of the tape from the stent-graft is often difficult due to the tendency of the stent coating to melt and bond to the tape, such that the removal process may result in tearing of the graft and/or deposit of tape fragments on the stent-graft (requiring manual removal).

It is advantageous to have a graft or covering layer on the luminal surface of the stent-graft in order to provide a smooth surface for the flow of blood through the stent-graft. Moreover, a stent-graft with a single luminal graft or covering layer may provide advantages over a stent-graft with two or more graft layers, such as providing a lower profile for insertion and increasing flexibility. Thus, a method of applying pressure to the stent-graft with a single luminal graft or covering layer is desirable.

References related to stent-grafts include: U.S. Pat. Nos. 6,004,348; 6,214,039; 6,364,903; 6,488,701; and U.S. Patent Application Publication No. 2005/0096737, each of which is incorporated by reference in its entirety into this application.

Applicants have recognized that it would be desirable to provide a method for forming a stent-graft with a single graft layer on the luminal surface of the stent, embodiments of which are described herein.

Accordingly, described herein are methods for forming a stent-graft. In one embodiment, a method of making a stent-graft includes providing a self-expanding stent having a collapsed configuration with a first diameter and an expanded configuration with a second diameter greater than the first diameter, the stent including a polymeric coating on at least an inner surface, disposing a graft on a mandrel having a third diameter greater than the second diameter, and contacting an outer surface of the graft with the coated inner surface of the stent, the stent applying a compressive force to the graft.

In another embodiment, a method of making a stent-graft, includes providing a self-expanding stent having a collapsed configuration with a first diameter and an expanded configuration with a second diameter greater than the first diameter, the stent including a polymeric material on at least a portion of an inner surface, disposing an ePTFE graft on a mandrel having a third diameter about 1 mm greater than the second diameter, placing the stent onto the graft by expanding the stent to a fourth diameter greater than the third diameter, positioning the stent over the graft and releasing the stent, and heating the stent-graft.

In yet another embodiment, a method of making a stent-graft includes providing a self-expanding stent having a collapsed configuration with a first diameter and an expanded configuration with a second diameter greater than the first diameter, the stent including a polymeric coating on at least an inner surface, disposing an ePTFE graft on a mandrel having a third diameter greater than the second diameter, expanding the stent to a fourth diameter greater than the third diameter, positioning the stent over the graft and releasing the stent, the coated inner surface of the stent contacting an outer surface of the ePTFE graft, wrapping ePTFE tape about an outer surface of the stent under tension, and removing the ePTFE tape prior to subjecting the stent-graft to a heating step.

These and other embodiments, features and advantages will become more apparent to those skilled in the art when taken with reference to the following more detailed description of the invention in conjunction with the accompanying drawings that are first briefly described.

FIG. 1A is a partial side view of a stent in a collapsed configuration.

FIG. 1B is a partial side view of a stent in an expanded configuration.

FIG. 1C is a partial side view of a graft and stent positioned on a mandrel.

FIG. 1D is a partial side view of the bonded stent-graft after removal from a mandrel.

The following description should be read with reference to the drawings, in which like elements in different drawings are identically numbered. The drawings, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the invention. The description illustrates by way of example, not by way of limitation, the principles of the invention. This description will clearly enable one skilled in the art to make and use the invention, and describes several embodiments, adaptations, variations, alternatives and uses of the invention, including what is presently believed to be the best mode of carrying out the invention.

As used herein, the terms “about” or “approximately” for any numerical values or ranges indicate a suitable dimensional tolerance that allows the part or collection of components to function for its intended purpose as described herein. Also, as used herein, the terms “patient”, “host” and “subject” refer to any human or animal subject and are not intended to limit the systems or methods to human use, although use of the subject invention in a human patient represents a preferred embodiment.

Described herein is a process to create a stent-graft assembly, including a stent with an single graft layer, without using an outer wrapping of tape during a heating step. A stent-graft employing a single graft layer (as opposed to multiple layers) increases flexibility and reduces the overall delivery system profile. However, creating a single graft layer stent-graft has proved more difficult than a dual graft layer stent-graft, in which an inner graft layer is bonded to an outer graft layer with the stent positioned therebetween. This is due to the fact that the dual graft layer stent-graft utilizes graft-to-graft bonding, whereas the single graft layer stent-graft must bond to the stent surface. Thus, a coating or adhesive is generally applied to the stent surface in order to achieve sufficient bonding between the stent and the graft layer in a single graft layer stent-graft. However, whereas in a dual layer stent-graft an outer tape wrap can be applied to the outer graft layer to aid in bonding of the graft layers by applying external pressure, such an aid can prove problematic in a single graft layer stent-graft, at least where the single layer is positioned against the luminal surface of the stent. This is due to the outer tape wrap adhering to the coating (or a film layer, such as Kapton film, positioned over the outer surface of the stent prior to wrapping with tape) during a heating step, making removal thereof difficult and potentially damaging to the stent-graft. Accordingly, described herein is a process for creating a single graft layer stent-graft that overcomes the problems inherent in providing external pressure via a tape wrap to aid in bonding during a heating process and increases the bond strength between a single inner graft layer and a stent to reduce potential complications associated with delamination or separation of the graft layer from the stent.

