A method is provided for soft-decision sphere decoding for softbit computation which can be applied to all sphere decoding algorithms, in particular sphere decoding algorithms in any mimo ofdm receiver implementations. Complexity reduction is achieved by using an approximate of linear euclidean distances during the sphere decoding search. The method can be used in conjunction with mimo ofdm communication systems like LTE, WiMax and WLAN.

Patent
   8437421
Priority
Oct 29 2010
Filed
Oct 21 2011
Issued
May 07 2013
Expiry
Nov 09 2031
Extension
19 days
Assg.orig
Entity
Large
1
7
EXPIRED
1. A method for soft-decision sphere decoding for use in a mimo ofdm receiver having two receive antennas, comprising the steps of:
receiving a channel matrix h and a received signal vector y;
decomposing the channel matrix h into an orthogonal rotation matrix q and an upper triangular matrix r, such that H=Q·R;
performing a tree search based on euclidean distances d2 given by d2=∥z∥2 to find a symbol vector xmin having a best likelihood to correspond to a transmitted symbol x, with z=y′−R·x and y′=Qh·y;
wherein the tree search step comprises determining a linear approximation of the square-root of the euclidean distances which is expressed as

{tilde over (d)}=(16·a1+5·(a2+a3)+4·a4)/16,
wherein a1, a2, a3, a4 are absolute values of real and imaginary parts of z1 and z2, ordered in descending order, such that a1≧{a2, a3}≧a4, with z1 and z2 being complex valued elements of the vector z.
3. An arrangement for soft-decision sphere decoding for use in a mimo ofdm receiver having two receive antennas, said arrangement being adapted for determining a linear approximation of the square-root of the euclidean distances which is expressed as a

{tilde over (d)}=(16·a1+5·(a2+a3)+4·a4)/16,
wherein a1, a2, a3, a4 are absolute values of real and imaginary parts of z1 and z2, ordered in descending order, such that a1≧{a2, a3}≧a4, with z1 and z2 being complex valued elements of a vector z, with z=y′−R·x and y′=Qh·y, wherein h is a channel matrix, q is an orthogonal rotation matrix, r is an upper triangular matrix such that H=Q·R, x is a transmitted symbol, and y is a received signal vector, for performing a tree search to find a symbol vector xmin having a best likelihood to correspond to a transmitted symbol, wherein the arrangement comprises:
a first absolute-value generator for determining absolute value of the real part of z1;
a second absolute-value generator for determining absolute value of the imaginary part of z1;
a third absolute-value generator for determining absolute value of the real part of z2;
a fourth absolute-value generator for determining absolute value of the imaginary part of z2;
means for ordering said first, second, third, and fourth absolute values according to their magnitude for defining a1, a2, a3, a4 such that a1≧{a2, a3}≧a4;
a first adder connected to said ordering means to receive therefrom and add a2 and a3;
a first bit shifter connected to said ordering means to receive therefrom a1 to subject a1 to a left shift operation by 4 bits;
a second bit shifter connected to said first adder to receive therefrom sum of a2 and a3 to subject the sum to a left shift operation by 2 bits;
a third bit shifter connected to said ordering means to receive therefrom a4 to subject a4 to a left shift operation by 2 bits;
a second adder connected to said first adder and to each of said first, second, and third bit shifters to receive outputs therefrom to add up the outputs; and
a fourth bit shifter connected to said second adder to receive an output therefrom and subject the output to a right shift operation by 4 bits, and to output result as {tilde over (d)}.
2. The method of claim 1, wherein the step of determining a linear approximation of the square-root of the euclidean distances comprises the sub-steps of:
(a) determining absolute values of the real and imaginary parts of z1 and of the real and imaginary parts of z2;
(b) ordering said absolute values according to their magnitude to define a1, a2, a3, a4 such that a1≧{a2, a3}≧a4;
(c) adding up a2 and a3 to obtain a sum a2+a3; and
(d) performing a left shift operation by 2 bits on said sum;
(e) performing a left shift operation by 4 bits on a1;
(f) performing a left shift operation by 2 bits on a4;
(g) adding up results of steps (c) to (f); and
(h) performing a right shift operation by 4 bits on result of step (g).
4. The arrangement of claim 3, wherein the means for ordering the absolute values according to their magnitude for defining a1, a2, a3, a4 comprise:
a first comparator connected to the first and second absolute-value generators to determine and output a maximum and a minimum of said first and second absolute values;
a second comparator connected to the third and fourth absolute-value generators to determine and output a maximum and a minimum of said third and fourth absolute values;
a third comparator connected to a first output of the first comparator and to a first output of the second comparator to receive each of the maximum absolute values therefrom, to define the higher absolute value thereof as a1 and to define the lower absolute value thereof as a2 or a3; and
a fourth comparator connected to a second output of the first comparator and to a second output of the second comparator to receive each of the minimum absolute values therefrom, to define the higher absolute value thereof as a2 or a3, and to define the lower absolute value thereof as a4.

This application claims priority of European application No. 10189471.5 filed on Oct. 29, 2010, the entire contents of which is hereby incorporated by reference herein.

The invention relates to a method and an arrangement for soft-decision sphere decoding.

The system model of MIMO OFDM systems using NT transmit and NR receive antennas can be described in the frequency domain for every OFDM subcarrier individually by the received signal vector y=[y1, . . . , yNR]T, the NR×NT channel matrix H, the transmitted symbol x=[x1, . . . , xNT]T, and a disturbance vector n=[n1, . . . , nNR]T which represents the thermal noise on the receive antennas. The following equation then describes the transmission model:
y=H·x+n  (1)

The elements of the transmitted symbol vector x are complex valued QAM symbols taken from a QAM modulation e.g. 4-QAM, 16-QAM, or 64-QAM. Depending on the modulation alphabet, every QAM symbol is associated to a number of transmitted bits NBit, with

N Bit = { 2 for 4 - QAM 4 for 16 - QAM 6 for 64 - QAM

The elements of the channel matrix hi,j are also complex valued. They are estimated by the receiver.

At a certain stage of the signal processing chain the receiver computes softbits for every transmitted bit associated to the transmitted symbol vector x. Several methods are known for this purpose, with different error probabilities and different computational complexities. One near-optimal approach in terms of error probability is soft-decision sphere decoding.

A soft-decision sphere decoder takes the received signal vector y and the channel matrix H as input and outputs a softbit (i.e. a likelihood value) for every bit associated to x. When denoting the bits associated to xj (the QAM symbols of the j-th transmit antenna) by [bj,1, . . . , bj,n, . . . , bj,Nbit(j)], a softbit pj,n is defined by the following Euclidean distances:
d0,j,n2=minx0,j,n{∥y−H·x0,j,n,2}
d1,j,n2=minx1,j,n{∥y−H·x1,j,n2}  (2)
wherein d0,j,n2 and d1,j,n2 are the minimum Euclidean distances between the received signal vector y and all possible combinations of transmit symbols x, with the restriction that x0,j,n represents all those combinations of x for which the n-th bit of the j-th transmit antenna is zero. On the other hand, x1,j,n represents all those combinations of x for which the n-th bit of the j-th transmit antenna is one. The softbit for the n-th bit of the j-th transmit antenna is given by
ρj,n=d02−d12  (3).

A straight-forward algorithm would have to consider all combinations of x in the above equations in order to compute the softbits for one OFDM subcarrier. Since this approach is computationally very intensive and implies an exponential complexity, soft-decision sphere decoding algorithms have been proposed as a way to simplify the search. The simplification is achieved by QR decomposition of the channel matrix H followed by a tree search.

QR decomposition decomposes the channel matrix H into a orthogonal rotation matrix Q and an upper triangular matrix R, such that H=Q·R. Since rotation by Q does not influence the Euclidean distances in the above equations, one can simplify the Euclidean distances d0,j,n2 and d1,j,n2 by

d 0 , j , n 2 = min x 0 , j , n { y - R · x 0 , j , n 2 } d 1 , j , n 2 = min x 1 , j , n { y - R · x 1 , j , n 2 } with y = Q H · y . ( 4 )

A second step of the sphere decoding algorithm is the tree search.

The Euclidean distance from above, d2=∥y′−R·x∥2, can be separated into partial Euclidean distances p12, . . . , pNT2 as follows:

d 2 = ( y 1 y N T ) - ( r 11 r 1 N T 0 0 0 r N T N T ) ( x 1 x N T ) 2 = p 1 2 + + p N T 2 , with ( 5 ) p N T 2 = y N T - r N T N T · x N T 2 ( 6 ) p 1 2 = y 1 - r 11 · x 1 - - r 1 N T · x N T 2 . ( 7 )

The partial Euclidean distances separate the original Euclidean distance into NT portions. Due to the upper triangular structure of the R matrix, the partial Euclidean distances also separate the distance computation from the possibly transmitted QAM symbols x1, . . . , xNT such that pNT2 only depends on the QAM symbol xNT and is not dependent on x1, . . . , xNT−1. Also, pNT−12 only depends on xNT and xNT−1, and is not dependent on x1, . . . , xNT−2. This kind of dependency separation is utilized by the sphere decoding tree search in order to find the “closest” possible transmit symbol vector xmin.

The sphere decoding tree search assumes a maximum Euclidean distance dmax2 which is definitely smaller than the Euclidean distance of the “closest” transmit symbol vector xmin. If now the search would start by choosing a candidate for xNT, the partial Euclidean distance pNT2 is determined. In case of pNT2>dmax2, all the Euclidean distances d2 for all possible combinations of x1, . . . , xNT−1 (assuming the chosen xNT) will also exceed the maximum search radius dmax2. Therefore, the search can skip computing the partial Euclidean distance p12, . . . , pNT−12, and can continue with another candidate for xNT.

This search procedure can be illustrated as a tree search as depicted in FIG. 1. The search tree consists of NT levels, that correspond to the QAM symbols of the different transmit antennas. In FIG. 1 NT=3 is assumed. Each tree node is associated to one possible QAM symbol x1, . . . , xNT. Therefore, the leave nodes of the tree represent all possible combinations of x.

In the example above, with pNT2>dmax2, after choosing a candidate for xNT the complete sub-tree below the chosen xNT would be skipped during the sphere search.

For finding the “closest” transmit symbol vector x, the maximum Euclidean distance dmax2 is initialized with ∞ (infinity). This means, that the partial Euclidean distances never exceed the limit, and that the sphere search reaches the bottom level after NT depth-first steps. The resulting Euclidean distance d2 then provides an update of the maximum search distance dmax2. The sphere search would now continue and try to update dmax2 if the bottom level of the tree is reached and if the resulting Euclidean distance would shrink dmax2.

The result of this search process is dmax2 being the Euclidean distance according to the “closest” possible symbol vector xmin. If xmin is restricted to certain bits being 0 or 1, the search tree can be adopted accordingly such that the search tree is built upon QAM symbols which meet the respective restrictions.

FIG. 2 illustrates an improvement of the sphere search by ordering the sibling nodes at a tree level k by increasing partial Euclidean distances pk2.

In a case where the maximum search distance dmax2 is exceeded at a tree level k (solid tree node) and the partial Euclidean distances pk2 are not ordered, the search would continue with the next candidate node (the respective QAM symbol xk) on the same level (arrow “A”). However, if the nodes in the tree are ordered by increasing pk2, the search can continue with the next node at level k−1 (arrow “B”). This is, permissible simply because due to the ordering of the sibling nodes the next candidate at the same level k would also exceed the maximum search distance dmax2. In this case, the sub-tree which is skipped during the sphere search is much larger, and thus search complexity is much lower. It will be understood from the above that ordering of the sibling nodes by increasing partial Euclidean distances is essential for any efficient sphere decoding algorithm.

As mentioned above, Euclidean distances have to be computed during the sphere decoding algorithm which are given by the following equation:
d2=∥y′−R·x∥2  (8).

These distances are used as a search metric in order to find the closest possible symbol vector xmin and its associated Euclidean distance.

However, the computation of the Euclidean distances always requires multiplications for calculating the squared absolute value of a vector z=[z1, . . . , zNR] having complex elements zr.
z=y′−R·x  (9)
d2=∥z12+ . . . +∥zNR2  (10)

For practical implementations multiplications always involve significant computational complexity. Furthermore, multiplications increase the bit-width requirements of the multiplication result.

An object of the invention therefore is to provide a sphere decoding search algorithm with reduced computational complexity.

According to the invention there is provided a method for soft-decision sphere decoding.

The inventive method is adapted for use in a MIMO OFDM receiver with two receive antennas and comprises the steps of: receiving a channel matrix H and a received signal vector y; decomposing the channel matrix H into an orthogonal rotation matrix Q and an upper triangular matrix R, such that H=Q·R; performing a tree search based on Euclidean distances d2 given by d2=∥z∥2 to find a symbol vector xmin having a best likelihood to correspond to a transmitted symbol x, with z=y′−R·x and y′=QH·y. According to the invention, the tree search step comprises determining and using a linear approximation of the square-root of the Euclidean distances which is expressed as
{tilde over (d)}=(16·a1+5·(a2+a3)+4·a4)/16,
wherein a1, a2, a3, a4 are absolute values of the real and imaginary parts of z1 and z2, ordered in descending order, such that a1≧{a2, a3}≧a4, with z1 and z2 being the complex valued elements of the vector z.

The invention also provides an arrangement for soft-decision sphere decoding for use in an MIMO OFDM receiver. Advantageously, the arrangement according to the invention exhibits very low complexity; in particular it does not comprise any multipliers.

By using linear distances and in particular a linear approximation of the square-root Euclidean distances instead of squared Euclidean distances, the novel approach provides for significantly reduced computational complexity. The linear approximation of the square-root of Euclidean distances according to the invention is devised such that any multiplication operations can be dispensed with for computing d. Thus, the invention provides a way to significantly reduce computational complexity for practical implementations. A further advantage is the limited bit-width requirement on distance computation.

The invention can be used in conjunction with MIMO OFDM communication systems like LTE, WiMax, and WLAN.

Additional features and advantages of the present invention will be apparent from the following detailed description of specific embodiments which is given by way of example only and in which reference will be made to the accompanying drawings, wherein:

FIG. 1 illustrates a tree search scheme;

FIG. 2 illustrates an optimization of sphere search in the tree search of FIG. 1; and

FIG. 3 shows a block diagram of an arrangement for computing the approximate square-root Euclidean distance according to the invention.

As stated before, the search metric for the sphere decoding search is based on the Euclidean distances d2 given by d2=∥y′−R·x∥2.

Instead, the sphere decoding search algorithm according to the invention uses the square-root of the Euclidean distances d given by
d=√{square root over (∥y′−R·x∥2)}  (11).

In this case, the search for the closest possible symbol vectors xmin will lead to the same result. However, the minimum search metric at the end of the search will be d instead of d2.

For softbit computation for the n-th bit of the j-th transmit antenna still the given equation must be fulfilled:
ρj,n=d0,j,n2−d1,j,n2  (12).

When using square-root Euclidean distances d for the sphere decoding search, the multiplication would then be required for calculating pj,n instead upon calculating the search metric. However, the inventors have realized that in this case the overall complexity is still much lower than if Euclidean distances d2 would be used during the sphere decoding search.

For the case of a MIMO OFDM system with 2 receive and 2 transmit antennas (NT=2, NR=2) the square-root Euclidean distance is given by
d=√{square root over (∥z∥2)},  (13)
which corresponds to
d=√{square root over (real(z1)2+imag(z1)2+real(z2)2+imag(z2)2)}{square root over (real(z1)2+imag(z1)2+real(z2)2+imag(z2)2)}{square root over (real(z1)2+imag(z1)2+real(z2)2+imag(z2)2)}{square root over (real(z1)2+imag(z1)2+real(z2)2+imag(z2)2)}  (14).

It is known from literature, Paul S. Heckbert (editor), Graphics Gems IV′ (IBM Version): IBM Version No. 4, Elsevier LTD, Oxford; Jun. 17, 1994), chapter 11.2, that such distance metric can be approximated by the following linear equation
{tilde over (d)}=0.9262·a1+0.3836·a2+0.2943·a3+0.2482·a4  (15),
wherein a1, a2, a3, a4 are the absolute values of the real and imaginary parts of z1 and z2, ordered in descending order, such that a1≧a2≧a3≧a4. The coefficients for the approximation have been optimized to minimize the maximum relative error between d and d2.

The method of soft-decision sphere decoding according to the invention uses a modification of the above linear approximation of expression (15). This modification has been devised by the inventor with regard to a very simple implementation thereof in hardware:
{tilde over (d)}=(16·a1+5·(a2+a3)+4·a4)/16  (16).

This linear metric can be implemented by simple shift operations and additions, rather than multiplications. Furthermore, for the disclosed metric (16), a2 and a3 do not have to be sorted necessarily, which eliminates one sorting operation. For calculating d with satisfying accuracy, a complete ordering such that a2≧a3 is not required. So, the sorting follows a1≧{a2, a3}≧a4 only.

FIG. 3 shows a block diagram of an exemplary embodiment of an arrangement for determining the approximate square-root Euclidean distance {tilde over (d)} according to the approximative expression (16) of the invention.

Since the approximation only involves multiplications by constants, no real multiplication is needed for calculating {tilde over (d)}.

In detail, the arrangement of FIG. 3 comprises an absolute-value generator 10 for determining the absolute value of the real part of z1, an absolute-value generator 12 for determining the absolute value of the imaginary part of z1 an absolute-value generator 14 for determining the absolute value of the real part of z2, and an absolute-value generator 16 for determining the absolute value of the imaginary part of z2.

The arrangement further comprises a comparator 20 connected to both of absolute-value generators 10 and 12 to determine a higher and a lower one of the two absolute values therefrom and to output them as a maximum and a minimum value, respectively. Similarly, a comparator 22 is connected to both of absolute-value generators 14 and 16 to determine and output a maximum and a minimum of the two absolute values therefrom.

A comparator 24 is connected to a first output of comparator 20 and to a first output of comparator 22 to receive the respective maximum absolute values therefrom. Comparator 24 compares the two maximum values and determines the higher one thereof as the highest of all four absolute values, i.e. a1. A comparator 26 is connected to a second output of comparator 20 and to a second output of comparator 22 to receive the respective minimum absolute values therefrom. Comparator 26 compares the two minimum values and determines the lower one thereof as the lowest of all four absolute values, i.e. a4.

As mentioned before, for the linear approximation according to the invention as set forth in expression (16), a sorting operation for a2 and a3 can be dispensed with. Rather, satisfying accuracy of soft-decision sphere decoding is obtained by sorting the four absolute values according to a1≧{a2, a3}≧a4 as performed by comparators 20, 22, 24, and 26. An adder 30 is connected to comparators 24 and 26 to receive therefrom the two intermediate absolute values to add them up to obtain a sum of a2 and a3.

The arrangement of FIG. 3 further comprises bit shifters 40, 42, 44, and 60. Left-shift operations by n bits are indicated by “<<n”, and right-shift operations are indicated by “>>n”. As can be seen in the figure, bit shifter 40 is connected to comparator 24 to receive a1 to subject it to a left shift operation by 4 bits to effect a multiplication of a1 by 16. Bit shifter 42 is connected to adder 30 to receive therefrom the sum of a2 and a3 to subject it to a left shift operation by 2 bits which effects a multiplication of the sum by 4. Bit shifter 44 is connected to comparator 26 to receive a4 to subject it to a left shift operation by 2 bits to effect a multiplication of a4 by 4.

An adder 50 is connected to adder 30 and to each of bit shifters 40, 42, and 44 to receive the outputs therefrom to add them all up, i.e. adder 50 sums 16·a1 and 4·(a2+a3), and (a2+a3), and 4·a4. Bit shifter 60 subjects the output of adder 50 to a right shift operation by 4 bits to implement a division of the sum from adder 50 by 16, and outputs the result as {tilde over (d)}, according to expression (16).

The disclosed method and arrangement for soft-decision sphere decoding using linear distances as described above provides a solution for further complexity reduction of all sphere decoding search algorithms. It can be shown by simulations that the introduced approximation to the square-root Euclidean distances is accurate enough for the overall soft-decision sphere decoding algorithm.

Eckert, Sebastian

Patent Priority Assignee Title
8798209, Aug 27 2012 GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY Orthotope sphere decoding method and apparatus for signal reconstruction in the multi-input multi-output antenna system
Patent Priority Assignee Title
7187728, Feb 24 2000 Ericsson AB Coding method and use of a receiver with a convolutional decoder
7688902, Apr 16 2003 NXP USA, INC Joint space-time block decoding and viterbi decoding
20080279298,
20090232232,
20100008441,
20100054372,
20110051861,
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Oct 21 2011Intel Mobile Communications Technology Dresden GmbH(assignment on the face of the patent)
Nov 10 2011ECKERT, SEBASTIANIntel Mobile Communications Technology Dresden GmbHASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0273920756 pdf
Aug 13 2013Intel Mobile Communications Technology Dresden GmbHIntel Mobile Communications GmbHMERGER SEE DOCUMENT FOR DETAILS 0370610281 pdf
May 07 2015Intel Mobile Communications GmbHINTEL DEUTSCHLAND GMBHCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0370570061 pdf
Jul 08 2022INTEL DEUTSCHLAND GMBHIntel CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0613560001 pdf
Date Maintenance Fee Events
Dec 16 2016REM: Maintenance Fee Reminder Mailed.
May 07 2017EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
May 07 20164 years fee payment window open
Nov 07 20166 months grace period start (w surcharge)
May 07 2017patent expiry (for year 4)
May 07 20192 years to revive unintentionally abandoned end. (for year 4)
May 07 20208 years fee payment window open
Nov 07 20206 months grace period start (w surcharge)
May 07 2021patent expiry (for year 8)
May 07 20232 years to revive unintentionally abandoned end. (for year 8)
May 07 202412 years fee payment window open
Nov 07 20246 months grace period start (w surcharge)
May 07 2025patent expiry (for year 12)
May 07 20272 years to revive unintentionally abandoned end. (for year 12)