A control valve includes a valve body, a valve stem, and a control element. The valve body receives the stem and includes a packing box housing a packing set. A packing follower includes a bore sized to receive the stem and includes an upper portion, a lower portion, and a bearing surface, the lower portion sized to extend into the valve bonnet to engage the packing set to apply a first compressive force to the packing set, the upper portion including threads and having an upper counterbore housing a secondary seal ring. A nut operatively engages the threads of the upper portion of the packing follower, the nut positioned to apply a second compressive force to the secondary seal ring, and a spring is positioned between the packing flange and the bearing surface of the packing follower, wherein the first compressive force is independent of the second compressive force.
|
12. A control valve having a live loaded packing assembly and comprising:
a valve body having an inlet, an outlet, and a flow passage extending between the inlet and the outlet, the valve body including a packing box and a bore sized to receive a valve stem;
a primary packing set disposed in the packing box;
a packing flange adjustably coupled to the valve body;
the valve stem extending through the bore of the valve body and operatively coupled to a control element movably disposed in the flow passage;
a packing follower having a bore sized to receive a portion of the valve stem, the packing follower having an upper portion, a lower portion, and a bearing surface, the lower portion sized to extend into the packing box and operatively coupled to the primary packing set to apply a first compressive force to the primary packing set, the upper portion including threads and having an upper counterbore housing a secondary seal ring;
a threaded nut threaded to the threads of the upper portion of the packing follower, the threaded nut positioned to operatively apply a second compressive force to the secondary seal ring; and
a spring operatively positioned between the packing flange and the bearing surface of the packing follower;
wherein the first compressive force is independent of the second compressive force.
2. A control valve having a live loaded packing assembly and comprising:
a valve body having an inlet, an outlet, and a flow passage extending between the inlet and the outlet;
a valve stem extending from the valve body and operatively coupled to a control element movably disposed in the flow passage;
the valve body having a bore sized to receive the valve stem and further having a packing box;
a primary packing set disposed in the packing box;
a packing flange adjustably coupled to the valve body;
a packing follower having a bore sized to receive a portion of the valve stem, the packing follower having an upper portion, a lower portion, and a bearing surface, the lower portion sized to extend into the valve body and operatively coupled to the primary packing set to apply a first compressive force to the primary packing set, the upper portion including threads and having an upper counterbore housing a secondary seal ring;
a threaded nut operatively engaging the threads of the upper portion of the packing follower, the threaded nut positioned to operatively apply a second compressive force to the secondary seal ring; and
a spring, the spring operatively positioned between the packing flange and the bearing surface of the packing follower;
wherein the first compressive force is independent of the second compressive force.
1. A method of preparing a control valve having a live loaded packing assembly and an independent secondary seal comprising:
providing a valve body having an inlet, an outlet, and a flow passage extending between the inlet and the outlet,
providing the valve with a packing box and a bore sized to receive a valve stem;
selecting a primary packing set and pacing the primary packing set in the packing box;
adjustably coupling only a single packing flange to the valve body;
providing a packing follower having a bore sized to receive a portion of the valve stem, the packing follower having an upper portion, a lower portion, and a bearing surface;
placing the packing follower into the packing box and positioning the packing follower over the primary packing set, and securing the packing follower in place with a packing flange to thereby apply a first compressive force to the primary packing set;
providing the upper portion of the packing follower with threads and an upper counterbore housing a secondary seal ring;
applying a threaded nut threaded to the threads of the upper portion of the packing follower to thereby apply a second compressive force to the secondary seal ring; and
positioning a spring between the packing flange and the bearing surface of the packing follower;
wherein the first compressive force is independent of the second compressive force.
4. The control valve of
5. The control valve of
6. The control valve of
8. The control valve of
9. The control valve of
10. The control valve of
11. The control valve of
14. The control valve of
15. The control valve of
16. The device of
|
The present invention relates generally to control valves and, more specifically, to a live loaded packing follower arrangement for use on control valves, and to control valves incorporating such an arrangement.
It is generally known that process plants, such as refineries, chemical plants or pulp and paper plants, consist of numerous process control loops connected together to produce various products. Flow control valves are disposed in the process control loop, and typically use a control element such as a valve plug, a valve disc, a globe, or other suitable control element, in order to manipulate a fluid flowing through the system, such as gas, steam, water, or a chemical compound.
It is generally understood that various control valve configurations may be specifically applicable for certain applications. For example, when a quick-opening valve with a narrow control range is suitable, a rotary control valve, such as a butterfly valve, may be used. Alternatively, when precise control over a large control range is required, a sliding stem control valve having a valve plug may be used. In any configuration, such control valves are generally coupled to a control device such as an actuator, which controls the exact opening amount of the control valve in response to a control signal. In each case, the valve stem extends into the valve body and is connected to the control element.
In order to prevent or minimize leakage past the valve stem, control valves typically employ valve packing around the valve stem. Such valves often use a packing flange and a packing follower, which apply pressure to the valve packing. The valve packing is typically separated into two distinct packing sets separated by a lantern ring. In such an arrangement, a leak-off port is provided through the valve body to provide flow communication adjacent the lantern ring. Such an arrangement allows personnel to determine whether the packing below the lantern ring has failed.
Although the following text sets forth a detailed description of an exemplary embodiment of the invention, it should be understood that the legal scope of the invention is defined by the words of the claims set forth at the end of this patent. The detailed description is to be construed as exemplary only and does not describe every possible embodiment of the invention since describing every possible embodiment would be impractical, if not impossible. Based upon reading this disclosure, those of skill in the art may be able to implement one or more alternative embodiments, using either current technology or technology developed after the filing date of this patent. Such additional embodiments would still fall within the scope of the claims defining the invention.
A prior art valve packing and packing follower arrangement is shown in
As shown in
Referring now to
Referring now to
Referring now to
A packing flange 160 is attached to the valve body 112 (or to the valve bonnet if the particular valve includes a bonnet), and is adjustably secured by a series of attachment bolts 162 positioned through a series of holes 164. The packing flange 160 includes a central aperture 166 sized to receive the upper portion 136 of the packing follower 152 as well as the threaded nut 148 without interference. The packing flange 160 also includes a downwardly facing surface 168. A spring 170 is disposed between the bearing surface 140 of the packing follower 132. In the disclosed example, the spring 170 takes the form of a series of stacked disc spring washers 172. Consequently, because the packing follower 132 is operatively coupled to the packing flange 160 by a spring 170, the downward force on the packing follower 132 can be adjusted via adjusting the position of the packing flange 160 relative to the valve body 112.
The lower portion 138 of the packing follower 132 preferably includes a counterbore 174 sized to receive a cylindrical bushing 176. In the disclosed example, the bushing 176 serves as a valve stem guide. The lower portion 138 of the packing follower 132 is positioned to bear against the packing set 130. Preferably, the packing set 130 may include conventional components, such as a pair of filament rings 178 separated by laminated rings 180, and straddled by upper and lower washers 182. The packing set 130 need not include, and as shown does not include, a lantern ring of the type conventionally employed in the art. The lower portion 138 of the packing follower 132, in conjunction with the bushing 176, a position to bear against an upper portion of the packing set 130, such as by bearing against the upper washer 182.
The packing follower 132 includes a leak-off port 184 which, in the disclosed example, extends generally radially outward through the annular flange 142. The leak-off port 184 is in flow communication with the bore 133 that extends through the packing follower 132, and the leak-off port 184 preferably is connected to a conduit 186, which typically is connected to some means or mechanism for diverting leakage or for detecting leakage. In the event of any leakage past the packing assembly 130, the leakage will flow into a space 188 between the valve stem 124 and the bore 133 of the packing follower 132.
A control valve and/or a valve packing assembly assembled in accordance with one or more aspects of the present disclosure may extend and/or maximize the service life of the valve packing. In accordance with the disclosed example, the load on the primary packing set may be adjusted in a manner that is independent of the load on the secondary seal. Therefore, the primary packing set and the secondary seal can each be loaded at a desired load, without overloading one of the sealing components to the disadvantage of the other sealing component.
Further, when assembled as discussed herein, the valve body and/or the valve bonnet may be devoid of a leak-off port. Also, in the event the teachings of the present invention are applied to an existing control valve already having an existing leak-off port drilled in the bonnet or in the valve body, the existing leak-off port may be temporarily plugged or permanently plugged.
Those of skill in the art will appreciate that on many valves it is desirable to have some means to determine if the valve packing is leaking, and it is also desirable to have some means to capture the leakage. In the past, these needs have been addressed by using a double packing arrangement in which a leak-off port is provided between two packing sets, with the two packing sets separated by a lantern ring. This approach may suffer from one or more potential drawbacks. For example, although a desired load can be applied to the top packing set, only a fraction of that load is transmitted to the lower packing set. Of course the lower packing set needs to provide an adequate seal against the pressure within the control valve, but the load on the lower packing set is compromised by the upper packing set. Moreover, using two packing sets results in much higher friction in the valve stem, and more consolidation of packing material results in loss of packing stress thus causing increased leakage. Consequently, the conventional leak-off port has to be provided in the valve body or the valve bonnet. The conventional leak-off port drilled through the valve body or through the valve bonnet increases the manufacturing cost of the control valve, and also creates potential installation and service issues, as the lantern ring must be properly aligned with the leak-off port.
In accordance with the disclosed example, it is possible to address various packing issues using aspects of known technology, and also to provide for a leak-off function that does not compromise the performance of the packing. In accordance with the exemplary form outlined herein, it is possible to subject the packing assembly to a relatively constant and correct or desired amount of load or stress in order to affect a seal, and this is often achieved by using live-load springs. It is also possible to follow the teachings herein in order to use no more packing than the minimum required to effect a seal. This approach minimizes the adverse effects of thermal expansion of the packing, and also reduces packing friction. In the present approach, it is also possible to install less-pliable anti-extrusion rings on either side of the packing, as these anti-extrusion rings reduce or prevent the packing from extruding out of the packing area, and it is also possible to provide stem bushings or other type of stem guide, as this helps to keep the stem aligned within the packing set, and to use a smooth, polished valve stem, as this approach reduces packing friction and wear and minimizes the occurrence of leak paths.
When assembled in accordance with the exemplary form of the invention outlined herein, the resulting control valve and/or the packing assembly exhibits improved performance as compared to existing packing assemblies, such as, for example, the SS-84 packing available from Emerson. In accordance with the disclosed example, the present improved packing assembly outlined herein may be more compact and simple, and therefore the present packing assembly can be used on other products. The present improved design also provides independent live load for the leak-off seal, and an additional bushing to protect the stem. Further, the present exemplary design does not require drilling a leak-off hole in the valve body or the bonnet. A leak-off hole is difficult to machine and locate, and creates an interrupted surface in the packing bore. Accordingly, it is desirable to have a design in which the valve body and/or the valve bonnet are devoid of a separate leak-off port.
The exemplary form of the invention discussed herein also may experience several additional advantages. For example, the packing studs may be placed at a greater diameter compared to conventional assemblies, which allows for better disc spring washer design. Further, the secondary seal ring disposed within the disclosed packing follower does not have pressure across it. Instead, the secondary seal ring only needs to divert any packing leakage, such as toward the leak-off port in the packing follower, which is at or near atmospheric pressure. The disclosed assembly may thus result in a valve that is more suitable for long service and infrequent maintenance, such as applications within nuclear containment environments.
Numerous modifications and alternative embodiments of the invention will be apparent to those skilled in the art in view of the forgoing description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the present disclosure may be varied without departing from the spirit of the invention, and the exclusive use of all modifications which are within the scope of the claims is reserved.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3512753, | |||
3559950, | |||
3787060, | |||
4345766, | May 07 1981 | Apparatus for sealing an oil well pump polished rod | |
4844411, | Mar 14 1988 | GODDARD INDUSTRIES, INC , 709 PLANTATION ST , A CORP OF MA | Valve |
4964432, | Mar 19 1990 | TYCO VALVES & CONTROLS INC | Method and means for mounting valve member on valve stem |
5178363, | Nov 15 1990 | Flowserve Management Company | Valve stem sealing means for prevention of fugitive emissions |
5263682, | Mar 17 1992 | Swagelok Company | Valve stem packing system |
5476117, | Nov 16 1994 | Retrofit second packing chamber for quarter-turn valves | |
5927685, | Mar 16 1998 | J V P , INC | Sealing device for a valve stem of a valve |
7249751, | Jul 01 2004 | Mogas Industries, Inc. | Ball valve with shear bushing and integral bracket for stem blowout protection |
EP841511, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 18 2009 | Fisher Controls International LLC | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Aug 07 2015 | 4 years fee payment window open |
Feb 07 2016 | 6 months grace period start (w surcharge) |
Aug 07 2016 | patent expiry (for year 4) |
Aug 07 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 07 2019 | 8 years fee payment window open |
Feb 07 2020 | 6 months grace period start (w surcharge) |
Aug 07 2020 | patent expiry (for year 8) |
Aug 07 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 07 2023 | 12 years fee payment window open |
Feb 07 2024 | 6 months grace period start (w surcharge) |
Aug 07 2024 | patent expiry (for year 12) |
Aug 07 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |