An automated banking machine (10) includes a mechanism for accepting deposited items. items deposited into the machine through a deposit inlet (44) pass through a deposit transport (48) in which properties of the deposited item such as thickness are measured and indicia corresponding to the sensed properties are recorded on the deposited item. The deposited item is stored in a storage area (50) in the machine. Each deposited item is subsequently removed from the machine and the content thereof compared to the indicated value for the item input to the machine by the person making the deposit. The data corresponding to the indica recorded on the deposited item is usable to determine if the deposited item had content which may correspond to the value indicated at the time of deposit, and the user's account may be credited accordingly.

Patent
   8479976
Priority
Aug 21 2001
Filed
Jul 30 2002
Issued
Jul 09 2013
Expiry
May 21 2031
Extension
3217 days
Assg.orig
Entity
Large
0
7
EXPIRED
6. A method comprising:
(a) making a deposit envelope available to a user of an automated banking machine,
wherein the deposit envelope has at least one measurable property;
(b) receiving the deposit envelope into the machine from the user during a deposit transaction;
(c) sensing the at least one measurable property of the envelope received into the machine in (b) with a sensing device of the machine; and
(d) marking indicia corresponding to the at least one measurable property sensed in (c) on the envelope.
2. A method comprising:
(a) providing to a user from an automated banking machine a deposit envelope having at least one measurable property that is known by the machine at the time the envelope is provided;
(b) receiving the deposit envelope into the machine from the user during a deposit transaction;
(c) sensing the at least one measurable property of the envelope received into the machine in step (b) with a sensing device in the machine; and
(d) sensing the at least one measurable property of the envelope with at least one sensing device in the machine, whereby the at least one measurable property is known.
1. A method comprising:
(a) making a deposit envelope available to a user of an automated banking machine,
wherein the deposit envelope has at least one measurable property;
(b) receiving the deposit envelope into the machine from the user during a deposit transaction;
(c) sensing the at least one measurable property of the envelope received into the machine in (b) with a sensing device of the machine; and
(d) moving the envelope out of the machine to the user if the at least one measurable property sensed in (c) does not differ from the at least one measurable property at the time the envelope was made available in (a).
11. A method comprising:
(a) enabling the taking of an empty deposit envelope from an automated banking machine by a user operating the machine, wherein the empty envelope taken from the machine has at least one known measurable property which can vary responsive to items being placed in the envelope;
(b) receiving the envelope into the machine from a user of the machine;
(c) sensing at least one measurable property of the envelope received in step (b) through operation of at least one sensing device in the machine;
(d) comparing the at least one measurable property sensed in step (c) to the known at least one measurable property of the empty deposit envelope of step (a); and
(e) prior to step (b), sensing the at last one measurable property of the empty deposit envelope with at least one sensing device in the machine.
24. Apparatus comprising:
an automated banking machine including:
a deposit receiving device;
at least one sensor operable to sense at least one measurable property of deposit envelopes presented to the deposit receiving device for deposit into the machine;
at least one controller in operative connection with the at least one sensor,
wherein the at least one controller is operable responsive at least in part to sensing by the at least one sensor, to determine whether the deposit receiving device was presented an envelope which has at least one measurable property that substantially corresponds the envelope to an empty deposit envelope made available by the machine,
wherein the at least one controller is operable to cause the deposit receiving device to reject presented envelopes determined to substantially correspond to an empty deposit envelope made available by the machine.
15. A comprising:
(a) enabling the taking of an empty deposit envelope from an automated banking machine by a user operating the machine, wherein the empty envelope taken from the machine has at least one known measurable property which can vary responsive to items being placed in the envelope;
(b) receiving the envelope into the machine from a user of the machine;
(c) sensing at least one measurable property of the envelope received in step (b) through operation of at least one sensing device in the machine;
(d) comparing the at least one measurable property sensed in step (c) to the known at least one measurable property of the empty deposit envelope of step (a); and
(e) responsive to the comparison in step (d) indicating a change in the at least one measurable property in the envelope received in step (b) from the empty envelope in step (a), processing the envelope received in step (b) within the machine to correlate the at least one measurable property sensed in step (c) with the envelope received in step (b).
10. A method comprising:
(a) enabling the taking of an empty deposit envelope from an automated banking machine by a user operating the machine, wherein the empty envelope taken from the machine has at least one known measurable property which can vary responsive to items being placed in the envelope;
(b) receiving the envelope into the machine from a user of the machine;
(c) sensing at least one measurable property of the envelope received in step (b) through operation of at least one sensing device in the machine;
(d) comparing the at least one measurable property sensed in step (c) to the known at least one measurable property of the empty deposit envelope of step (a);
responsive to the comparison in step (d) either:
storing the envelope in the machine if the comparison indicates a change in the at least one measurable property corresponding to the presence of at least one item within the envelope, or
returning the envelope from the machine to the user if the comparison indicates a change in the at least one measurable property not corresponding to the presence of at least one item within the envelope.
23. Apparatus comprising:
an automated banking machine configured to make available to at least one machine user, at least one deposit envelope,
wherein the at least one deposit envelope includes a first envelope,
wherein the first envelope has a first measurable property,
wherein a value of the first measurable property is changeable responsive to items being placed in the first envelope,
wherein the machine includes a receiving device operable to receive the first envelope,
wherein the machine includes at least one sensor in operative connection with the receiving device,
wherein the at least one sensor is operable to sense the first measurable property,
wherein the machine is associated with at least one processor operable to receive data sensed by the at least one sensor,
wherein the machine is configured to reject the first envelope responsive at least in part to the at least one processor determining, based at least in part on at least one sensing by the at least one sensor, that a receiving device value associated with the first envelope substantially corresponds to an empty envelope value associated with the first envelope,
wherein the receiving device value corresponds to a value of the first measurable property when the first envelope is received by the receiving device,
wherein the empty envelope value corresponds to a value of the first measurable property when the first envelope is empty.
3. The method according to claim 2 wherein step (a) comprises dispensing the envelope from the machine.
4. The method according to claim 3 wherein the at least one measurable property includes a thickness of the envelope and wherein in step (c) and in step (d) the thickness is sensed.
5. The method according to claim 3 wherein the at least one measurable property includes a magnetic property of the envelope and wherein in step (c) and in step (d) the magnetic property is sensed.
7. The method according to claim 6 and further comprising:
(e) receiving through at least one input device of the machine, at least one input indicating a value included in the envelope;
(f) marking the envelope with indicia corresponding to the value through operation of the machine.
8. The method according to claim 7 and further comprising subsequent to (f):
(g) storing the envelope in the machine.
9. The method according to claim 7 and further comprising subsequent to (g):
(h) removing the envelope from the machine;
(i) comparing the value corresponding to the indicia marked in (f) with a found value of items found in the envelope subsequent to (h);
(j) responsive to the value and the found value compared in (i) not being the same, comparing the items found in the envelope and the indicia corresponding to the at least one measurable property marked on the envelope.
12. The method according to claim 11 wherein step (a) comprises dispensing the deposit envelope from the machine to the user.
13. The method according to claim 12 wherein the at least one measurable property includes thickness of the envelope, and wherein in step (a) and in step (c) thickness of the envelope is sensed.
14. The method according to claim 12 wherein the at least one measurable property includes a magnetic property, and wherein in step (a) and in step (c) the magnetic property is sensed.
16. The method according to claim 15 wherein step (e) comprises marking indicia corresponding to the at least one measurable property sensed in step (c) on the envelope.
17. The method according to claim 16 and further comprising:
(f) receiving at least one input through at least one input device on the automated banking machine from the user, the at least one input being indicative of an input value of items included by the user within the envelope received in step (b).
18. The method according to claim 17 and further comprising:
(g) processing the envelope received in the machine in step (b) to correlate the input value with the envelope received in step (b).
19. The method according to claim 18 wherein step (g) comprises marking the envelope received in step (b) with indicia corresponding to the input value.
20. The method according to claim 18 and further comprising:
(h) storing the envelope received in step (b) in a secure compartment in the automated banking machine;
(i) at a time after the storing step, removing the envelope received in step (b) from the secure compartment;
(j) comparing a found value of items within the envelope removed in step (i) with the input value correlated for the envelope.
21. The method according to claim 20 and further comprising:
(k) responsive to the comparison in step (j) indicating a difference in the input value and the found value, comparing the at least one measurable property corresponding to the envelope received in step (b) to at least one measurable property of the envelope removed in step (i) and the items having the found value in step (j).
22. The method according to claim 21 wherein the machine includes a cash dispenser, and further comprising:
determining that the input value was not accurate responsive to the comparison in step (k).
25. The apparatus according to claim 24 wherein the at least one measurable property includes envelope thickness,
wherein the at least one sensor is operable to sense envelope thickness data,
wherein the at least one controller is operable, responsive at least in part to the at least one sensor sensing envelope thickness data that substantially corresponds a presented envelope to a machine-provided empty deposit envelope, to cause the deposit receiving device to reject the presented envelope.
26. The apparatus according to claim 24 wherein the at least one measurable property includes a magnetic property,
wherein the at least one sensor is operable to sense envelope magnetic property data,
wherein the at least one controller is operable, responsive at least in part to the at least one sensor sensing envelope magnetic property data that substantially corresponds a presented envelope to a machine-provided empty deposit envelope, to cause the deposit receiving device to reject the presented envelope.

This application claims priority pursuant to 35 U.S.C. §119(e) of provisional application 60/314,013 filed Aug. 21, 2001.

This invention relates to automated banking machines. Specifically this invention relates to a system and associated method for verifying that items deposited into an automated banking machine, such as envelopes, contain deposit content such as checks and/or currency bills when deposited in the machine.

Automated banking machines are known in the prior art. A common type of automated banking machine is an automated teller machine (ATM). ATMs are used to carry out banking transactions on a self service basis. ATMs may dispense cash to users from their account. Some ATMs may accept deposits. Other ATMs may perform functions such as dispensing stamps, printing tickets, producing scrip, cashing checks, printing money orders and performing other types of transactions. For purposes of this disclosure any machine which is capable of carrying out transactions involving transfers of value is referred to as an automated banking machine.

Automated banking machines which accept deposits often require the user to input a deposit item into the machine in which it is processed and/or stored for later removal by authorized persons. Sometimes the deposit item may be an envelope or other container which holds deposit content therein. Such content may include items of value such as cash, checks, money orders, gift certificates, coupons, coin or other types of instruments. When deposit items are deposited in this manner the user is sometimes required to provide inputs through input devices on the banking machine indicative of the value associated with the item that is being deposited. Typically this is a total value of the cash, checks or other content within the deposited item. The automated banking machine may store the information about the indicated deposit value and/or may print value information on the deposited item along with a transaction number, account number or other information that allows the deposit to be traced back to a user and/or a particular transaction.

In order to verify the indicated deposit value, the operator of the banking machine must later recover the deposit item from a storage area within the machine. The operator opens the deposit item and determines if the content and the actual deposit value thereof correspond to the indicated deposit value. In most cases the actual deposit value corresponds to the indicated deposit value and the customer's account is credited accordingly. In other instances a discrepancy is noted between the actual deposit value and the indicated deposit value. In such cases the customer may be notified as to the amount of credit that they will be given for the deposit instead of the indicated deposit value that was provided to the machine.

Sometimes when deposited items are removed from the banking machine, the items are damaged. Such damage may include for example a torn or otherwise open envelope. In some cases the deposit item or the remnants thereof may not contain any deposit content. In some cases the deposit content may be loose in the storage area in the banking machine. In other cases the content may not be found at all.

Deposited items are sometimes removed from the banking machine in a tamper indicating deposit holding container and are transported to a remote location for verification. In other situations the deposited items may be transferred to a bag or other container at the site of the automated banking machine. The items may be taken to a remote location for verification of the contents of the deposited items.

In some circumstances at the remote location the content of a damaged or open deposit item may not be found. This may present issues as to whether the customer may have deliberately deposited an empty and damaged envelope into the banking machine. Alternatively questions may arise as to whether the persons responsible for removing deposits from the machine may have wrongfully taken the deposit content. Finally questions may arise as to whether persons responsible for verifying the amount of the deposit may have lost or misappropriated the content of the deposit item. In some circumstances because responsibility for the missing content cannot be established, the operator of the ATM may choose to credit the customer for the indicated deposit value even though the deposit content has never been found. In some circumstances the user may be perpetrating a fraud by deliberately attempting to deposit a damaged deposit item.

Thus there exists a need for a deposit verification system and method for an automated banking machine that reduces the risks of fraud associated with damaged or empty deposit items that are found during a deposit verification process.

It is an object of an exemplary form of the present invention to provide an automated banking machine.

It is a further object of an exemplary form of the present invention to provide an automated banking machine that records information concerning properties of deposit items.

It is a further object of an exemplary form of the present invention to provide an automated banking machine that measures and records a thickness property of deposited items.

It is a further object of an exemplary form of the present invention to provide an automated banking machine that records information concerning properties of deposited items for purposes of later comparison and verification.

It is a further object of an exemplary form of the present invention to provide a method for verifying deposits into an automated banking machine.

It is a further object of an exemplary form of the present invention to provide a method for recording properties of items deposited into an automated banking machine.

It is a further object of an exemplary form of the present invention to provide a method for determining the thickness of a deposited item when deposited into an automated banking machine.

It is a further object of an exemplary form of the present invention to provide a method for determining responsibility for missing content of items deposited into an automated banking machine.

Further objects of exemplary forms of the present invention will be made apparent in the following Best Modes for Carrying Out Invention and the appended claims.

Certain of the foregoing objects are accomplished in an exemplary embodiment of the present invention by an automated banking machine that accepts deposit items such as envelopes. In the exemplary embodiment the user provides inputs through one or more input devices on the machine that identify a user or their account(s). Inputs through input devices on the machine also include an indicated deposit amount associated with a deposit item.

The deposited item in the exemplary embodiment is accepted in the machine and is sensed for thickness and/or other properties at one or more locations on the deposited item. Information regarding thickness and/or other properties is recorded. In some embodiments the thickness information or other sensed parameters may be recorded by printing or other means directly on the deposited item. Alternatively in some embodiments the information recorded on the deposited item may be correlated with thickness and/or other sensed information recorded in a memory accessible by a computer.

In the exemplary embodiment the deposited item is stored with other deposited items in a storage area in the automated banking machine. Subsequently the deposited item is removed from the storage area by an authorized person and opened or otherwise reviewed for verification. The thickness data and/or other parameters related to each deposited item may be reviewed for purposes of determining the content of the item at the time of deposit. For example thickness information recorded concerning a deposit envelope that is empty and damaged at the time of verification will indicate if the envelope contained materials at the time of deposit. This may be done for example by comparing the measured thickness of the damaged envelope to the recorded thickness information. Similarly the thickness information and/or other parameters recorded concerning an envelope that is undamaged but open at the time of verification, will indicate whether the envelope contained items at the time of deposit. Likewise envelopes which are damaged or open at the time of the verification process may be analyzed by comparison to the stored data to determine if items have been removed since the time of deposit in the machine. Various approaches may be taken depending on the particular system and type of deposited items.

FIG. 1 is a schematic view of an automated banking machine in operative connection with an ATM transaction network.

FIG. 2 is a schematic view of a deposit item transport and components for measuring properties of a deposited item and for recording indicia on the item.

FIG. 3 is an exemplary embodiment of a deposited item that has recorded indicia thereon corresponding to thickness and to a particular transaction.

FIG. 4 is a graph representative of thickness of a deposited item over distance or time as the item passes a sensor of an exemplary embodiment.

FIG. 5 is a schematic plan view representative of detected properties of an exemplary deposited item including instruments such as checks.

FIG. 6 is a schematic view of a deposited item upon which machine-readable indicia representative of properties of the item have been recorded, and a reading device for reading the machine-readable indicia and for recovering information concerning properties of the deposited item from a memory.

FIG. 7 is an isometric view of an exemplary deposited item that is damaged and which includes information concerning thickness recorded thereon which suggests that the item was empty at the time of deposit in the automated banking machine.

Referring now to the drawings and particularly to FIG. 1, there is shown therein a schematic view of an automated banking machine generally indicated 10. The exemplary embodiment of the automated banking machine is an automated teller machine that is usable to carry out banking transactions such as the dispensing of cash and the deposit of items. It should be understood however that the principles of the present invention may be applicable to other types of automated banking machines that perform other or additional functions.

Automated banking machine 10 includes a housing 12. Housing 12 in the exemplary embodiment includes a chest portion 14 and a top housing portion 16. Each of the chest portion and top housing portion are accessible to authorized persons through suitable access doors which are controlled by locking mechanisms. As schematically shown, the chest portion includes a safe style combination lock schematically represented 18, which operates to limit access to authorized personnel. Of course in other embodiments other access control and locking mechanisms may be used.

Automated banking machine 10 further includes input devices. The input devices in the exemplary machine include a keypad 20 through which users may provide manual inputs. A further input device in the exemplary embodiment is a card reader 22. In some embodiments the card reader may be adapted for reading magnetic stripe cards and/or smart cards which include a programmable memory thereon. Of course in other embodiments card readers which read contactless cards or other devices may be used.

The exemplary embodiment further includes an image capture device schematically represented 24. In some embodiments of the invention the image capture device may include for example, a camera which captures one or more images of the person operating the machine. In other embodiments the image capture device may comprise a biometric reader such as an iris scanner, an input device for a facial recognition system or other similar device which serves as an input device for identifying a user. Of course the input devices discussed are exemplary and in other embodiments other input devices such as fingerprint readers, retina scanners, voice recognition systems, touch screens, voice input systems and other types of devices that receive inputs that are usable to identify a user and/or their accounts, or which can be operated to provide instructions to or from the machine, may be used.

The exemplary embodiment of the automated banking machine 10 further includes output devices. Such output devices include a visual display 26. The visual display 26 may be operated to provide instructions to a user concerning operation of the machine as well as to provide the user with information. The machine further includes a printer device 28 which also serves as an output device. Printer device 28 in some exemplary embodiments may include a device for printing receipts which are provided to a user for purposes of documenting transactions conducted at the machine. Of course in other embodiments other types of printing devices may be used. These may include for example devices that print tickets, scrip, money orders, checks, coupons, or other documents or instruments.

It should be understood that these output devices are exemplary and in other embodiments other types of output devices may be used. For example other embodiments may include voice guidance systems, communication interfaces for communicating with wireless devices such as PDAs or cell phones, electrical connectors for communicating with headphones or similar devices or other devices for providing outputs to a user.

In the exemplary banking machine 10 users are enabled to receive cash from the machine as well as to make deposits into the machine. The exemplary machine includes a cash dispenser mechanism 30. The cash dispenser mechanism includes bill picker mechanisms 32 and 34 which operate to pick bills from one or more supplies of bills in the machine. For example U.S. Pat. No. 4,664,369 which is incorporated herein by reference, includes examples of bill picker mechanisms that may be used in some embodiments. Of course in other embodiments other types of bill picker mechanisms may be used.

The cash dispenser 30 further includes a bill transport 36 which moves the bills to a stacking and presenting mechanism 38. For example U.S. Pat. No. 5,342,165 which is incorporated herein by reference, discloses a type of bill stacker and presenting mechanism that may be used in some embodiments. The cash dispenser is operative to deliver bills to a user through a cash dispensing outlet 40. As schematically indicated, an appropriate gate or other blocking mechanism 42 is positioned adjacent to the cash outlet so as to prevent unauthorized persons from gaining access to the cash dispenser mechanism. The exemplary gate 42 is movable responsive to motors, solenoids or other suitable motion control mechanisms to enable cash to be properly delivered to a machine user from the stacker and presenter mechanism, and to block access at other times.

The exemplary embodiment of the banking machine 10 further includes a deposit accepting system which includes mechanisms suitable for receiving and storing deposited items. In the exemplary embodiment the deposited items are envelopes. However, in other embodiments other types of deposited items such as checks, money orders, tickets, coupons, deposit bags, deposit holding carriers and other types of deposited items may be received. Machine 10 includes a deposit inlet which extends in the housing and is sized for accepting deposited items such as envelopes. An appropriate gate mechanism schematically indicated 46 is movably positioned adjacent the deposit inlet. Gate 46 is movable through solenoids, motors or other suitable moving devices so as to prevent access to the interior of the machine through the deposit inlet except at times when the machine is in a proper mode to accept deposits.

In the exemplary embodiment deposited items are moved along a deposit path through a transport 48. The deposit transport 48 is operative to move envelopes deposited by a user from the area adjacent the deposit inlet to a storage area 50. In exemplary embodiments the deposit transport may be of the type shown in U.S. Pat. No. 4,884,679, the disclosure of which is incorporated herein by reference.

In the exemplary embodiment the storage area 50 is bounded by a removable deposit holding container 52. The exemplary form of the deposit holding container is operative to hold deposited items therein 54. The deposit holding container 52 may be removed from the machine by authorized personnel and transported to a remote location where deposits may be validated. This may be done for example through a self locking and tamper indicating deposit holding container which locks upon removal from the machine and which is properly opened only by authorized persons at a remote location. Alternatively the deposit holding container may be such that persons who are authorized to access the chest portion 14 may remove the deposited items individually therefrom and verify the contents thereof either at the machine or at a remote location. Alternatively other approaches may be used for verifying deposited items depending on the type and nature of the deposits.

The exemplary machine 10 further includes at least one computer or controller schematically indicated 56. The controller is in operative connection with at least one data store or memory 58 which holds programming instructions, information about transactions, communication information and other data used in operation of the machine. The controller 56 is in operative connection with the transaction function devices in the machine and controls the operation thereof in accordance with the programmed instructions.

Controller 56 is in operative connection with at least one communications device 60. The communications device enables the exemplary machine to communicate with at least one remote computer and data store for purposes of carrying out transactions. As represented schematically in FIG. 1, banking machine 10 is in operative connection with a network schematically indicated 62. The network is in operative connection with computers at financial institutions 64 and 66 which operate systems that authorize and record information concerning transactions conducted by users at the banking machine. Of course this communications approach through a banking network is exemplary and in other embodiments other communications approaches and/or authorizing entities may be used.

FIG. 2 shows a schematic view of the deposit transport 48 used in banking machine 10. In this exemplary embodiment deposited items in the form of envelopes 68 are moved along a transport path in the direction of arrow D from the deposit inlet to the storage area. As the deposited items are being moved along the transport path, properties of the deposited item are sensed. In the embodiment shown, thickness of the deposited item is sensed by a sensor 70. In the embodiment shown, the sensor 70 is a contact sensor which physically contacts the deposited item 68 so as to determine its thickness. For example as shown in FIG. 2, a contact roller 72 has an axis that is movable in response to envelope thickness and biasingly engages the deposit envelope as it passes along the transport path between the contact roller and a reference surface of a stationary axis roller 74. The displacement of the contact roller 72 from its reference position indicates the thickness of the deposited item across its length. The displacement of the contact roller produces one or more signals from the sensor 70 which are transmitted to the controller and used for purposes which are later discussed.

It should be understood that while in the exemplary embodiment the contact type sensor is used for determining thickness in other embodiments, non-contact sensors may be used for determining thickness or other properties of a deposited item. For example non-contact sensors of the type shown in U.S. Pat. Nos. 6,101,266, 6,242,733 and 6,241,244B1, the disclosures of each of which are incorporated by reference herein, may be used for purposes of determining thickness or other properties of the deposited items. Such non-contact sensors may be used in lieu of or in addition to, contact type sensors for determining thickness of the deposited item.

In addition or in the alternative, other types of sensors such as magnetic type sensors may be used for purposes of sensing and/or determining the content of the envelope. Magnetic sensors may be used for example, to determine the presence of magnetic inks on checks, currency or other instruments which are included within deposit envelopes. Such non-contact sensors are schematically represented 76 in FIG. 2. It should be understood that in some embodiments thickness or other properties of the deposited item may be sensed in or along a single sensing area in the envelope path. In other embodiments sensing may be conducted across all or a portion of the transverse width of the deposited item. The particular nature of the thickness and other deposit item properties that are sensed and used in a particular embodiment may depend on the type of deposited item involved and the needs of the operator of the banking machine.

As shown in FIG. 2, one or more recording devices schematically indicated 78 are positioned adjacent to the deposit path. In the exemplary embodiment the recording devices may comprise printers which are operative to print indicia on deposited items. Such printers may include for example dot-matrix printers, stamper type printers, inkjet printers or other suitable devices for recording indicia on the deposited item. In other exemplary embodiments systems which are operative to label the deposited item, such as those shown in U.S. Pat. No. 4,435,243 which is incorporated herein by reference, may be used.

In the exemplary embodiment, the recording devices are operative to record on the deposited item, indicia which corresponds to the properties of the item which is sensed. This may include for example recording on the deposited item numerical indicia which indicate thickness of the envelope at one or more locations thereon. In other embodiments the recording device may be operative to record an identifying indicator such as an account number or transaction number on the envelope. This identifying indicia may then be correlated to thickness or other properties of the deposited item by referring to data stored in memory at the machine or elsewhere in an operatively connected computer. Alternatively or in addition, the indicia recorded on the deposited item may include an indicated deposit value which corresponds to the amount that a user of the machine indicated was included in or was represented by the deposited item.

FIG. 3 shows an example of deposited item 80 that has been passed through the depository of an exemplary automated banking machine. For this deposited item the recorded indicia on the item includes a transaction identification number 82. The transaction identification number may correspond for example, to the particular transaction carried out by the machine and may correspond to information stored in memory such as the identity of the particular user who conducted the deposit transaction. In this exemplary embodiment the deposited item 80 further has included among the indicia, an indicated deposit value 84. The indicated deposit value may include for example the particular value amount that the user indicated that they were depositing into the machine through inputs to the input devices at the time they made the deposit. The inclusion of the indicated deposit value with the recorded indicia may facilitate verifying the deposit when it is removed from the machine as later discussed.

For the deposited item 80, indicia corresponding to thickness is recorded on the item. The thickness indicia 86 comprises a numerical indication of the thickness of the deposit envelope at various locations along the envelope at the time of deposit. These various locations in the embodiment shown are spaced longitudinal locations along a single longitudinal line adjacent the center of the envelope as it passes through the transport. In this exemplary embodiment the thickness indicia are printed adjacent to a transverse edge of the envelope so as to not interfere with other indicia printed thereon. Of course it should be understood that in other embodiments other approaches may be used.

As later discussed, the thickness and other indicia associated with the envelope may be used when the envelope is subsequently opened to verify that the envelope contained deposit items therein at the time of deposit and/or the nature of such deposited items.

FIG. 6 shows an alternative form of recorded indicia on a deposited item 88. In this exemplary embodiment the recorded indicia of the deposited item includes machine-readable indicia 90. In this embodiment the machine-readable indicia comprises a bar code or similar machine-readable coding scheme.

The machine-readable indicia corresponds to a particular numerical or other indicator that is correlated with data related to the deposit, such as the customer identity and indicated deposit value. In the exemplary embodiment the indicia also corresponds to data about the particular deposit such as thickness data and/or other properties. This data which is captured from the contact or non-contact type sensors in the machine is correlated with the machine-readable indicia 90. Such data may be accessed from the data store in the banking machine. Alternatively such data may be transmitted to another data store for purposes of verifying that the indicated deposit value corresponds to the actual deposit value of the content of the envelope.

A reading device 92 is operative to read the machine-readable indicia once the deposited item 88 has been removed from the storage area in the machine by an authorized representative of the machine operator. The reading device 92 is in operative connection with a computer or other device 94 which has therein or which has accessible thereto, data in a data store 96. The data store 96 preferably includes data such as the indicated deposit value, the identity of the user and the properties of the particular deposited item as sensed by the sensors in the banking machine proximate to the time of deposit. With this information the person verifying the deposits may verify that the content of the envelope has at the time of verification, an actual deposit value that corresponds to the indicated deposit value. In the event of a discrepancy, the person verifying the deposit may use the thickness and other data which has been recorded related to the deposited item, to determine if the deposited item actually contained items having the expected properties of thickness and/or other properties at the time of deposit. This will enable a person responsible for verifying the deposit to better determine if the items were not included in the deposited item at the time of deposit or if the content of the deposited item was lost or misappropriated after deposit. Such information is useful in determining whether to credit the customer's account for the indicated deposit value as later discussed.

FIGS. 4 and 5 show exemplary types of data related to deposited items which may be represented by indicia recorded on deposited items. For example FIG. 4 is a graphical representation of thickness of a deposited item over time or distance as the item engages and passes a single contact type sensor as the deposited item moves along the deposit path in the banking machine. A line 98 corresponds to the one or more signals from the sensor indicative of thickness. Various embodiments of the invention such as for example a deposit system used to produce item 80 in FIG. 3, record thickness at a plurality of discrete separated locations 100. In the exemplary embodiment the movement of the envelope may be controlled through operation of a controlled speed motor, stepper motor or other controlled movement device so that the indicia indicative of thickness at each of the locations corresponds relatively closely to the particular area on the deposited item at which the thickness is sensed. Appropriate circuitry is provided so that when indicia corresponding to thickness such as is shown in FIG. 3 is a fairly accurate representation of the thickness at the various locations at the time the envelope was deposited. As can be appreciated in embodiments where deposit items are moved at a predictable and generally constant speed, thickness determinations can be based on elapsed time from when a leading edge of an envelope is sensed. In other embodiments encoders or other distance sensors can be used to directly sense envelope movement. The graph in FIG. 4 may be representative of outputs from either type system.

In some embodiments it may be sufficient for the indicia to represent a maximum thickness of the deposited item such as is indicated in FIG. 4 by a maximum 102 of line 98. The maximum is indicative of the maximum thickness of the envelope, and this may in many embodiments be sufficient to indicate the nature of the content thereof. Thus for example in systems where the maximum thickness is recorded, only indicia corresponding to one numerical value may be recorded on the envelope and/or stored in memory as corresponding to the indicia recorded on the envelope.

In still other embodiments it may be important to correlate with a deposited item, a quantity indicative of the volume of the item. This may correspond to the area 104 under the line 98 in FIG. 4. As can be appreciated area 104 which is the integral of the overall thickness as measured by a thickness sensor, may be indicative of the overall content of the envelope.

FIG. 5 shows yet other data that may be recorded related to the particular deposited item. For example certain contact and non-contact sensors can develop a detailed profile of a deposited item including the thicknesses associated with folds, flaps and items contained within the envelope. Non-contact sensors may also detect other properties such as magnetic properties and the presence of inks or other indicators on or within the contents.

For example FIG. 5 shows a deposited item 106. Non-contact sensors of the type previously mentioned may use radiation to determine thickness and determine the bounds of the envelope as well as additional thickness areas associated with envelope features such as flaps and folds 108. In addition such non-contact sensors may sense additional thicknesses in the areas 110 and 112 within the envelope. In areas 110 and 112 additional thickness is caused by the presence of sheets such as instruments within the envelope. Radiation sensors which are capable of sensing radiation absorption properties may sense areas where printing has been made on items within the envelope. In addition or in the alternative, magnetic sensors may identify areas of magnetic activity represented by areas 114. Such magnetic activity may correspond to areas where magnetic inks have been printed on checks or other instruments.

As can be appreciated, some embodiments of the invention may provide a detailed profile of the deposited item and its content. This profile may be correlated with the indicia recorded on the deposited item so that a person responsible for verifying deposits may determine whether the content of the deposited item at the time that it is verified, corresponds to the content at the time it was deposited.

In operation of an exemplary embodiment, the automated banking machine 10 is operated by a user to perform banking transactions. This includes for example the user providing to the card reader 22 of the machine a debit card which includes a magnetic stripe. The magnetic stripe may include information that identifies the user and/or their account such as a primary account number (PAN) of the user. The user may further verify their identity by providing to the machine a personal identification number (PIN) through the keypad 20. If the input PIN corresponds to the data recorded on the card, the user may be authorized to conduct transactions at the machine. It should be understood that the use of these inputs by the user to the machine to identify the user is exemplary and in other embodiments other inputs usable to identify the particular user or an account may be used.

A user also provides one or more inputs through input devices on the machine to indicate the type of transaction they wish to conduct. If the user provides one or more inputs indicating that they wish to make a deposit transaction, the controller in the machine will operate in accordance with its programming to present prompts to the user through the display 26 or other output devices requesting that the user indicate the deposit values of the item or items that they wish to deposit. After providing the indicated deposit value, the controller operates the machine to open the gate 46 to the deposit transport 48 so that a user may insert the deposited item. When the user inserts the deposited item it is moved through the transport 48 wherein properties of the deposited item are sensed. This includes in exemplary embodiments, sensing thickness and/or other properties of the deposited item as previously discussed. The controller 56 further operates the recording device 78 such as one or more printers, to record on the deposited item indicia that corresponds to the particular properties or characteristics sensed. Once the indicia has been recorded on the deposited item, the item passes into the storage area 50 where it is held in the banking machine for later verification.

Periodically the operator of the machine or other authorized entity accesses the interior of the machine to remove and verify the deposited items. This is done in an exemplary embodiment by opening the lock 18 and accessing the chest portion 14 so as to remove the deposit holding container 52. In some embodiments the deposited items may be removed from the deposit holding container at the machine and opened for verification in an area adjacent to the machine. Alternatively the deposit holding container may be locked and transported to a remote location for verification of the deposits.

In the exemplary embodiment the deposit holding container is to be transported to a remote location and an empty deposit holding container is placed in the machine to receive further deposits. The banking machine is then returned to operation. The deposited items are removed from the deposit holding container at a remote facility and the content thereof reviewed. The content which may include cash, checks or other deposited items is totaled for each deposited item to obtain an actual deposit value. The actual deposit value is then compared to the indicated deposit value to determine if there is a discrepancy. If the actual deposit value and the indicated deposit value are different, the user of the machine may have made an error in providing the indicated deposit value. Alternatively the user may be attempting to perpetrate a fraud by misrepresenting the value of the deposit. Alternatively, deposited items may have been misappropriated by persons having access to the deposited items either at the machine, in transport or at the location where the deposited value is verified.

The actual deposited value may be compared to the indicated deposit value by reviewing the numerical indicia corresponding to thickness recorded on the deposited item such as is shown in FIG. 3. Alternatively transaction number data or other machine-readable indicia may be correlated electronically with the indicated deposit value. Of course in cases where the actual deposit value corresponds to the indicated deposit value, the user has deposited the indicated amount and the account of the user or other appropriate entity is credited for the indicated deposit value.

In some circumstances however, the indicated deposit value does not correspond to the actual deposit value of the item. At the deposit verification facility persons verifying deposits may inspect deposited items for damage. This may include for example, torn deposit envelopes or envelopes that have not been sealed or which appear to have been cut or otherwise opened. An example of a damaged deposit envelope is indicated 116 in FIG. 7. Damaged or otherwise opened deposit envelopes may have no contents or may still have items contained therein. When items are still contained therein, there is a question of whether all of the items are still housed within the damaged deposit item.

When persons responsible for verifying deposits are faced with damaged or otherwise open deposited items such as envelopes, questions may arise as to whether the items were damaged and/or empty at the time of deposit or whether the content was lost or stolen after deposit in the machine. By reviewing the indicia recorded on the deposited item which corresponds to thickness and/or other properties, such disputes can often be resolved.

For example if the deposited item was empty at the time of deposit, then the recorded thickness information related to the item may be used to verify that the thickness of the empty envelope at the time of verification corresponds to the thickness at the time of deposit. This is indicated with regard to damaged envelope 116 in FIG. 7 which shows that the thickness information at a plurality of locations is constant and corresponds to the thickness of the empty damaged envelope. This suggests for example that a user may be attempting to perpetrate a fraud by deliberately depositing an empty envelope which is damaged and which the user may later contend contained materials corresponding to the indicated deposit value. In cases where the recorded thickness or other properties show that the indicated deposit value was not correct, the institution operating the machine will not credit the user's account for the indicated deposit value.

In other circumstances an open or damaged deposit item may have corresponding thickness or other data which shows that the deposited item contained items at the time of deposit which are not contained at the time of verification. In such circumstances it will be known that such items have disappeared subsequent to the time of deposit. The institution operating the automated banking machine may credit the user's account for the indicated deposit value, as it is therefore documented that at least some of the deposited items had apparently been lost through error or misappropriation.

Of course in some embodiments where the data concerning deposited items includes magnetic sensors and detailed profile information, relatively accurate data showing the type and number of deposited items can be obtained from data stored in memory. Such data may in some embodiments be accessed directly from the data store in the banking machine. Alternatively data in the machine may be transmitted through the network to other computers which can be accessed at the deposit verification facility. Of course numerous approaches may be used within the scope of the invention depending on the capabilities and needs of the particular system.

At the verification facility, verification may often be successfully accomplished through manual opening and review of deposited items. Alternatively the verification facility may employ devices similar to those in the machine for purposes of measuring the thickness of the envelope and determining other properties of deposited items. This may include for example passing deposited items through such devices prior to opening them at the facility to determine if there has been any change in the properties of the item between the time that it was deposited and the time that it has reached the facility. This may be done as part of a process for inspecting for damage to the particular deposited item. In cases where machine readable indicia is used on deposited items, a reader for the indicia and thickness sensing (or other property sensing) device at the facility can be used to compare and identify deposited items where properties of the item have changed from the time of deposit. In addition, if a deposited item has been damaged in the transport or has come open, the properties associated with the deposited item at the time of acceptance in the machine may be useful in determining which open or loose items found within a deposit holding container correspond to which deposit item. Various approaches may be used within the spirit and scope of the invention.

In alternative embodiments for example, the banking machine may detect possible situations where a user has attempted to deposit an envelope or other item that is damaged or empty. In such situations the banking machine may operate to refuse to accept such an item for deposit. Such systems may prevent attempted fraud and/or avoid situations where a user forgot to place the intended deposit items in the envelope.

In some automated banking machines deposit envelopes are provided for a user's convenient use. U.S. Pat. No. 5,590,609 the disclosure of which is incorporated by reference, shows an automated banking machine which provides envelopes to a user in which deposit items may be included. In some embodiments the envelopes provided may be of a known size and/or thickness. Sensors in the path for receipt of deposit envelopes may sense for size and/or thickness properties and the computer operating in the ATM may be programmed to have the machine reject and return to the customer deposit envelopes that do not meet the acceptable size or thickness parameters. This may be done for example by the controller in the machine reversing the deposit transport.

For example, an exemplary automated banking machine may sense for envelope thickness greater than the known empty thickness of the deposit envelopes provided by the machine. The banking machine may be programmed to instruct customers that they must place their deposit into a machine provided envelope, even if the customer has planned to provide their own deposit containing envelope. The machine may instruct the user to place their nonstandard envelope within the machine provided envelope. In such an embodiment if the sensors sensing thickness of a deposited envelope do not sense thickness greater than that of a standard machine provided envelope, the banking machine may return the envelope to the customer and may output a request to the customer to put the deposit items in the envelope and/or for the customer to use one of the envelopes the machine provides. In this way the risk of the machine receiving an empty envelope is reduced.

In other embodiments the banking machine may have sensors which sense the size, area and/or boundaries of the edges of a deposited envelope. In this way if a deposited envelope does not correspond to the expected configuration of a standard machine provided envelope, the deposited envelope may be rejected by the deposit accepting mechanism.

In other embodiments deposit items may have common properties. For example, the expected deposit items may include currency bills and checks, each of which have magnetic properties. The magnetic properties of the machine provided envelopes may be nonexistent or within a known range. The banking machine may sense for elevated magnetic properties for the deposited envelopes to indicate that either cash or checks have been placed therein. Envelopes that do not have such elevated magnetic properties may be rejected. Of course in some situations the banking machine may sense for other or additional properties and use that as a basis for accepting or rejecting the deposit.

It should be understood that in some embodiments the banking machine may operate to sense for combinations of properties and may not accept the envelope if any one or more properties is not within the anticipated limits. In some embodiments envelope deposits that are rejected may be returned to the customer. In other embodiments suspect deposits may be held by the machine for analysis and/or as evidence.

In further alternative embodiments the banking machine may dispense an empty envelope to the customer for use that does not have predetermined thickness, size, magnetic or other properties. In some exemplary embodiments the properties of interest may be measured by sensors in the banking machine at the time the empty envelope is being dispensed to the customer from the machine. The properties of interest could again be measured for the envelope when the user deposits the envelope with deposit items into the machine. If an expected change (or absence of change) in thickness, size, magnetic properties or other sensed properties is not detected when the user deposits the envelope back in the machine, the deposit may be rejected.

Alternatively or in addition, indicia corresponding to properties of interest may be printed on the envelope by the machine prior to or at the time of dispense of the empty envelope. In addition or alternatively such information may be stored in a database. This information may then be compared to that for the deposited envelope. This may be done at the time of accepting the deposit and used as a basis to reject the deposit by the machine or may be done subsequently when the contents of the deposit envelopes are being verified. Of course other approaches may be taken depending on system and operator requirements.

While the exemplary form of the invention has been described with respect to verifying deposited items which are envelopes, the principles of the invention are not limited to such items. The principles of the present invention may be employed with regard to tickets, checks and other types of items which may be deposited in automated banking machines. In addition the principles of the invention may be applied in situations where operators of such systems need to check for missing deposits or other items. Numerous alternative approaches within the spirit of the invention will be apparent to those skilled in the art from the foregoing disclosure.

Thus the apparatus and method of the present invention achieves the above stated objectives, eliminates difficulties encountered in the use of prior devices and systems, solves problems and attains the desirable results described herein.

In the foregoing description certain terms have been used for brevity, clarity and understanding, however no unnecessary limitations are to be implied therefrom because such terms are used for descriptive purposes and are intended to be broadly construed. Moreover, the descriptions and illustrations herein are by way of examples and the invention is not limited to the exact details shown and described.

In the following claims any feature described as a means for performing a function shall be construed as encompassing any means known to those skilled in the art to be capable of performing the recited function, and shall not be deemed limited to the particular means shown in the foregoing description herein or mere equivalents thereof.

Having described the features, discoveries and principles of the invention, the manner in which it is constructed and operated, and the advantages and useful results attained; the new and useful structures, devices, elements, arrangements, parts, combinations, systems, equipment, operations, methods and relationships are set forth in the appended claims.

Graef, H. Thomas, Blackson, Dale

Patent Priority Assignee Title
Patent Priority Assignee Title
3998155, Jan 03 1973 Docutel Corporation Depository system
4314352, Apr 12 1972 Diebold, Incorporated Banking machine
4576495, May 10 1984 Docutel/Olivetti Corporation Depository/printer mechanism for an automated teller machine
6012633, Aug 14 1997 Fujitsu Limited Automatic transaction apparatus
6311846, May 17 1996 Opex Corporation Method and apparatus for sorting and acquiring image data for documents
6315194, Sep 21 1999 GLAS AMERICAS LLC, AS THE SUCCESSOR AGENT Automated transaction machine with transport path verification
6748101, May 02 1995 Cummins-Allison Corporation Automatic currency processing system
////////////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jun 17 2002BLACKSON, DALEDiebold, IncorporatedASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0131640324 pdf
Jun 17 2002GRAEF, H THOMASDiebold, IncorporatedASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0131640324 pdf
Jul 30 2002Diebold, Incorporated(assignment on the face of the patent)
Aug 12 2016DIEBOLD SELF SERVICE SYSTEMSJPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENTPATENT SECURITY AGREEMENT0397230548 pdf
Aug 12 2016Diebold, IncorporatedJPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENTPATENT SECURITY AGREEMENT0397230548 pdf
Dec 09 2016Diebold, IncorporatedDiebold Nixdorf, IncorporatedCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0440480417 pdf
Jul 20 2020Diebold Self-Service SystemsU S BANK TRUSTEES LIMITEDSECURITY INTEREST NOTES 0532710067 pdf
Jul 20 2020DIEBOLD NIXDORF, INCORPORATED F K A DIEBOLD, INCORPORATED U S BANK TRUSTEES LIMITEDSECURITY INTEREST NOTES 0532710067 pdf
Jul 20 2020Diebold Self-Service SystemsU S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENTSECURITY INTEREST NOTES 0532700783 pdf
Jul 20 2020DIEBOLD NIXDORF, INCORPORATED F K A DIEBOLD, INCORPORATED U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENTSECURITY INTEREST NOTES 0532700783 pdf
Dec 29 2022JPMORGAN CHASE BANK, N A , AS AGENTDiebold Self-Service SystemsRELEASE OF SECURITY INTEREST IN PATENTS INTELLECTUAL PROPERTY0623380429 pdf
Dec 29 2022JPMORGAN CHASE BANK, N A , AS AGENTDIEBOLD NIXDORF, INCORPORATED F K A DIEBOLD, INCORPORATED RELEASE OF SECURITY INTEREST IN PATENTS INTELLECTUAL PROPERTY0623380429 pdf
Dec 29 2022DIEBOLD SELF-SERVICE SYSTEMS, AS GRANTORGLAS AMERICAS LLC, AS THE SUCCESSOR AGENTNOTICE OF SUCCESSOR AGENT AND ASSIGNMENT OF SECURITY INTEREST INTELLECTUAL PROPERTY - EUR NOTES0623080587 pdf
Dec 29 2022DIEBOLD NIXDORF, INCORPORATED, AS GRANTORGLAS AMERICAS LLC, AS THE SUCCESSOR AGENTNOTICE OF SUCCESSOR AGENT AND ASSIGNMENT OF SECURITY INTEREST INTELLECTUAL PROPERTY - EUR NOTES0623080587 pdf
Dec 29 2022U S BANK TRUSTEES LIMITED, AS RESIGNING AGENTGLAS AMERICAS LLC, AS THE SUCCESSOR AGENTNOTICE OF SUCCESSOR AGENT AND ASSIGNMENT OF SECURITY INTEREST INTELLECTUAL PROPERTY - EUR NOTES0623080587 pdf
Dec 29 2022DIEBOLD SELF-SERVICE SYSTEMS, AS GRANTORGLAS AMERICAS LLC, AS THE SUCCESSOR AGENTNOTICE OF SUCCESSOR AGENT AND ASSIGNMENT OF SECURITY INTEREST INTELLECTUAL PROPERTY - USD NOTES0623080499 pdf
Dec 29 2022DIEBOLD NIXDORF, INCORPORATED, AS GRANTORGLAS AMERICAS LLC, AS THE SUCCESSOR AGENTNOTICE OF SUCCESSOR AGENT AND ASSIGNMENT OF SECURITY INTEREST INTELLECTUAL PROPERTY - USD NOTES0623080499 pdf
Dec 29 2022U S BANK NATIONAL ASSOCIATION, AS THE RESIGNING AGENTGLAS AMERICAS LLC, AS THE SUCCESSOR AGENTNOTICE OF SUCCESSOR AGENT AND ASSIGNMENT OF SECURITY INTEREST INTELLECTUAL PROPERTY - USD NOTES0623080499 pdf
Aug 11 2023GLAS AMERICAS LLC, AS COLLATERAL AGENTDiebold Nixdorf, IncorporatedTERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS 2025 EUR NOTES REEL FRAME 053271 0067 0646410836 pdf
Aug 11 2023GLAS AMERICAS LLC, AS COLLATERAL AGENTDiebold Nixdorf, IncorporatedTERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS 2025 USD NOTES REEL FRAME 053270 0783 0646420001 pdf
Date Maintenance Fee Events
Aug 17 2016ASPN: Payor Number Assigned.
Jan 02 2017M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Mar 01 2021REM: Maintenance Fee Reminder Mailed.
Aug 16 2021EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Jul 09 20164 years fee payment window open
Jan 09 20176 months grace period start (w surcharge)
Jul 09 2017patent expiry (for year 4)
Jul 09 20192 years to revive unintentionally abandoned end. (for year 4)
Jul 09 20208 years fee payment window open
Jan 09 20216 months grace period start (w surcharge)
Jul 09 2021patent expiry (for year 8)
Jul 09 20232 years to revive unintentionally abandoned end. (for year 8)
Jul 09 202412 years fee payment window open
Jan 09 20256 months grace period start (w surcharge)
Jul 09 2025patent expiry (for year 12)
Jul 09 20272 years to revive unintentionally abandoned end. (for year 12)