An acoustic device and method of making said acoustic device. The acoustic device comprises a diaphragm having resonant bending wave modes in the operating frequency range, and a plurality of electromechanical transducers coupled to the diaphragm. The positioning and mechanical impedance of the transducers are such that at least a selected number of the resonant bending wave modes are balanced so that the net transverse modal velocity over the area of the diaphragm tends to zero with the balancing of the resonant bending wave modes being achieved substantially by the positioning and mechanical impedance of the transducers. The parameters of the diaphragm may be such that there are a plurality of nodal grouped locations at or around which the nodal lines of a selected number of resonant modes are clustered. Each transducer may be mounted at one of the plurality of nodal grouped locations.
|
39. An acoustic device comprising a diaphragm having an area and having an operating frequency range and the diaphragm being such that it has resonant bending wave modes in the operating frequency range, and at least one electromechanical transducer coupled to the diaphragm and adapted to exchange energy with the diaphragm, characterised in that the parameters of the diaphragm are such that there are a plurality of nodal grouped locations at or around which the nodal lines of a selected number of resonant modes are clustered and the at least one transducer is mounted at one of the plurality of nodal grouped locations.
54. A method of making an acoustic device having a diaphragm having an area and having an operating frequency range, comprising choosing the diaphragm parameters such that it has resonant bending wave modes in the operating frequency range, coupling at least one electromechanical transducer to the diaphragm to exchange energy with the diaphragm, characterised by selecting the parameters of the diaphragm so that there are a plurality of nodal grouped locations at or around which the nodal lines of a selected number of resonant modes cluster and coupling the at least one transducer at one of the plurality of nodal grouped locations.
1. An acoustic device comprising a diaphragm having an area and having an operating frequency range and the diaphragm being such that it has resonant bending wave modes in the operating frequency range, and a plurality of electromechanical transducers coupled to the diaphragm and adapted to exchange energy with the diaphragm, characterised in that the positioning and mechanical impedance of the transducers are such that the net transverse modal velocity over the area of the diaphragm is at least reduced to tend to balance at least selected modes in the operating frequency range with the balancing of the selected resonant bending wave modes being achieved substantially by the positioning and mechanical impedance of the transducers.
23. A method of making an acoustic device having a diaphragm having an area and having an operating frequency range, comprising choosing the diaphragm parameters such that it has resonant bending wave modes in the operating frequency range, coupling a plurality of electromechanical transducers to the diaphragm to exchange energy with the diaphragm, characterised by selecting the positions and mechanical impedance of the transducers so that the net transverse modal velocity over the area is at least reduced to tend to balance at least selected modes in the operative frequency range with the balancing of the selected resonant bending wave modes being achieved substantially by the positioning and mechanical impedance of the transducers.
2. An acoustic device according to
3. An acoustic device according to
4. An acoustic device according to
5. An acoustic device according to
6. An acoustic device according to
8. An acoustic device according to
9. An acoustic device according to
10. An acoustic device according to
11. An acoustic device according to
12. An acoustic device according to
13. An acoustic device according to
14. An acoustic device according to
15. An acoustic device according to
16. An acoustic device according to
17. An acoustic device according to
18. An acoustic device according to any
19. An acoustic device according to
20. An acoustic device according to
21. An acoustic device according to
22. An acoustic device according to
25. A method according to
26. A method according to
27. A method according to
28. A method according to
29. A method according to
30. A method according to according to
31. A method according to
33. A method according to according to
34. A method according to
35. A method according to
36. A method according to
37. A method according to
38. A method according to
40. An acoustic device according to
41. An acoustic device according to
42. An acoustic device according to
43. An acoustic device according to
44. An acoustic device according to
45. An acoustic device according to
46. An acoustic device according to
47. An acoustic device according to
48. An acoustic device according to
49. An acoustic device according to
50. An acoustic device according to
51. An acoustic device according to
52. An acoustic device according to
53. An acoustic device according to
56. A method according to according to
57. A method according to
58. A method according to
59. A method according to
60. A method according to
61. A method according to
62. A method according to
63. A method according to
64. A method according to
65. A method according to according to
|
The invention relates to acoustic devices, such as loudspeakers and microphones. More particularly, the present invention relates to acoustic devices of the general kind described in our International Application WO2005/101899A which is herein incorporated by reference. Such devices are known as balanced mode radiators or by the initials BMR.
The prior art takes a number of approaches to making potentially modal diaphragms act like a piston:
The BMR teaching of WO2005/101899A aims to balance a modal radiator such that its modes resemble those of the free panel up to a chosen order. It achieves this balance by appropriate selection of the positioning and mass of the drive part of the transducer and of at least one mechanical impedance means, e.g. mass.
From one aspect the invention is an acoustic device comprising a diaphragm having an area and having an operating frequency range and the diaphragm being such that it has resonant bending wave modes in the operating frequency range, and a plurality of electro-mechanical transducers coupled to the diaphragm and adapted to exchange energy with the diaphragm, characterised in that the positioning and mechanical impedance of the transducers are such that the net transverse modal velocity over the area of the diaphragm is at least reduced to tend to balance at least selected modes in the operating frequency range with the balancing of the selected resonant bending wave modes being achieved substantially by the positioning and mechanical impedance of the transducers.
From another aspect the invention is a method of making an acoustic device having a diaphragm having an area and having an operating frequency range, comprising choosing the diaphragm parameters such that it has resonant modes in the operating frequency range, coupling a plurality of electromechanical transducers to the diaphragm to exchange energy with the diaphragm, characterised by selecting the positions and mechanical impedance of the transducers so that the net transverse modal velocity over the area is at least reduced to tend to balance at least selected modes in the operative frequency range with the balancing of the selected resonant bending wave modes being achieved substantially by the positioning and mechanical impedance of the transducers.
As described in WO2005/101899A, the net transverse modal velocity over the area may be quantified by calculating the rms (root mean square) transverse displacement. The positions and mechanical impedance of the transducer are such that the net transverse model velocity preferably tends towards zero. An example calculation for a circular diaphragm is described in WO 2005/101899. To achieve net transverse modal velocity over the area tending to zero, the relative mean displacement may be less than 25%, or preferably less than 18% of the rms transverse velocity.
Furthermore as described in WO2005/101899A, for zero net transverse modal velocity, the modes of the diaphragm need to be inertially balanced to the extent, that except for the “whole body displacement” or “piston” mode, the modes have zero mean displacement (i.e. the area enclosed by the mode shape above the generator plane equals that below the plane). This means that the net acceleration, and hence the on-axis pressure response, is determined solely by the pistonic component of motion at any frequency.
WO2005/101899A describes different methods for achieving net transverse modal velocity tending to zero. One method involves calculating locations where the drive point impedance Zm is at a maximum for the modes of an ideal theoretical acoustic device. Since the impedance Zm is calculated from a modal sum, the calculated locations depend on the number of modes included in the sum. Generally, the locations will tend to be near the nodes of the highest mode considered, but the influence of the other modes means that the correspondence may not be exact. The locations are thus considered to be average nodal locations.
In the present invention, the drive parts of the transducers are preferably mounted at average nodal locations. Such locations may be on (or near) the nodal lines of a chosen mode, i.e. the fourth mode and are described in WO2005/101899A. In this way, the modes up to the chosen one are balanced, whether or not they are suppressed. Driving at average nodal locations moderates the amplitude of the modes but may not suppress the mode. Modal action is essential so that the modal output may be brought into radiation balance.
The multiple (i.e. n) transducers may each be mounted at an average nodal location of the nth mode. Mounting at average nodal locations ensures that the net force applied to each mode approaches zero. The resulting motion resembles that of a piston. However, the device is not merely a piston but also a resonant radiator in which a number of the lowest order modes are not strongly excited.
The device thus addresses the radiation problem of the piston to modal transition in which driven modes are generally unbalanced in respect of their radiation resulting in large peaks and dips in the axial frequency response and also the power response.
The placing of the transducers may or may not be symmetrical on the diaphragm. The symmetry issue is based on the theory of modal balance. The diaphragm may have more than one modal axis which is subject to the balancing method. For example, a rectangular diaphragm may have three symmetrically placed transducers for the longer axis and a pair of transducers for the other axis.
An additional useful design variable is that some or all of the transducers may have equal or different drive magnitudes and/or masses. Furthermore, the mechanical impedance of a transducer may be varied more or less independently of the drive force or power of the transducer. The mechanical impedance of each transducer may be matched to the effective mechanical impedance at the drive location. The matched mechanical impedance may take into account the properties of mechanical and electromagnetic damping, reflected compliance, drive mass and available drive force. At low frequencies, this global approach is useful because it provides a good prediction of the underlying piston range output. This parallels the low frequency parameter method used with conventional piston drivers to design conventional box loudspeakers.
The transducers may be inertial or grounded. The transducers may be piezoelectric devices, bender devices or moving coil devices.
In contrast to WO2005/101899A, the modal balancing is achieved substantially by the positioning and mechanical impedance of the transducers alone. The balancing may preferably be achieved entirely by the positioning and mechanical impedance of the transducers. In other words, mechanical impedances (e.g. masses) are not essential. Nevertheless, the acoustic devices of the invention may benefit from some fine tuning by the application of mechanical impedance components in selected locations to the diaphragm. These may be used to trim the frequency response in certain ranges, or to higher order modes which due to their density are not resolvable through the average nodal method.
For example in a given application it may be found useful to adjust the level of one frequency range relative to another. A design with too great a low range may be adjusted be applying distributed mass to the diaphragm via a compliant intermediary layer. The damping and compliance of the intermediate layer may be designed in conjunction with the distributed mass (so as not to prevent the application of average nodal methods) to load the diaphragm at low frequencies to reduce the output while at higher frequencies the compliance allows the mass to decouple and leave this range unaffected. Thus broad range equalisation is effected mechanically.
In another example, one or more of the plurality of transducers may be passive (i.e. not fed with an electric signal) and thus only its dominant mass feature is used for modal balancing. The passive transducer may be electrically unconnected or may remain connected to an active amplifier. In the latter case, there will be some electromagnetic damping from the drive to the panel.
Using a combination of passive and active transducers may be useful for devices capable of reproducing more than one signal channel. For example, left and right channels may be directed to left and right hand areas on the panel. At higher frequency, the transducers may be driven for higher order, more localised modes on an individual basis. At lower frequencies, suitable signal summing may encourage the transducers to operate in concert, in phase, acting on average groups of lower order nodal lines. The result is a summed output, balanced drive for low frequencies and a spaced source stereo reproducer at higher frequencies.
The transducer may be adapted to move the diaphragm in translation. The transducer may be a moving coil device having a voice coil which forms the drive part and a magnet system. A resilient suspension may couple the diaphragm to a chassis. The magnet system may be grounded to the chassis.
Suitable materials for the suspension include moulded rubber or elastic polymer cellular foamed plastics. In design, the physical position of the suspension on the diaphragm may be adjusted to find the best overall match in the operating frequency range. Additionally or alternatively the behaviour of the suspension may be modelled, e.g. with FEA to ascertain the effective centre of mass, damping and stiffness. Its properties may be calculated as an effective lumped parameter at effective notional locations with respect to the perimeter of the diaphragm. The positions/mass of the transducers may then be adjusted to compensate for the mechanical impedance effect of the suspension.
According to a third aspect of the invention, there is provided an acoustic device comprising a diaphragm having an area and having an operating frequency range and the diaphragm being such that it has resonant modes in the operating frequency range, and at least one electro-mechanical transducer having a drive part coupled to the diaphragm and adapted to exchange energy with the diaphragm, characterised in that the parameters of the diaphragm are such that there are a plurality of nodal grouped locations at or around which the nodal lines of a selected number of resonant modes are clustered and the drive part coupling of the at least one transducer is mounted at one of the plurality of nodal grouped locations.
From another aspect the invention is a method of making an acoustic device having a diaphragm having an area and having an operating frequency range, comprising choosing the diaphragm parameters such that it has resonant modes in the operating frequency range, coupling the drive part of at least one electromechanical transducer to the diaphragm to exchange energy with the diaphragm, characterised by selecting the parameters of the diaphragm so that there are a plurality of nodal grouped locations at or around which the nodal lines of a selected number of resonant modes cluster and coupling the drive part of the at least one transducer at one of the plurality of nodal grouped locations.
The selected modes may be low frequency resonant modes, e.g. the first two or more modes. In this way, the transducer may be mounted on or near to the nodal lines of all modes up to a chosen mode, e.g. up to the fourth mode. Alternatively, the selected modes may comprise only even or odd modes, or any combination there of including all modes in the operating frequency range.
The terms “odd” and “even” refer to the number of the mode. The numbers refer to the number of the nodal line with (0,2) defined as the first resonant bending wave mode since there is no bending in one direction and two nodal lines in the other. For completeness, it is noted that (0,1) is the “whole” body or piston mode. As a consequence of this notation, odd modes are anti-symmetric and even modes are symmetric. Appropriate selection of the combination of odd and even modes may improve axial frequency response. There is also the potential through locating the transducers at selected nodal grouped locations to support the whole body contribution, i.e. the encouragement of semi-pistonic action at the lowest available frequency in order to provide the widest frequency range.
For a symmetric object such as a circular diaphragm, or a beam-like diaphragm which may be considered as a section across the centre of a circular diaphragm, the symmetrical modes are balanced and do not radiate on axis. The anti-symmetrical modes are those which are unbalanced and need to be considered when designing the acoustic device. The first and second even modes are coincident for such symmetrical objects and thus transducers may be mounted simultaneously on nodes of both these modes to provide radiation balancing of the modes.
There may be a plurality of transducers (i.e. n) each of which is mounted a nodal grouped location. The number of transducers may correspond to the number of nodal grouped locations, i.e. n transducers mounted at n locations.
Drives for such locations tend to result in a balance of modal radiation for those modes thus improving the axial pressure response for the radiator. In other words, these grouped locations may correspond to the average nodal locations taught in WO2005/101899A but not necessarily so.
The diaphragm parameters include shape, size (aspect ratio), thickness, bending stiffness, surface area density, shear modulus, anisotropy, curvature and damping. The diaphragm may be a panel and may be planar, curved or dished.
The diaphragm may have a regular (uniform) shape, e.g. rectangular, circle, or other regular polygon. Alternatively, the diaphragm may have a more complex geometric shape and the shape may have been selected according to the desired position of or to the desired combination of nodal lines clustered in selected nodal grouped locations. The diaphragm may also be provided with grooves which have sufficient depth to provide a impedance discontinuity which may significantly reduce transmission of resonant bending wave vibration beyond the grooves. In this way, the shape may be vibrationally resolved into a simpler shape, e.g. circle, rectangle.
The diaphragm may have uniform thickness. Alternatively, the diaphragm may be formed with integral contours or ridges, e.g. by heat and compression during thermo-forming processes or vacuum moulding. The contours or ridges may displace nodal lines to alter the position of or the nodal lines clustered in selected nodal grouped locations. Such contours or ridges exploit local stiffness variation.
Local thickness of the diaphragm may also be increased by adding an “I” shaped extension which does not materially increase local stiffness in the dominant plane of bending. Additional masses may also be integrally formed with the diaphragm, e.g. by co-moulding. The “I” shaped extension and/or integral masses may compensate, balance or adjust other vibrational modes, e.g. higher order modes.
Moulding the diaphragm offers additional advantages over cutting diaphragms from sheet or composite materials, e.g. a higher quality surface finish, the opportunity for trademark and similar identification potential including surface relief and decorative artwork. Grooves or ledges for accurate registration of speaker components, e.g. the surround suspension and/or voice coil former, may also be integrally incorporated into the diaphragm. Locking members, moulded hooks, tapered grooves or undercut grooves to capture components may also be integrally incorporated into the diaphragm.
The combination of parameters may be such that a complex geometry which may be required for styling reasons behaves as a regular shape which may be modelled using standard techniques. The combination of parameters may include variation in areal mass and stiffness or grooving. For example, a sub-section of moulded automotive trim, perhaps the cover for an “A” pillar, may be designed to behave acoustically as a more regular shape to which the invention may then be applied.
In each embodiment, the acoustic device may be a loudspeaker wherein the transducer is adapted to apply bending wave energy to the diaphragm in response to an electrical signal applied to the transducer and the diaphragm is adapted to radiate acoustic sound over a radiating area. Alternatively, the acoustic device may be a microphone wherein the diaphragm is adapted to vibrate when acoustic sound is incident thereon and the transducer is adapted to convert the vibration into an electrical signal. The operating frequency range may include the piston-to-modal transition. The diaphragm parameters may be such that there are two or more diaphragm modes in the operating frequency range above the pistonic range. The acoustic device may operate as a piston at lower frequencies and a complex modal radiator at higher frequencies. The first resonance or whole body mode is preferably encouraged to address the known problem for a modal radiator, namely of the difficult transition at lower frequencies resulting from the large gap in output between the first and the new few modes.
The parameters of the device may be selected to achieve a desired ratio of pistonic to modal output. It is the contribution from the modal behaviour which provides the benefit of off-axis power at high frequencies. For a rear channel application or surround speaker where a weaker correlated axial output is desirable to provide less directive spread of ambient sound, reducing the pistonic contribution relative to the modal contribution is desirable. Such devices have an improved ratio of off-axis radiation to on-axis radiation. The amplitude of the on-axis pistonic component may be reduced by appropriate scaling and location of the transducers or by varying the phase of the drives with frequency.
For devices extending to low frequencies, the usual parameters which relate to low frequency system design, namely bass reflex loading, sealed box and related methods may be used to optimise the performance and power handling. Such properties are essentially independent of the criteria used to balance the modal radiation in the required frequency range.
Any of the features of the first and second embodiments of the invention may be combined with any of the features of the third and fourth inventions.
When designing a device according to any one of the invention, it would be helpful for the designer to have access to one of the commonly available modal analyzer or FEA packages which would facilitate inspection of mode behaviour and node lines and thus placement of exciters and the resulting acoustic behaviour.
The invention is diagrammatically illustrated, by way of example, in the accompanying drawings in which:
For this two mode solution to be valid, it is necessary to mount the diaphragm so that it acts as a free plate. In conventional drive unit radiators, mechanical terminations are present both at the centre and at the periphery. However, such terminations strongly unbalance the modal radiation contribution.
In the present invention, support and suspension components may be provided which in mechanical terms are so light in action that they do not interfere with the required radiation balanced mode behaviour. Alternatively, these components are specifically designed to form a part of the balanced acoustical system.
As shown in the circuit diagram of
As with
Using only two transducers may impair the pistonic motion of the panel at low frequencies, if the panel material is not sufficiently stiff. One solution is to use a significantly stiffer panel material, for example a honeycomb material, e.g. Honipan HHM-PGP-2.2 mm. The response around the fundamental resonance will be smoothed and efficiency is higher due to reduced moving mass.
The size of the transducer voice coil corresponds to a substantial proportion of the width of the radiating panel. In such a case, the drive may be resolved as a pair of drive lines which are in fact equivalent to two drives. For such narrow panels, it is necessary to select cooperative choices of voice coil diameter, the effective mass shared at the drive lines and the effective placement for the identified nodal line grouping to achieve the required goal of usefully balanced modal radiation.
In
The loudspeaker may reproduce one sound channel. Alternatively, two or three sound channels may be reproduced. For two sound channels, the central transducer may be filtered out at high frequencies while the two separated drivers, located near the ends of the diaphragm constitute the left and right signal channels as with
As explained above,
To achieve modal balancing of two or more modes at the same time, the selected modes should have nodal lines which intersect or nearly intersect in the same localised region. The transducer should be located in this localised region. This is easily achievable for the case of two modes since most modes will have nodal lines spread out across the entire diaphragm giving at least one place on the panel where the nodal lines cross.
It is more difficult to suppress more than two modes.
The panel of
In
In
In
In
Comparing the two Figures, the clusters of nodal lines in
The rectangles lie very close of the centre-line of the mode-shapes passing through the circles and the triangles. Accordingly, additional balancing points may be required near the unmarked intersections. These will balance the effects of drive masses near the rectangles.
The fundamental principle may be extended to more complex diaphragm shapes whose modal behaviour may nevertheless be resolved analytically into simpler groupings. Those groupings will correspond to underlying degrees of freedom or effective vibration axes. The designer of an acoustic panel may choose to address several of these axes using multiple exciters, employed according to the number of modes worth solving and the cost and quality anticipated for the intended application.
The principle may be used on its own, or in conjunction with other modal panel art, e.g. distributed mode (DM) technology.
The main advantages of this device over a BMR device are:
A device according to the invention differs to that of a pistonic loudspeaker, including a pistonic loudspeaker in which modes are cancelled, for several reasons, e.g.:
An additional advantage is that by allowing symmetrical arrangements, a device according to the invention has improved low-frequency stability than prior art devices that require asymmetry.
Colloms, Martin, Harris, Neil John, Bank, Graham, Berriman, David Keith, Ellis, Christien, Marchant, Douglas Andrew
Patent | Priority | Assignee | Title |
10129640, | Feb 06 2014 | Hewlett-Packard Development Company, L.P. | Suppressing a modal frequency of a loudspeaker |
11218808, | May 26 2020 | Tectonic Fludio Labs, Inc.; TECTONIC AUDIO LABS, INC | Varied curvature diaphragm balanced mode radiator |
11284212, | Jul 24 2019 | GOOGLE LLC | Dual panel audio actuators and mobile devices including the same |
8869933, | Jul 29 2013 | The Boeing Company | Acoustic barrier support structure |
9270253, | Jul 29 2013 | The Boeing Company | Hybrid acoustic barrier and absorber |
9284727, | Jul 29 2013 | The Boeing Company | Acoustic barrier support structure |
9883289, | Aug 10 2012 | Kyocera Corporation | Acoustic generator, acoustic generation device, and electronic device |
Patent | Priority | Assignee | Title |
4426556, | Jul 08 1980 | Matsushita Electric Industrial Co., Ltd. | Electrodynamic loudspeaker |
6332029, | Sep 02 1995 | GOOGLE LLC | Acoustic device |
20010048751, | |||
EP1170977, | |||
WO15000, | |||
WO70909, | |||
WO2005101899, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 18 2007 | New Transducers Limited | (assignment on the face of the patent) | / | |||
Dec 09 2008 | COLLOMS, MARTIN | New Tranducers Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022281 | /0004 | |
Dec 11 2008 | ELLIS, CHRISTIEN | New Tranducers Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022281 | /0004 | |
Dec 18 2008 | HARRIS, NEIL JOHN | New Tranducers Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022281 | /0004 | |
Dec 19 2008 | BANK, GRAHAM | New Tranducers Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022281 | /0004 | |
Jan 09 2009 | BERRIMAN, DAVID KEITH | New Tranducers Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022281 | /0004 | |
Jan 14 2009 | MARCHANT, DOUGLAS ANDREW | New Tranducers Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022281 | /0004 | |
Jul 23 2013 | HIWAVE TECHNOLOGIES UK LIMITED | FLAT AUDIO TECHNOLOGIES, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 060905 | /0274 | |
Feb 13 2017 | FLAT AUDIO TECHNOLOGIES, LLC | TECTONIC AUDIO LABS, INC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 061327 | /0290 |
Date | Maintenance Fee Events |
Oct 14 2016 | REM: Maintenance Fee Reminder Mailed. |
Oct 20 2016 | ASPN: Payor Number Assigned. |
Sep 19 2017 | PMFP: Petition Related to Maintenance Fees Filed. |
Sep 19 2017 | PMFG: Petition Related to Maintenance Fees Granted. |
Sep 19 2017 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 19 2017 | M1558: Surcharge, Petition to Accept Pymt After Exp, Unintentional. |
Oct 26 2020 | REM: Maintenance Fee Reminder Mailed. |
Apr 12 2021 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Sep 16 2022 | PMFP: Petition Related to Maintenance Fees Filed. |
Sep 16 2022 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Sep 16 2022 | PMFG: Petition Related to Maintenance Fees Granted. |
Sep 16 2022 | M2558: Surcharge, Petition to Accept Pymt After Exp, Unintentional. |
Sep 16 2022 | SMAL: Entity status set to Small. |
Sep 05 2024 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Date | Maintenance Schedule |
Mar 05 2016 | 4 years fee payment window open |
Sep 05 2016 | 6 months grace period start (w surcharge) |
Mar 05 2017 | patent expiry (for year 4) |
Mar 05 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 05 2020 | 8 years fee payment window open |
Sep 05 2020 | 6 months grace period start (w surcharge) |
Mar 05 2021 | patent expiry (for year 8) |
Mar 05 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 05 2024 | 12 years fee payment window open |
Sep 05 2024 | 6 months grace period start (w surcharge) |
Mar 05 2025 | patent expiry (for year 12) |
Mar 05 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |