The present invention relates to a method for preparing a hollow microneedle comprising preparing a solid microneedle by drawing lithography; plating the surface with a metal; removing the solid microneedle; and fabricating the hollow microneedle. The present invention ensures efficient preparation of a hollow microneedle with desired hardness, length, and diameter, and which may be effectively used for extracting internal analytical materials from the body and for drug injection.
|
1. A method for preparing a hollow microneedle, which comprises the steps of: i) coating a surface of a substrate with a viscous material for forming a solid microneedle; ii) contacting the viscous material with a frame which has been patterned as a pillar; iii) solidifying the viscous material while drawing the viscous material with the frame; iv) cutting a certain part of the drawn viscous material coating to form a solid microneedle; v) carrying out metal vapor deposition on a surface of the solid microneedle; vi) protecting an upper end part of the solid microneedle, and then metal-plating the surface of the resulting microneedle; and vii) removing the solid microneedle by using a suitable solvent.
2. A method for preparing a hollow microneedle, which comprises the steps of: i) coating a surface of a substrate with a viscous material for forming a solid microneedle; ii) contacting the viscous material with a frame which has been patterned as a pillar; iii) solidifying the viscous material while drawing the viscous material with the frame; iv) cutting a certain part of the drawn viscous material coating to form a solid microneedle; v) carrying out metal vapor deposition on a surface of the solid microneedle; vi) metal-plating the surface of the resulting solid microneedle; vii) cutting an upper end part of the solid microneedle; and viii) removing the solid microneedle by using a suitable solvent.
|
This application claims priority under 35 U.S.C. §371 from international application PCT/KR2007/003507, filed Jul. 20, 2007, which claims priority from Korean Patent Application No. 10-2006-0068514, filed Jul. 21, 2006.
The present invention relates to a hollow microneedle and a fabrication method thereof.
Generally, needles are used in sampling of analytical materials such as blood, for diagnosis of various diseases, or drug injection into the body. With the development of various diagnosing techniques and diagnosing chips, the demand for extracting analytical materials from the body has increased. Under such circumstances, a needle which may cause pain during its use and leave an external mark on the skin has hindered the use of such various diagnosing techniques and devices. As a result, microspikes and solid microneedles which are penetration type needles and hollow microneedles which are open tip type needles have been suggested.
Unlike conventional needles, the microneedles should not cause pain when they penetrate the skin, and for such painless skin penetration, the diameter of the upper end part of the needle is a matter to be considered. The microneedle should have a physical hardness sufficient to penetrate the 10-20 μm of stratum corneum. The microneedles should have a length sufficient to reach the capillary vessel for a high efficient analytical material detection and drug delivery. Since in-plane microneedles were suggested (“Silicon-processed Microneedles”, Journal of microelectrochemical systems Vol. 8, No 1, March 1999), various types of microneedles have been developed. For example, a solid silicon microneedle array fabricated using an etching method was suggested as an out-of-plane microneedle array (U.S. Patent Publication No. 2002138049, entitled “Microneedle devices and methods of manufacture and use thereof”). However, since the solid silicon microneedle according to this method was not a hollow structure, it could not be used for analytical material detection in the body and delivery of drugs. As a developed embodiment of an etching technique, a hollow silicon microneedle with an inclination angle was developed by Nanopass Ltd. (W00217985; W02005049107; “Silicon Micromachined Hollow Microneedles for Transdermal Liquid Transport”, Journal of microelectrochemical systems, Vol 12, No. 6, December 2003). Hollow silicon microneedles of side-open type and cross type were suggested by Griss and Steme in Stanford University (“Side-Opened Out-of-Plane Microneedles for Microfluidic Transdermal Liquid Transfer”, Journal of microelectro-chemical systems, Vol. 12, No. 3, June 2003; U.S. patent application No. US2004267205). As such, various hollow silicon microneedles have been developed, but these caused pain upon penetration of the skin owing to their large diameter, and were not efficient in extracting internal analytical materials from the body and drug delivery owing to their length of 500 μm.
A method for preparing hollow metal microneedles was disclosed by Prausnitz, at the University of Georgia, which comprises fabricating a mold by using a laser and then using deposition and electroplating for preparing the microneedles (“Hollow Metal Microneedles for Insulin Delivery to Diabetic Rats”, IEEE Transactions on biomedical engineering, Vol. 52, No. 5, May 2005). However, the hollow metal microneedles prepared by the above method, also had the problem of other conventional methods, with respect to diameter and length. Another method for preparing a novel hollow glass microneedle which has a length of about 900 μm and an inclination angle by extending a glass micropipette, was further suggested by Prausntiz, at the University of Georgia (“Microinfusion Using Hollow Microneedles”, Pharmaceutical Research, Vol. 23, No. 1, January 2006, and “Mechanism of fluid infusion during microneedle insertion and retraction”, Journal of Controlled Release, 2006, 357361). However, this method also failed to prepare hollow microneedles having a diameter (outer diameter) of 50 μm or less. Further, such hollow microneedle made of glass, i.e. a non-conducting substance, had a limitation in its commercialization due to problems in combining it with a variety of electric devices. Although other various types of hollow microneedles have been suggested by 3M, P&G, BD technologies, Alza Corporation and the like, none of these could provide a means to effectively solve the problems connected with diameter, length and hardness. Accordingly, there still has been a great demand for a hollow microneedle which has a diameter fine enough to achieve painless penetration of the skin, a length which is long enough to penetrate the skin to the deeper area, and suitable hardness.
Therefore, it is an object of the present invention to provide hollow microneedles.
Another object of the present invention is to provide a method for fabricating hollow microneedles.
The present inventors have made a great effort to develop a method for preparing a hollow microneedle, with desired hardness, length and diameter, and finally have succeeded in developing such a hollow microneedle, by preparing a solid type microneedle by drawing lithography; plating the surface with a metal; removing the solid type microneedle; and fabricating the hollow microneedle.
To achieve the above objects of the present invention, the present invention provides a method of using drawing lithography to fabricate biodegradable solid microneedles. According to the present invention, the entire surface of a substance is first coated with a biodegradable viscous material to be formed into microneedles. Alternatively, only the portion of the substrate, on which microneedles are to be formed, that is, the area that is to be brought into contact with pillars formed on a frame in the desired pattern, is selectively coated with the polymer to form a pattern. The coated material is maintained at a suitable temperature, such that it is not solidified. After the pillars formed on the frame in the desired pattern are brought into contact with the surface of the coated viscous material, the coated viscous material is solidified while it is drawn with the frame. As a result, the coated viscous material forms a structure which has a diameter decreasing from the substrate toward the surface contacting with the frame. The drawing process can be carried out by fixing the substrate and moving the frame upward or downward. Alternatively, it can also be performed by fixing the frame and moving the substrate upward or downward. At this time, solid microneedles having a thin and long structure are fabricated either by increasing the drawing speed, such that a force greater than the tensile strength of the coated material is applied to the coated material, or by cutting a specific portion of the coated material using a laser beam. The material being coated over the substrate for forming a solid type microneedle is not specifically restricted, however they should be removable by using a solvent or physical methods, after a metal plating step. The temperature during the formation of a microneedle and the frame drawing rate can be properly adjusted, depending on the characteristics of the coating material, for example viscosity, and the desired structure of the solid type microneedle.
Next, the obtained solid type microneedle is deposited with a suitable material by metal vapor deposition, followed by protecting the upper end part. Then, the deposited surface is plated with metal. Protection of the upper end part may be carried out by applying an enamel or SU-8 to the upper area, without being limited to this. As for the metal, metals which can be applicable to a human body, such as nickel or materials for a needle of a disposable syringe approved by the KFDA (Korea Food & Drug Administration) including stainless steel, aluminum, chrome or the like can be used. The metals should not be toxic or carcinogenic for the human body, but have excellent biocompatibility without the risk of a rejection reaction, good mechanical properties such as tensile strength, elastic modulus, abrasion resistance or the like, and strong corrosion resistance which can endure the corrosive environment in the human body.
For example, cobalt-based alloys, and titanium and alloys thereof could be used as plating materials for a microneedle. In the meantime, the metal microneedle can be coated with a lubricant such as glycerin, for the convenience of penetrating the skin, or with an anticoagulant solution such as citrate or EDTA, in order to prevent blood coagulation during blood collection. After the plating, the solid type microneedle is removed therefrom, resulting in a hollow microneedle. The solid type microneedle can be removed by using a suitable solvent, combustion, or a physical method.