A method of creating a single layer stent-graft is shown in FIGS. 1A-1D. FIG. 1A illustrates a first step in which an expandable stent is provided. Stent 10 has a first diameter d1, while in a collapsed configuration to assist in the implant delivery procedure. In an expanded configuration, the stent 10 has a second diameter d2, as shown in FIG. 1B. The diameter d2 of the expanded configuration is greater that the diameter d1 in the collapsed configuration. When implanted, the stent deploys to an expanded configuration in order to open a body lumen and permit blood flow therethrough. Therefore, the expanded diameter d2 is sufficient to hold open a patient's body lumen. Generally, the expanded diameter d2 is about 4 mm to about 8 mm. The process described herein may be employed with any stent design, including self-expanding stents or balloon expandable stents, although the preferred embodiment is self-expanding stents. The stent may be designed to collapse or expand radially in a uniform or non-uniform fashion to assist during delivery. The stent is generally sufficiently rigid to remain open when inserted into a body lumen. The stent may be formed of a shape memory material, including, for example, shape memory metals, shape memory alloys, super elastic shape memory metal alloys, linear elastic shape memory alloys, metal alloys, shape memory polymers, polymers, bio-resorbable material, and combinations thereof. One preferred shape memory material is Nitinol. The stent may alternatively be formed of metal, such as, for example, stainless steel, platinum, and Elgiloy, or certain polymers.

In one embodiment, the stent is coated with a polymeric bonding layer in order to secure a stent surface to a graft layer. The bonding layer may be applied by powder coating, spray coating, dipping in a liquid, or other methods known to one skilled in the art. The polymer can be PTFE, PET, fluorinated ethylene propylene (FEP), etc., or any other fluoropolymer. The polymeric coating may, additionally, be a combination of coatings, such as, for example, a first coat of PTFE and then a top coat of FEP.

As shown in FIG. 1C, a graft layer 12 is positioned on a mandrel 14 and the stent 10 is positioned over the graft layer 12. The graft layer 12 is generally a tubular member as indicated by the dotted line. The graft layer 12 may extend past the end of the stent during assembly, as shown in FIG. 1C, or may be coextensive therewith. The relative lengths of the stent and graft are illustrated for clarity only. Preferably, the graft layer terminates at about the ends of the stent or proximal of the stent ends. The graft material may include, for example, expanded polytetrafluoroethylene (ePTFE), polymer, polyurethane, fluoropolymers, such as perfouorelastomers and the like, silicones, urethanes, ultra high molecular weight polyethylene, aramid fibers, and combinations thereof. The graft may be made by any method. A tape may be wound helically to form a tube, or a sheet may be rolled into a tube. A graft formed in this way may be wrapped directly onto the mandrel, before the stent is disposed about the mandrel. Preferably, the graft is an extruded ePTFE tube. A graft formed in this way may be slid directly onto the mandrel 14. Alternatively, the graft may be folded and positioned within the stent. The graft and stent are then properly positioned, and the mandrel is inserted through the graft lumen. The wall thickness of the graft may be in the range of about 40 microns to about 200 microns, but generally less than about 100 microns. Preferably the wall thickness is between about 40 microns and about 100 microns.

According to one embodiment, a method of making a stent-graft includes providing an expandable stent, which is coated at least on an inner surface thereof, disposing a graft on a mandrel, and contacting the outer surface of the graft with the coated inner surface of the stent. As shown in FIG. 1C, a mandrel 14 has a third diameter d3 that is greater than the stent expanded diameter d2. The mandrel diameter d3 in one embodiment is less than about 2 mm greater than the expanded stent diameter d2. Preferably, the mandrel diameter d3 is about 0.1 mm to about 0.3 mm greater than the expanded stent diameter d2. However, the mandrel diameter should not exceed the stent diameter at which plastic deformation occurs. Because the mandrel diameter exceeds the stent expanded diameter, the stent supplies a compressive force to the graft 12 when the stent 10 is positioned over the graft, the compressive or external force aiding in bonding of the graft 12 to the stent 10.

The graft may be disposed on the mandrel by sliding a generally tubular graft onto the mandrel. Alternatively, an ePTFE film may be wrapped around the mandrel. An ePTFE tape may be helically wrapped around the mandrel to form a generally cylindrical tube over the mandrel, or a ePTFE sheet may be wrapped around the mandrel to form the generally cylindrical tube. The stent is then placed over the mandrel and the graft. To place the stent over the mandrel, the stent may be expanded to a fourth diameter, greater than the mandrel diameter d3 and then released after it is properly positioned over the graft layer. A tool may be used to facilitate this step. Alternatively, the stent can be placed over the mandrel by first folding the graft and properly positioning it within the stent, followed by inserting the mandrel through the graft lumen. The stent-graft, after being positioned on the mandrel, may be wrapped to create a greater compressive force between the stent and graft layer. An ePTFE tape may be wrapped around the outer surface of the stent-graft assembly. The stent-graft may be wrapped with tape in helical windings. A second layer of tape may be wrapped in the opposite direction of the first tape layer to create an additional compressive uniform force. The tape is applied under tension, during the wrapping step. However, in embodiments where the stent-graft is heated, the tape is removed before the heating step. FIG. 1D shows the stent-graft removed from the mandrel and collapsed to a collapsed diameter, e.g., about the diameter d1, for implantation into a patient.

In one embodiment, the stent-graft assembly on the mandrel is inserted into an oven or other heating apparatus to strengthen the bond between the polymeric stent coating and the graft layer. Additional bond strength between the stent and the graft material is achieved by heating the assembly above the melting temperature of the polymeric coating. The melted polymer between the stent and the graft penetrates into the graft material, which is porous. The graft and stent may be heated to a temperature in the range of about 320 degrees C. to about 360 degrees Celsius, preferably heated to about 340 degrees C. for about 10 to 11 minutes. The stent-graft may be pre-wrapped with tape under tension to aid in bonding of the graft to the stent prior to heating and remain wrapped about the stent-graft for several minutes. Preferably, the stent-graft is pre-wrapped for a period in the range of about 5 minutes to about 10 minutes before removing the tape; however, in some embodiments, the tape may remain on the stent-graft assembly for a longer period.

By way of non-limiting illustration, specific embodiments of the method described herein are provided. In one embodiment, a self-expanding stent, having a 6 mm expanded diameter and a coating including a primer coat of PTFE and a top coat of FEP, was provided. A 7 mm ePTFE tubular graft layer was disposed over a 7 mm mandrel and the stent was expanded greater than about 7 mm, positioned over the graft layer, and released. The assembly was then heated to about 340 degrees C. for approximately 10.5 minutes. Following the heating step, the bond strength of the assembly was tested by performing a bond peel test. The procedure includes placing an end portion of the stent and an end portion of the graft in a tensile testing apparatus. For example, the end portion of the graft is inverted through the lumen of the stent-graft and placed in a clamp of the apparatus opposite the clamp of the apparatus holding the end portion of the stent. These end portions are then pulled apart by the tensile testing apparatus and a bond strength (gF/mm) is recorded at intervals along the stent-graft. An average of the bond strengths is then calculated. The average bond peel strength in the above-described embodiment was about 9.5 gF/mm. Generally, the bond strength for the stent-graft was in the range of about 2 gF/mm to about 13 gF/mm.

In another embodiment, the same materials and process as the above-described embodiment were employed, but the stent-graft assembly was tape-wrapped prior to heating. The stent-graft assembly was helically wrapped with ePTFE tape in two layers: a first layer in a first direction, and a second layer over the first layer in a second direction opposite the first direction. The tape was then removed after approximately 5 to 10 minutes. The stent-graft assembly, without the tape, was then heated to approximately 340 degrees Celsius for about 10.5 minutes. A bond peel test was performed and the average bond strength was about 12.3 gF/mm. Generally, the bond strength was in the range of about 4 gF/mm to about 14 gF/mm.

This invention has been described and specific examples have been portrayed. While the invention has been described in terms of particular variations and illustrative figures, those of ordinary skill in the art will recognize that the invention is not limited to the variations or figures described. In addition, where methods and steps described above indicate certain events occurring in certain order, those of ordinary skill in the art will recognize that the ordering of certain steps may be modified and that such modifications are in accordance with the variations of the invention. Additionally, certain of the steps may be performed concurrently in a parallel process when possible, as well as performed sequentially as described above. Therefore, to the extent there are variations of the invention, which are within the spirit of the disclosure or equivalent to the inventions found in the claims, it is the intent that this patent will cover those variations as well. Finally, all publications and patent applications cited in this specification are herein incorporated by reference in their entirety as if each individual publication or patent application were specifically and individually put forth herein.

Schlun, Martin

Patent Priority Assignee Title
10213328, Feb 02 1999 Bard Peripheral Vascular, Inc. Partial encapsulation of stents
8337650, Mar 10 1995 Bard Peripheral Vascular, Inc. Methods for making a supported graft
8617337, Feb 02 1999 Bard Peripheral Vascular, Inc. Partial encapsulation of stents
8617441, Mar 10 1995 Bard Peripheral Vascular, Inc. Methods for making an encapsulated stent
8647458, Mar 10 1995 Bard Peripheral Vascular, Inc. Methods for making a supported graft
Patent Priority Assignee Title
3060517,
3196194,
3207601,
3281511,
3767500,
3887761,
3992725, May 20 1971 TRANQUIL PROSPECTS, LTD , A COMPANY OF THE BRITISH VIRGIN ISLANDS Implantable material and appliances and method of stabilizing body implants
4061517, Aug 27 1975 Chemelec Products, Inc. Method of making fluorocarbon resin covered gaskets
4159370, Nov 11 1976 Daikin Kogyo Co., Ltd. Polytetrafluoroethylene fine powder and process for producing the same
4324574, Dec 19 1980 E. I. du Pont de Nemours and Company; E I DU PONT DE NEMOURS AND COMPANY, A CORP OF DE Felt-like layered composite of PTFE and glass paper
4416028, Jun 04 1980 Blood vessel prosthesis
4482516, Sep 10 1982 W L GORE & ASSOCIATES, INC Process for producing a high strength porous polytetrafluoroethylene product having a coarse microstructure
4503569, Mar 03 1983 Cook Incorporated Transluminally placed expandable graft prosthesis
4512338, Jan 25 1983 World Medical Manufacturing Corporation Process for restoring patency to body vessels
4580568, Oct 01 1984 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
4588461, Dec 16 1983 B BRAUN-SSC AG Process for producing a vessel prosthesis
4596837, Feb 22 1982 Daikin Industries Ltd. Semisintered polytetrafluoroethylene article and production thereof
4604762, Feb 13 1981 TC1 LLC Arterial graft prosthesis
4629458, Feb 26 1985 CORVITA CORPORATION, A CORP OF FL Reinforcing structure for cardiovascular graft
4647416, Aug 03 1983 SORIN BIOMEDICAL INC Method of preparing a vascular graft prosthesis
4655769, Oct 24 1984 International Business Machines Corp Ultra-high-molecular-weight polyethylene products including vascular prosthesis devices and methods relating thereto and employing pseudo-gel states
4665906, Oct 14 1983 Medtronic, Inc Medical devices incorporating sim alloy elements
4714748, Dec 14 1982 Daikin Kogyo Co., Ltd. Novel polytetrafluoroethylene fine powder
4731073, Feb 13 1981 TC1 LLC Arterial graft prosthesis
4733665, Nov 07 1985 Cordis Corporation Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
4739762, Nov 07 1985 Cordis Corporation Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
4747849, Jan 13 1986 Oesophagus prosthesis
4760102, Dec 14 1982 Nitto Electric Industrial Co., Ltd.; Daikin Kogyo Co., Ltd. Porous polytetrafluoroethylene material
4767418, Feb 13 1986 California Institute of Technology Luminal surface fabrication for cardiovascular prostheses
4776337, Nov 07 1985 Cordis Corporation Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
4816339, Apr 28 1987 Edwards Lifesciences Corporation Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
4820298, Nov 20 1987 DEVICE DEVELOPMENTS, INC Internal vascular prosthesis
4830062, May 28 1986 Daikin Industries, Ltd. Porous heat-shrinkable tetrafluoroethylene polymer tube and process for producing the same
4850999, May 26 1981 SCHNEIDER USA INC Flexible hollow organ
4857069, Mar 01 1984 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Artificial vessel and process for preparing the same
4886062, Oct 19 1987 Medtronic, Inc. Intravascular radially expandable stent and method of implant
4907336, Mar 13 1987 Cook Incorporated Method of making an endovascular stent and delivery system
4922905, May 28 1987 Boston Scientific Corporation Dilatation catheter
4935068, Jan 23 1989 Memry Corporation Method of treating a sample of an alloy
4954126, Apr 30 1982 AMS MEDINVENT S A Prosthesis comprising an expansible or contractile tubular body
4955899, May 26 1989 IMPRA, INC , AN AZ CORP ; IMPRA, INC , AN AZ CORP Longitudinally compliant vascular graft
4957669, Apr 06 1989 SORIN BIOMEDICAL INC Method for producing tubing useful as a tapered vascular graft prosthesis
4969458, Jul 06 1987 Medtronic, Inc Intracoronary stent and method of simultaneous angioplasty and stent implant
4969896, Feb 01 1989 Biomet Biologics, LLC Vascular graft prosthesis and method of making the same
5019090, Sep 01 1988 Corvita Corporation Radially expandable endoprosthesis and the like
5061275, Apr 21 1986 AMS MEDINVENT S A Self-expanding prosthesis
5061276, Apr 28 1987 Edwards Lifesciences Corporation Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
5064435, Jun 28 1990 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Self-expanding prosthesis having stable axial length
5067957, Oct 14 1983 Medtronic, Inc Method of inserting medical devices incorporating SIM alloy elements
5071609, Nov 26 1986 Edwards Lifesciences Corporation Process of manufacturing porous multi-expanded fluoropolymers
5078726, Feb 01 1990 Graft stent and method of repairing blood vessels
5078736, May 04 1990 Tyco Healthcare Group LP Method and apparatus for maintaining patency in the body passages
5084065, Jul 10 1989 MAQUET CARDIOVASCULAR LLC Reinforced graft assembly
5102417, Nov 07 1985 Cordis Corporation Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
5116360, Dec 27 1990 MAQUET CARDIOVASCULAR LLC Mesh composite graft
5116365, Feb 22 1991 Cordis Corporation Stent apparatus and method for making
5122154, Aug 15 1990 MARITAL DEDUCTION TRUST Endovascular bypass graft
5123917, Apr 27 1990 LIFEPORT SCIENCES LLC Expandable intraluminal vascular graft
5124523, Dec 23 1987 Swiss Aluminium Ltd. Process for adapting the frequency band of an oscillating circuit made from a metal-plastic-metal sandwich foil useful as an identification label, and sandwich foil for implementing the process
5133732, Mar 22 1989 Medtronic, Inc. Intravascular stent
5135503, May 16 1990 Advanced Cardiovascular Systems, Inc. Shaping ribbon for guiding members
5139480, Aug 22 1990 BIOTECH LABORATORIES, INC Necking stents
5143085, May 13 1987 ABBOTT LABORATORIES VASCULAR ENTITLES LIMITED; Abbott Laboratories Vascular Enterprises Limited Steerable memory alloy guide wires
5152782, May 26 1989 IMPRA, INC , AN AZ CORP Non-porous coated PTFE graft
5156620, Feb 04 1991 Intraluminal graft/stent and balloon catheter for insertion thereof
5158548, Apr 25 1990 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
5163951, Dec 27 1990 MAQUET CARDIOVASCULAR LLC Mesh composite graft
5167614, Oct 29 1991 Cabot Technology Corporation Prostatic stent
5171805, Aug 05 1987 Daikin Industries Ltd. Modified polytetrafluoroethylene and process for preparing the same
5192307, Dec 08 1987 W H WALL FAMILY HOLDINGS, LLLP Angioplasty stent
5195984, Oct 04 1988 CARDINAL HEALTH SWITZERLAND 515 GMBH Expandable intraluminal graft
5211658, Nov 05 1991 New England Deaconess Hospital Corporation Method and device for performing endovascular repair of aneurysms
5219355, Oct 03 1990 Balloon device for implanting an aortic intraluminal prosthesis for repairing aneurysms
5219361, Sep 16 1988 Clemson University Soft tissue implant with micron-scale surface texture to optimize anchorage
5231989, Feb 15 1991 Medtronic, Inc Steerable cannula
5234456, Feb 08 1990 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Hydrophilic stent
5234739, Jul 23 1991 Daikin Industries Ltd Polytetrafluoroethylene porous film and preparation and use thereof
5236446, Mar 02 1988 Novatech Tubular endoprosthesis for anatomical conduits
5236447, Jun 29 1990 Nissho Corporation Artificial tubular organ
5242399, Apr 25 1990 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
5258027, Jan 24 1991 Willy Rusch AG Trachreal prosthesis
5282823, Mar 19 1992 Medtronic, Inc.; MEDTRONIC, INC A CORP OF MINNESOTA Intravascular radially expandable stent
5282824, Oct 09 1990 Cook Medical Technologies LLC Percutaneous stent assembly
5282847, Feb 28 1991 Medtronic, Inc. Prosthetic vascular grafts with a pleated structure
5282848, Aug 28 1990 Maquet Cardiovascular, LLC Self-supporting woven vascular graft
5282849, Dec 19 1991 UNIVERSITY OF UTAH RESEARCH FOUNDATION, A CORP OF UT Ventricle assist device with volume displacement chamber
5282860, Oct 16 1991 Olympus Optical Co., Ltd. Stent tube for medical use
5316023, Jan 08 1992 CARDINAL HEALTH SWITZERLAND 515 GMBH Method for bilateral intra-aortic bypass
5330500, Oct 17 1991 Self-expanding endovascular stent with silicone coating
5334201, Mar 12 1993 MEDRAD, INC Permanent stent made of a cross linkable material
5341818, Dec 22 1992 ABBOTT CARDIOVASCULAR SYSTEMS INC Guidewire with superelastic distal portion
5344426, Apr 25 1990 Advanced Cardiovascular Systems, Inc. Method and system for stent delivery
5349964, May 05 1993 Avantec Vascular Corporation Device having an electrically actuatable section with a portion having a current shunt and method
5354309, Oct 11 1991 Angiomed AG Apparatus for widening a stenosis in a body cavity
5354329, Apr 17 1992 Whalen Biomedical, Inc. Vascular prosthesis having enhanced compatibility and compliance characteristics
5360443, Jun 11 1990 Aortic graft for repairing an abdominal aortic aneurysm
5366504, May 20 1992 Boston Scientific Scimed, Inc Tubular medical prosthesis
5370681, Sep 16 1991 ATRIUM MEDICAL CORPORATION Polyumenal implantable organ
5376110, Feb 14 1991 Edwards Lifesciences Corporation Method of manufacturing pliable biological grafts materials
5382261, Sep 01 1992 VACTRONIX SCIENTIFIC, LLC Method and apparatus for occluding vessels
5383106, Jan 10 1992 Matsushita Electric Industrial Co., Ltd. Regenerative control type switching power source device
5383892, Nov 08 1991 MEADOX MEDICALS, INC Stent for transluminal implantation
5383926, Nov 23 1992 Children's Medical Center Corporation Re-expandable endoprosthesis
5383928, Jun 10 1992 Emory University Stent sheath for local drug delivery
5384019, Oct 29 1993 E. I. du Pont de Nemours and Company Membrane reinforced with modified leno weave fabric
5385580, Aug 28 1990 Maquet Cardiovascular, LLC Self-supporting woven vascular graft
5387235, Oct 25 1991 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm
5387236, Apr 17 1989 Koken Co., Ltd. Vascular prosthesis, manufacturing method of the same, and substrate for vascular prosthesis
5389106, Oct 29 1993 Numed, Inc. Impermeable expandable intravascular stent
5395390, May 01 1992 NMT MEDICAL, INC Metal wire stent
5405377, Feb 21 1992 LIFEPORT SCIENCES LLC Intraluminal stent
5405378, May 20 1992 Boston Scientific Scimed, Inc Device with a prosthesis implantable in the body of a patient
5411476, Dec 18 1990 ABBOTT CARDIOVASCULAR SYSTEMS INC Superelastic guiding member
5421955, Oct 28 1991 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
5429869, Feb 26 1993 W. L. Gore & Associates, Inc.; W L GORE & ASSOCIATES, INC Composition of expanded polytetrafluoroethylene and similar polymers and method for producing same
5433996, Feb 18 1993 W L GORE & ASSOCIATES, INC Laminated patch tissue repair sheet material
5437083, May 24 1993 Advanced Cardiovascular Systems, Inc. Stent-loading mechanism
5443496, Mar 19 1992 Medtronic, Inc. Intravascular radially expandable stent
5449373, Mar 17 1994 Medinol Ltd. Articulated stent
5452726, Jun 18 1991 Boston Scientific Scimed, Inc Intravascular guide wire and method for manufacture thereof
5458615, Jul 06 1993 Advanced Cardiovascular Systems, INC Stent delivery system
5464438, Oct 05 1988 Gold coating means for limiting thromboses in implantable grafts
5464440, Jan 13 1992 LuCoCer Aktiebolag Porous implant with two sets of pores
5464449, Jul 08 1993 Thomas J., Fogarty Internal graft prosthesis and delivery system
5474563, Mar 25 1993 HEMODYNAMICS, INC Cardiovascular stent and retrieval apparatus
5489295, Apr 11 1991 LIFEPORT SCIENCES LLC Endovascular graft having bifurcation and apparatus and method for deploying the same
5496364, Aug 28 1990 Maquet Cardiovascular, LLC Self-supporting woven vascular graft
5500013, Oct 04 1991 SciMed Life Systems, Inc. Biodegradable drug delivery vascular stent
5507767, Jan 15 1992 Cook Medical Technologies LLC Spiral stent
5507768, Jan 28 1991 Advanced Cardiovascular Systems, INC Stent delivery system
5507769, Oct 18 1994 CARDINAL HEALTH SWITZERLAND 515 GMBH Method and apparatus for forming an endoluminal bifurcated graft
5507771, Jun 15 1992 Cook Medical Technologies LLC Stent assembly
5514115, Jul 07 1993 Advanced Cardiovascular Systems, INC Flexible housing for intracorporeal use
5514154, Oct 28 1991 ABBOTT CARDIOVASCULAR SYSTEMS INC Expandable stents
5522881, Jun 28 1994 LifeShield Sciences LLC Implantable tubular prosthesis having integral cuffs
5522883, Feb 17 1995 LifeShield Sciences LLC Endoprosthesis stent/graft deployment system
5523092, Apr 14 1993 Emory University Device for local drug delivery and methods for using the same
5527353, Dec 02 1993 Maquet Cardiovascular, LLC Implantable tubular prosthesis
5527355, Sep 02 1994 Apparatus and method for performing aneurysm repair
5540712, May 01 1992 NMT MEDICAL, INC Stent and method and apparatus for forming and delivering the same
5540713, Oct 11 1991 Angiomed AG Apparatus for widening a stenosis in a body cavity
5546646, May 24 1993 Advanced Cardiovascular Systems, Inc. Method for mounting an intravascular stent on a catheter
5549635, Jan 24 1994 X TECHNOLOGIES INC Non-deformable self-expanding parallel flow endovascular stent and deployment apparatus therefore
5549663, Mar 09 1994 Cordis Corporation Endoprosthesis having graft member and exposed welded end junctions, method and procedure
5554181, May 04 1994 Regents of the University of Minnesota Stent
5556389, Mar 31 1994 Interventional Therapies, LLC Method and apparatus for treating stenosis or other constriction in a bodily conduit
5556414, Mar 08 1995 Wayne State University Composite intraluminal graft
5556426, Aug 02 1994 MAQUET CARDIOVASCULAR LLC PTFE implantable tubular prostheses with external coil support
5562725, Sep 14 1992 Boston Scientific Scimed, Inc Radially self-expanding implantable intraluminal device
5569295, Dec 28 1993 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
5571170, Jan 08 1992 Cordis Corporation Method and apparatus for bilateral intra-aortic bypass
5571171, Jun 11 1990 Method for repairing an artery in a body
5571173, Oct 01 1993 Graft to repair a body passageway
5573520, Sep 05 1991 Mayo Foundation for Medical Education and Research Flexible tubular device for use in medical applications
5591197, Mar 14 1995 Advanced Cardiovascular Systems, INC Expandable stent forming projecting barbs and method for deploying
5591222, Oct 18 1991 Method of manufacturing a device to dilate ducts in vivo
5591223, Nov 23 1992 Children's Medical Center Corporation Re-expandable endoprosthesis
5591224, Jun 17 1993 Medtronic, Inc. Bioelastomeric stent
5591228, May 09 1995 EDRICH VASCULAR DEVICES, INC Methods for treating abdominal aortic aneurysms
5591229, Oct 01 1993 Aortic graft for repairing an abdominal aortic aneurysm
5593417, Nov 27 1995 MARITAL DEDUCTION TRUST Intravascular stent with secure mounting means
5597378, Oct 14 1983 Medtronic, Inc Medical devices incorporating SIM alloy elements
5603721, Oct 28 1991 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
5607445, Jun 18 1992 SUMMERS, DAVID P Stent for supporting a blood vessel
5607478, Mar 14 1996 Maquet Cardiovascular, LLC Yarn wrapped PTFE tubular prosthesis
5609624, Oct 08 1993 Bard Peripheral Vascular, Inc Reinforced vascular graft and method of making same
5620763, Aug 18 1993 W L GORE & ASSOCIATES, INC Thin-wall, seamless, porous polytetrafluoroethylene tube
5628786, May 12 1995 Bard Peripheral Vascular, Inc Radially expandable vascular graft with resistance to longitudinal compression and method of making same
5628788, Nov 07 1995 LIFEPORT SCIENCES LLC Self-expanding endoluminal stent-graft
5630806, Aug 13 1991 Hudson International Conductors Spiral wrapped medical tubing
5630829, Dec 09 1994 ENDOVASCULAR TECHNOLOGIES, INC High hoop strength intraluminal stent
5630840, May 09 1994 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Clad composite stent
5632840, Sep 22 1994 Advanced Cardiovascular System, Inc. Method of making metal reinforced polymer stent
5639278, Oct 21 1993 LIFEPORT SCIENCES LLC Expandable supportive bifurcated endoluminal grafts
5645559, May 08 1992 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Multiple layer stent
5649950, Jan 22 1992 Medtronic Ave, Inc System for the percutaneous transluminal front-end loading delivery and retrieval of a prosthetic occluder
5649977, Sep 22 1994 Advanced Cardiovascular Systems, Inc. Metal reinforced polymer stent
5653727, Oct 19 1987 Medtronic, Inc. Intravascular stent
5653747, Dec 21 1992 Corvita Corporation Luminal graft endoprostheses and manufacture thereof
5665117, Nov 27 1995 Endologix LLC Endovascular prosthesis with improved sealing means for aneurysmal arterial disease and method of use
5667523, Apr 28 1995 Bard Peripheral Vascular, Inc Dual supported intraluminal graft
5674241, Feb 22 1995 Cordis Corporation Covered expanding mesh stent
5676671, Apr 12 1995 Device for introducing an appliance to be implanted into a catheter
5681345, Mar 01 1995 Boston Scientific Scimed, Inc Sleeve carrying stent
5683448, Feb 21 1992 LIFEPORT SCIENCES LLC Intraluminal stent and graft
5683453, Jan 08 1992 CARDINAL HEALTH SWITZERLAND 515 GMBH Apparatus for bilateral intra-aortic bypass
5693085, Dec 06 1994 LifeShield Sciences LLC Stent with collagen
5693088, Nov 08 1993 Intraluminal vascular graft
5700285, Aug 18 1993 W L GORE & ASSOCIATES, INC Intraluminal stent graft
5700286, Dec 13 1994 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
5713949, Aug 06 1996 Vascular Concepts Holdings Limited Microporous covered stents and method of coating
5716393, May 26 1994 ANGIOMED GMBH & CO. MEDIZINTECHNIK KG Stent with an end of greater diameter than its main body
5718159, Apr 30 1996 LifeShield Sciences LLC Process for manufacturing three-dimensional braided covered stent
5718973, Aug 18 1993 W L GORE & ASSOCIATES, INC Tubular intraluminal graft
5719873, Jul 07 1994 SANYO ELECTRIC CO , LTD ; Nippon Hoso Kyokai Frame-synchronous reproducing circuit
5723003, Sep 13 1994 Ultrasonic Sensing and Monitoring Systems Expandable graft assembly and method of use
5723004, Oct 21 1993 LIFEPORT SCIENCES LLC Expandable supportive endoluminal grafts
5728131, Jun 12 1995 Endotex Interventional Systems, Inc Coupling device and method of use
5728158, Oct 28 1991 Advanced Cardiovascular Systems, Inc. Expandable stents
5735892, Aug 18 1993 W L GORE & ASSOCIATES, INC Intraluminal stent graft
5735893, Dec 09 1993 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
5738674, May 24 1993 Advanced Cardiovascular Systems, Inc. Stent loading mechanism
5749880, Mar 10 1995 Bard Peripheral Vascular, Inc Endoluminal encapsulated stent and methods of manufacture and endoluminal delivery
5755770, Jan 31 1995 LifeShield Sciences LLC Endovascular aortic graft
5755774, Jun 27 1994 LifeShield Sciences LLC Bistable luminal graft endoprosthesis
5755781, Aug 06 1996 Vascular Concepts Holdings Limited Embodiments of multiple interconnected stents
5766238, Oct 28 1991 Advanced Cardiovascular Systems, Inc. Expandable stents and method for making same
5769817, Feb 28 1997 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Coextruded balloon and method of making same
5769884, Jun 27 1996 Cordis Corporation Controlled porosity endovascular implant
5776161, Oct 16 1995 Medtronic, Inc Medical stents, apparatus and method for making same
5782904, Sep 30 1993 W L GORE & ASSOCIATES, INC Intraluminal graft
5788626, Nov 18 1996 STARBOARD VALUE INTERMEDIATE FUND LP, AS COLLATERAL AGENT Method of making a stent-graft covered with expanded polytetrafluoroethylene
5800512, Jan 22 1996 LIFEPORT SCIENCES LLC PTFE vascular graft
5810870, Aug 18 1993 W L GORE & ASSOCIATES, INC Intraluminal stent graft
5824037, Oct 03 1995 Medtronic Ave, Inc Modular intraluminal prostheses construction and methods
5824043, Mar 09 1994 Cordis Corporation Endoprosthesis having graft member and exposed welded end junctions, method and procedure
5824046, Sep 27 1996 Boston Scientific Scimed, Inc Covered stent
5824054, Mar 18 1997 ENDOTEX INTERNATIONAL SYSTEMS, INC Coiled sheet graft stent and methods of making and use
5843161, Jun 26 1996 Cordis Corporation Endoprosthesis assembly for percutaneous deployment and method of deploying same
5843166, Jan 17 1997 LifeShield Sciences LLC Composite graft-stent having pockets for accomodating movement
5849037, Apr 12 1995 Corvita Corporation Self-expanding stent for a medical device to be introduced into a cavity of a body, and method for its preparation
5851232, Mar 15 1997 Venous stent
5863366, Jun 07 1995 Edwards Lifesciences, LLC Method of manufacture of a cannula for a medical device
5871536, Nov 08 1993 Intraluminal vascular graft and method
5871537, Feb 13 1996 Boston Scientific Scimed, Inc Endovascular apparatus
5873906, Sep 08 1994 W L GORE & ASSOCIATES, INC Procedures for introducing stents and stent-grafts
5876448, May 08 1992 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Esophageal stent
5919225, Sep 08 1994 W L GORE & ASSOCIATES, INC Procedures for introducing stents and stent-grafts
5925061, Jan 13 1997 W L GORE & ASSOCIATES, INC Low profile vascular stent
5928279, Jul 03 1996 Edwards Lifesciences Corporation Stented, radially expandable, tubular PTFE grafts
5961545, Jan 17 1997 LifeShield Sciences LLC EPTFE graft-stent composite device
6001125, Jan 22 1996 LIFEPORT SCIENCES LLC PTFE vascular prosthesis and method of manufacture
6004348, Mar 10 1995 Impra, Inc. Endoluminal encapsulated stent and methods of manufacture and endoluminal delivery
6010530, Jun 07 1995 BIOMED RESEARCH, INC Self-expanding endoluminal prosthesis
6015431, Dec 23 1996 W L GORE & ASSOCIATES, INC Endolumenal stent-graft with leak-resistant seal
6036724, Jan 22 1996 LIFEPORT SCIENCES LLC PTFE vascular graft and method of manufacture
6039755, Feb 05 1997 Bard Peripheral Vascular, Inc Radially expandable tubular polytetrafluoroethylene grafts and method of making same
6042605, Dec 14 1995 W L GORE & ASSOCIATES, INC Kink resistant stent-graft
6048484, Aug 18 1993 W L GORE & ASSOCIATES, INC Process for forming a seamless tube of expanded PTFE from a sheet of expanded PTFE
6120535, Jul 29 1996 CARDIOVASCULAR DYNAMICS, INC Microporous tubular prosthesis
6124523, Mar 10 1995 Bard Peripheral Vascular, Inc Encapsulated stent
612897,
6139573, Mar 05 1997 LifeShield Sciences LLC Conformal laminate stent device
6149681, Apr 18 1997 ADVANCED BYPASS TECHNOLOGIES, INC Radially expanding prostheses and systems for their deployment
6165210, Apr 01 1994 W L GORE & ASSOCIATES, INC Self-expandable helical intravascular stent and stent-graft
6214039, Aug 24 1995 BARD PERIPHCRAL VASCULAR, INC Covered endoluminal stent and method of assembly
6306141, Oct 14 1983 Medtronic, Inc Medical devices incorporating SIM alloy elements
6309343, Jan 17 1997 LifeShield Sciences LLC Method for making an ePTFE graft-stent composite device
6309413, Oct 21 1993 LIFEPORT SCIENCES LLC Expandable supportive endoluminal grafts
6312454, Jun 13 1996 Cordis Corporation Stent assembly
6364903, Mar 19 1999 LifeShield Sciences LLC Polymer coated stent
6364904, Jul 02 1999 Boston Scientific Scimed, Inc Helically formed stent/graft assembly
6375787, Apr 23 1993 Schneider (Europe) AG Methods for applying a covering layer to a stent
6379379, May 05 1998 SciMed Life Systems, Inc. Stent with smooth ends
6383214, Mar 10 1995 Bard Peripheral Vascular, Inc Encapsulated stent
6398803, Feb 02 1999 Bard Peripheral Vascular, Inc Partial encapsulation of stents
6451052, May 19 1994 Boston Scientific Scimed, Inc Tissue supporting devices
6488701, Mar 31 1998 Medtronic Ave, Inc Stent-graft assembly with thin-walled graft component and method of manufacture
6524334, Nov 21 1995 STARBOARD VALUE INTERMEDIATE FUND LP, AS COLLATERAL AGENT Expandable stent-graft covered with expanded polytetrafluoroethylene
6547814, Sep 30 1998 Bard Peripheral Vascular, Inc Selective adherence of stent-graft coverings
6579314, Mar 10 1995 C R BARD, INC Covered stent with encapsulated ends
6673103, May 20 1999 STARBOARD VALUE INTERMEDIATE FUND LP, AS COLLATERAL AGENT Mesh and stent for increased flexibility
6673105, Apr 02 2001 Advanced Cardiovascular Systems, Inc. Metal prosthesis coated with expandable ePTFE
6733524, Mar 19 1999 LifeShield Sciences LLC Polymer coated stent
6740115, Mar 10 1995 C. R. Bard, Inc. Covered stent with encapsulated ends
6758858, Mar 10 1995 Bard Peripheral Vascular, Inc Diametrically adaptable encapsulated stent and methods for deployment thereof
6770086, Nov 02 2000 Boston Scientific Scimed, Inc Stent covering formed of porous polytetraflouroethylene
6786920, Jul 03 1996 Edwards Lifesciences Corporation Radially expandable stented tubular PTFE grafts
6790225, Jul 03 1996 Edwards Lifesciences Corporation Stented, radially expandable, tubular PTFE grafts
6797217, Mar 10 1995 Bard Peripheral Vascular, Inc Methods for making encapsulated stent-grafts
6808533, Jul 28 2000 ATRIUM MEDICAL CORPORATION Covered stent and method of covering a stent
7060150, Mar 10 1995 Bard Peripheral Vascular, Inc. Methods for making a supported graft
7083640, Mar 10 1995 C. R. Bard, Inc. Covered stent with encapsulated ends
7462190, Feb 14 2000 ANGIOMED GMBH & CO MEDIZINTECHNIK Stent matrix
7468071, Mar 10 1995 C. R. Bard, Inc. Diametrically adaptable encapsulated stent and methods for deployment thereof
20010010012,
20010039446,
20020040237,
20030004559,
20030006528,
20030144725,
20040024442,
20040162603,
20040162604,
20040181278,
20040204757,
20040236400,
20050055081,
20050060020,
20050096737,
20050113909,
20050131515,
20050131527,
20070207186,
DE19524653,
DE3918736,
EP603959,
EP734698,
EP461791,
EP551179,
EP603959,
EP734698,
EP749729,
EP792627,
EP893108,
FR2671482,
GB1505591,
GB2281865,
RE31341, Nov 11 1976 Daikin Kogyo Co., Ltd. Polytetrafluoroethylene fine powder and process for producing the same
RE31618, Oct 12 1978 Sumitomo Electric Industries, Ltd. Tubular organic prosthesis
WO45742,
WO9412136,
WO9413224,
WO9424961,
WO9505132,
WO9600103,
WO9628115,
WO9707751,
WO9721401,
WO9721403,
WO9800090,
WO9826731,
WO9831305,
WO9831306,
WO9838947,
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Feb 20 2009SCHLUN, MARTINC R BARD, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0223260684 pdf
Feb 24 2009C. R. Bard, Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
Nov 25 2015M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Nov 21 2019M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Nov 21 2023M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Jun 12 20154 years fee payment window open
Dec 12 20156 months grace period start (w surcharge)
Jun 12 2016patent expiry (for year 4)
Jun 12 20182 years to revive unintentionally abandoned end. (for year 4)
Jun 12 20198 years fee payment window open
Dec 12 20196 months grace period start (w surcharge)
Jun 12 2020patent expiry (for year 8)
Jun 12 20222 years to revive unintentionally abandoned end. (for year 8)
Jun 12 202312 years fee payment window open
Dec 12 20236 months grace period start (w surcharge)
Jun 12 2024patent expiry (for year 12)
Jun 12 20262 years to revive unintentionally abandoned end. (for year 12)