In summary, the method for preparing a hollow microneedle of the present invention comprises the steps of: i) coating the surface of a substrate with a viscous material for forming a solid type microneedle; ii) solidifying the viscous material while drawing the viscous material coating with the frame which has been patterned as a pillar; iii) cutting a certain part of the drawn viscous material coating to form a solid type microneedle; iv) carrying out metal vapor deposition on the surface of the solid type microneedle; v) protecting the upper end part of the solid type microneedle, and then metal-plating the surface of the resulting microneedle; and vi) removing the solid type microneedle by using a suitable solvent or the like.
Another method for preparing a hollow microneedle of the present invention comprises the steps of: i) coating the surface of a substrate with a viscous material for forming a solid type microneedle; ii) solidifying the viscous material while drawing the viscous material coating with the frame which has been patterned as a pillar; iii) cutting a certain part of the drawn viscous material coating to form a solid type microneedle; iv) carrying out metal vapor deposition on the surface of the solid type microneedle; v) metal-plating the surface of the resulting solid type microneedle; vi) cutting the upper end part of the solid type microneedle; and vii) removing the solid type microneedle by using a suitable solvent or the like.
In the present invention, the cutting of a microneedle can be conducted by accelerating the drawing speed in order to apply a force greater than the tensile strength to the coating material, or by using a laser beam, without being limited to these methods.
The hollow microneedle prepared by the present invention can be prepared to have a desired shape, without limitation of the outer diameter (OD), inner diameter (ID) and length. However, for the purpose of extracting internal analytical materials from the body and of drug injection, it is preferred to have an outer diameter of 25-100 μm and an inner diameter of 10-50 μm at the upper end part, and an effective length of 500-2,000 μm.
Hereinafter, the present invention will be described in further detail with reference to the accompanying drawings.
As used herein, the term “upper end” of a microneedle means one end of the microneedle, at which the diameter is the minimum.
As used herein, the term “effective length” means the vertical length from the upper end of the microneedle to the position having an inner diameter of 50 μm.
As used herein, the term “solid type microneedle” means a microneedle which is formed in the solid state without hollow holes.
Hereinafter, the present invention will be described in further detail with reference to examples. It is to be understood, however, that these examples are illustrative only, and the scope of the present invention is not limited thereto. Also, it is to be understood that various modifications, variations or changes, which are apparent to one skilled in the art when reading the specification of the present invention, all fall within the scope of the present invention. All the literature cited in the present specification is incorporated herein by reference.
SU-8 2050 photoresist (commercially purchased from Microchem) having a viscosity of 14,000 cStwas used to fabricate solid microneedles. For this purpose, SU-8 2050 was coated on a flat glass panel to a certain thickness, and it was maintained at 120° C. for 5 minutes to maintain its flowing properties. Then, the coated material was brought into contact with a frame having 2×2 pillar patterns formed thereon, each pillar having a diameter of 200 μm (See
Three layers of Ti-Cu-Ti (100 μm-300 μm-100 μm) were deposited on the SU-8 solid type microneedle (30) (
As another example, an Ag layer was deposited on the SU-8 solid type microneedle (30) (
As described above, according to the present invention, it is possible to prepare a hollow microneedle with the targeted diameter, length and hardness. Therefore, the hollow microneedle according to the present invention can be useful for combining with devices for taking analytical materials such as blood from the body, and for injecting drugs.
Patent | Priority | Assignee | Title |
10136846, | Sep 02 2011 | The Regents of the University of California; North Carolina State University; National Technology & Engineering Solutions of Sandia, LLC | Microneedle arrays for biosensing and drug delivery |
10441768, | Mar 18 2015 | University of Pittsburgh - Of the Commonwealth System of Higher Education | Bioactive components conjugated to substrates of microneedle arrays |
10737083, | Mar 18 2015 | University of Pittsburgh—Of the Commonwealth System of Higher Education | Bioactive components conjugated to dissolvable substrates of microneedle arrays |
10745788, | May 10 2016 | Texas Tech University System | High-throughput fabrication of patterned surfaces and nanostructures by hot-pulling of metallic glass arrays |
11400267, | Oct 28 2016 | SAMSUNG ELECTRONICS CO , LTD | Microneedle patch, and method and device for manufacturing microneedle |
11478194, | Jul 29 2020 | Biolinq Incorporated | Continuous analyte monitoring system with microneedle array |
11672964, | Mar 18 2015 | University of Pittsburgh—Of the Commonwealth System of Higher Education | Bioactive components conjugated to substrates of microneedle arrays |
11684763, | Oct 16 2015 | University of Pittsburgh - Of the Commonwealth System of Higher Education | Multi-component bio-active drug delivery and controlled release to the skin by microneedle array devices |
11744889, | Jan 05 2016 | University of Pittsburgh - Of the Commonwealth System of Higher Education | Skin microenvironment targeted delivery for promoting immune and other responses |
11744927, | Oct 23 2009 | University of Pittsburgh—Of the Commonwealth System of Higher Education; Carnegie Mellon University | Dissolvable microneedle arrays for transdermal delivery to human skin |
11857344, | May 08 2021 | Biolinq Incorporated | Fault detection for microneedle array based continuous analyte monitoring device |
11872055, | Jul 29 2020 | Biolinq Incorporated | Continuous analyte monitoring system with microneedle array |
11963796, | Apr 29 2017 | Biolinq Incorporated | Heterogeneous integration of silicon-fabricated solid microneedle sensors and CMOS circuitry |
8900194, | Jul 19 2002 | 3M Innovative Properties Company | Microneedle devices and microneedle delivery apparatus |
9737247, | Sep 02 2011 | National Technology & Engineering Solutions of Sandia, LLC | Microneedle arrays for biosensing and drug delivery |
9743870, | Sep 02 2011 | National Technology & Engineering Solutions of Sandia, LLC | Microneedle arrays for biosensing and drug delivery |
9844339, | Jun 10 2010 | The Regents of the University of California | Textile-based printable electrodes for electrochemical sensing |
9944019, | May 01 2012 | University of Pittsburgh—Of the Commonwealth System of Higher Education; Carnegie Mellon University | Tip-loaded microneedle arrays for transdermal insertion |
ER9026, |
Patent | Priority | Assignee | Title |
6334856, | Jun 10 1998 | VALERITAS LLC | Microneedle devices and methods of manufacture and use thereof |
6663820, | Mar 14 2001 | CORIUM, INC | Method of manufacturing microneedle structures using soft lithography and photolithography |
20020082543, | |||
20020138049, | |||
20040060902, | |||
20040186419, | |||
20050137531, | |||
20050209565, | |||
20050220836, | |||
20060129225, | |||
20060206057, | |||
20110005669, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 20 2007 | Industry-Academic Cooperation Foundation, Yonsei University | (assignment on the face of the patent) | / | |||
Aug 18 2009 | JUNG, HYUNG IL | Industry-Academic Cooperation Foundation, Yonsei University | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023140 | /0349 | |
Aug 18 2009 | LEE, KWANG | Industry-Academic Cooperation Foundation, Yonsei University | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023140 | /0349 |
Date | Maintenance Fee Events |
Dec 16 2015 | ASPN: Payor Number Assigned. |
Mar 18 2016 | REM: Maintenance Fee Reminder Mailed. |
Jul 26 2016 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Jul 26 2016 | M2554: Surcharge for late Payment, Small Entity. |
Feb 02 2020 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Feb 02 2024 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Date | Maintenance Schedule |
Aug 07 2015 | 4 years fee payment window open |
Feb 07 2016 | 6 months grace period start (w surcharge) |
Aug 07 2016 | patent expiry (for year 4) |
Aug 07 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 07 2019 | 8 years fee payment window open |
Feb 07 2020 | 6 months grace period start (w surcharge) |
Aug 07 2020 | patent expiry (for year 8) |
Aug 07 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 07 2023 | 12 years fee payment window open |
Feb 07 2024 | 6 months grace period start (w surcharge) |
Aug 07 2024 | patent expiry (for year 12) |
Aug 07 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |