The disclosure has application for use in establishing a communication link between a first location and a second location, the first location having an electrical driver circuit that receives input data to be communicated, and the second location having an electrical receiver circuit for producing output data representative of the input data. The method includes the following steps: providing a tilted charge light emitting device at the first location and coupled with the driver circuit such that the light produced by the tilted charge light-emitting device is a function of the input data; providing an optical fiber between the first and second locations; coupling light from the tilted charge light emitting device into the optical fiber; and providing, at the second location, a photodetector coupled with the optical fiber and with the receiver circuit; whereby electrical signals representative of the input data are output from the receiver circuit.
|
1. A method for high speed communication of input information, comprising the steps of:
producing a pair of phase-opposed electrical signals representative of said input information;
providing a three terminal tilted-charge light-emitting device in a common collector configuration;
applying one of said phase-opposed signals to a base-collector input of said tilted charge light-emitting device and the other of said phase opposed signals to an emitter-collector input of said tilted charge light-emitting device, to produce an optical signal as a function of both of said phase-opposed signals;
communicating said optical signal to a receiving location; and
receiving said optical signal at said receiving location and converting said optical signal to an output electrical signal representative of said input information.
9. For use in a system for high speed communication wherein an input electrical signal comprising a pair of phase-opposed signals representative of input information is converted to an optical signal that is communicated to a receiving location and converted to an output electrical signal representative of said input information; a method for converting said input electrical signal into said optical signal, comprising the steps of:
providing a three terminal tilted-charge light-emitting device in a common collector configuration; and
applying one of said phase-opposed inputs signals to a base-collector input of said tilted charge light-emitting device and the other of said phase-opposed signals to an emitter-collector input of said tilted charge light-emitting device, to produce an optical signal as a function of both of said phase-opposed signals.
2. The method as defined by
3. The method as defined by
4. The method as defined by
5. The method as defined by
6. The method as defined by
7. The method as defined by
8. The method as defined by
10. The method as defined by
11. The method as defined by
12. The method as defined by
13. The method as defined by
14. The method as defined by
15. The method as defined by
16. The method as defined by
17. The method as defined by
18. The method as defined by
19. The method as defined by
20. The method as defined by
21. The method as defined by
|
Priority is claimed from U.S. Provisional Patent Application No. 61/280,822, filed Nov. 9, 2009, and from U.S. Provisional Patent Application No. 61/403,750, filed Sep. 21, 2010, and both of said Provisional Applications are incorporated herein by reference.
This invention relates to the field of data communication links, and also to improvement of existing so-called copper communication links, and to improved electro-optical communication links and techniques, and also to improved electro-optical differential signaling techniques.
Cable links commonly serve the functions of transmitting electrical power and transmitting electrical signals. When used to transmit signals; the cable links are called data interconnects. When the cable link media is made of an electrically conductive material, it is conventionally called a copper data interconnect, or copper link, whether the metal is strictly copper, or another conductor such as aluminum or an alloy. This convention will be used herein.
Copper cables used in copper links are intrinsically lossy media wherein the signal's higher frequency components are attenuated at higher rates (dB/m) than low frequency components. Attenuation can be reduced, but not eliminated, by using larger gauge wires. Therefore, as the speed of data rate increases to the presently used 3.4 Gbits/s per channel (HDMI), or even 4.8 Gbit/s (for USB 3.0), copper cable wires have become increasingly bulky and expensive, and the overall cable package is unattractive even for transmission distances of less than 5 meters. To compensate for losses in wires, copper transmitter chips have built in pre-emphasis circuitry that amplifies high frequency components of the digital signal before driving the signal over the copper line. On the copper receiver side, a cable equalizer is generally built-in to re-amplify high frequency components (or attenuate low frequency components) of the digital signal. A complete copper link may include the use of either or both pre-emphasis and equalizer.
An example is shown in
In addition to the limitations and disadvantages already mentioned, the copper link consumes relatively high power, can require expensive EMI shielding, and involves use of substantial amounts of non-recyclable materials.
An optical link can eliminate certain copper link disadvantages, but at a higher initial cost and higher power consumption. The use of fiber cable to directly replace a copper channel requires the addition of an E-O (electrical to optical) transducer and an O-E (optical to electrical) transducer, each of which has to be powered and managed using the existing power sources and control circuitry from the copper transmitter chipset and copper receiver chipset. The E-to-O function for gigabit data transmission via fiber has been traditionally achieved through the use of directly modulated laser diode devices or with external modulation techniques, such as electro absorption modulators or photonic switches. However, these techniques require additional feedback control integrated circuitry (ICs) and additional drivers (optical drivers) that consume substantial power and significantly add to cost. For receiver chipsets where the copper cable equalizer transfer functions are fixed, signal exiting from the OE transducer may need to be re-shaped (i.e attenuation of high frequency component signals) in order to match to the copper cable equalizers.
It is among the objects of a first aspect of the invention to provide a solution to the problems and limitations associated with converting a copper data link to a data link using an optical cable.
The bulk of high speed transmission based on copper data links or interconnects utilizes differential signaling methods. In differential signaling, two signals, identical in magnitude but exactly 180° out-of-phase, are used in order to maintain signal integrity. Since all data processing and data generation has its roots in integrated circuits, which are electrical devices and therefore generate electrical signals, copper based transmission utilizing differential signaling is the dominant method of data transfer for electrical systems. Existing differential signaling is illustrated in the simplified diagram of
When trying to establish or extend a high speed data interconnect over relatively long distance, an optical fiber based interconnect utilizing a diode emitter such as a laser, VCSEL, or light emitting diode, may be used to extend the transmission line of the copper interconnect. As indicated previously, the optical high speed data interconnect starts with a copper driver and eventually ends with a copper receiver, since all present data systems originate and terminate from and into electrical processes.
In
It is among the objects of a further aspect of the invention to provide improvements to high speed electro-optical data interconnects of the type just described, including making them more efficient and less expensive.
A form of the invention has application for use in establishing a communication link between a first location and a second location, the first location having an electrical driver circuit that receives input data to be communicated, and the second location having an electrical receiver circuit for producing output data representative of the input data. An embodiment of a method is set forth, including the following steps: providing a tilted charge light emitting device at said first location and coupled with said driver circuit such that the light produced by said tilted charge light-emitting device is a function of said input data; providing an optical fiber between said first and second locations; coupling light from said tilted charge light emitting device into said optical fiber; and providing, at said second location, a photodetector coupled with said optical fiber and with said receiver circuit; whereby electrical signals representative of said input data are output from said receiver circuit.
Another embodiment of this form of the invention has application for use in establishing a communication link between a first location and a second location, the first location having a transmitter chipset that receives input data to be communicated, and the second location having a receiver chipset for producing output data representative of the input data. A method is set forth, including the following steps: providing a tilted charge light emitting device at said first location and coupled with said transmitter chipset such that the light produced by said tilted charge light-emitting device is a function of said input data; providing an optical fiber between said first and second locations; coupling light from said tilted charge light emitting device into said optical fiber; and providing, at said second location, a photodetector coupled with said optical fiber and with said receiver; whereby electrical signals representative of said input data are output from said receiver chipset. In an embodiment of this form of the invention, the transmitter chipset includes a driver circuit, and the step of providing a tilted charge light-emitting device coupled with the transmitter chipset comprises directly coupling said tilted charge light emitting device with said driver circuit. In a form of this embodiment, the driver circuit includes an open collector transistor and said step of providing said tilted charge light-emitting device coupled with said driver circuit comprises coupling the collector of said transistor with said tilted charge light-emitting device.
Another embodiment of this form of the invention has application for use in improving a communication link between a first location and a second location, the first location having an electrical driver circuit that receives input data to be communicated, and the second location having an electrical receiver circuit for producing output data representative of said input data, said link being adapted to have an electrically conductive cable coupled between said electrical driver circuit and said electrical receiver circuit. A method is set forth including the following steps: removing said electrically conductive cable; providing a tilted charge light emitting device at said first location and coupled with said driver circuit such that the light produced by said tilted charge light-emitting device is a function of said input data; providing an optical fiber between said first and second locations; coupling light from said tilted charge light emitting device into said optical fiber; and providing, at said second location, a photodetector coupled with said optical fiber and with said receiver circuit; whereby electrical signals representative of said input data are output from said receiver circuit.
In accordance with a further form of the invention, a technique is set forth for high speed communication of input information, including the following steps: producing a pair of phase-opposed electrical signals representative of said input information; providing a three terminal tilted-charge light-emitting device in a common collector configuration; applying one of said phase-opposed signals to a base-collector input of said tilted charge light-emitting device and the other of said phase opposed signals to an emitter-collector input of said tilted charge light-emitting device, to produce an optical signal as a function of both of said phase-opposed signals; communicating said optical signal to a receiving location; and receiving said optical signal at said receiving location and converting said optical signal to an output electrical signal representative of said input information. The optical signal, which is a function of both of said phase-opposed signals, is proportional to the sum of the absolute values of the phase-opposed signals.
An embodiment of this form of the invention further comprises the step of applying first and second equalizer functions to respective ones of said pair of phase-opposed electrical signals before applying said phase-opposed signals to said tilted charge light-emitting device. In this embodiment, the step of applying said first equalizer function includes applying a first type of frequency filtering, and said step of applying said second equalizer function includes applying a second type of frequency filtering that is different than said first type of frequency filtering. The first type of frequency filtering can comprise low pass filtering and said second type of frequency filtering can comprise high pass filtering, and bandwidth enhancement can accordingly be achieved.
Further features and advantages of the invention will become more readily apparent from the following detailed description when taken in conjunction with the accompanying drawings.
Embodiments of the present invention employ so-called “tilted charge” light emitting devices. Light-emitting transistors, transistor lasers, and certain two terminal light emitters and lasers, developed during the last few years, are sometimes referred to as “tilted charge” devices, owing to the “tilted” base charge distribution (as can be seen on the device band diagram) which locks the base electron-hole recombination in “competition” with the charge “collection” at the reverse-biased collector or drain junction, thus selecting (“filtering”) and allowing only “fast” recombination in the base (assisted by one or more quantum size regions) at an effective lifetime of the order of picoseconds. As used herein, the terms “tilted charge light emitter” or “tilted charge light emitting device”, or similar terms, are intended to include such light-emitting transistors, transistor lasers, and certain two terminal light emitters and lasers having the described “tilted” base charge distribution. Reference can be made to U.S. Pat. Nos. 7,091,082, 7,286,583, 7,354,780, 7,535,034 and 7,693,195; U.S. Patent Application Publication Numbers US2005/0040432, US2005/0054172, US2008/0240173, US2009/0134939, US2010/0034228, US2010/0202483, and US2010/0202484; and to PCT International Patent Publication Numbers WO/2005/020287 and WO/2006/093883. Reference can also be made to the following publications: Light-Emitting Transistor: Light Emission From InGaP/GaAs Heterojunction Bipolar Transistors, M. Feng, N. Holonyak, Jr., and W. Hafez, Appl. Phys. Lett. 84, 151 (2004); Quantum-Well-Base Heterojunction Bipolar Light-Emitting Transistor, M. Feng, N. Holonyak, Jr., and R. Chan, Appl. Phys. Lett. 84, 1952 (2004); Type-II GaAsSb/InP Heterojunction Bipolar Light-Emitting Transistor, M. Feng, N. Holonyak, Jr., B. Chu-Kung, G. Walter, and R. Chan, Appl. Phys. Lett. 84, 4792 (2004); Laser Operation Of A Heterojunction Bipolar Light-Emitting Transistor, G. Walter, N. Holonyak, Jr., M. Feng, and R. Chan, Appl. Phys. Lett. 85, 4768 (2004); Microwave Operation And Modulation Of A Transistor Laser, R. Chan, M. Feng, N. Holonyak, Jr., and G. Walter, Appl. Phys. Lett. 86, 131114 (2005); Room Temperature Continuous Wave Operation Of A Heterojunction Bipolar Transistor Laser, M. Feng, N. Holonyak, Jr., G. Walter, and R. Chan, Appl. Phys. Lett. 87, 131103 (2005); Visible Spectrum Light-Emitting Transistors, F. Dixon, R. Chan, G. Walter, N. Holonyak, Jr., M. Feng, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, Appl. Phys. Lett. 88, 012108 (2006); The Transistor Laser, N. Holonyak and M Feng, Spectrum, IEEE Volume 43, Issue 2, February 2006; Signal Mixing In A Multiple Input Transistor Laser Near Threshold, M. Feng, N. Holonyak, Jr., R. Chan, A. James, and G. Walter, Appl. Phys. Lett. 88, 063509 (2006); and Collector Current Map Of Gain And Stimulated Recombination On The Base Quantum Well Transitions Of A Transistor Laser, R. Chan, N. Holonyak, Jr., A. James , and G. Walter, Appl. Phys. Lett. 88, 14508 (2006); Collector Breakdown In The Heterojunction Bipolar Transistor Laser, G. Walter, A. James, N. Holonyak, Jr., M. Feng, and R. Chan, Appl. Phys. Lett. 88, 232105 (2006); High-Speed (/spl ges/1 GHz) Electrical And Optical Adding, Mixing, And Processing Of Square-Wave Signals With A Transistor Laser, M. Feng, N. Holonyak, Jr., R. Chan, A. James, and G. Walter, Photonics Technology Letters, IEEE Volume: 18 Issue: 11 (2006); Graded-Base InGaN/GaN Heterojunction Bipolar Light-Emitting Transistors, B. F. Chu-Kung et al., Appl. Phys. Lett. 89, 082108 (2006); Carrier Lifetime And Modulation Bandwidth Of A Quantum Well AlGaAs/InGaP/GaAs/InGaAs Transistor Laser, M. Feng, N. Holonyak, Jr., A. James, K. Cimino, G. Walter, and R. Chan, Appl. Phys. Lett. 89, 113504 (2006); Chirp In A Transistor Laser, Franz-Keldysh Reduction of The Linewidth Enhancement, G. Walter, A. James, N. Holonyak, Jr., and M. Feng, Appl. Phys. Lett. 90, 091109 (2007); Photon-Assisted Breakdown, Negative Resistance, And Switching In A Quantum-Well Transistor Laser, A. James, G. Walter, M. Feng, and N. Holonyak, Jr., Appl. Phys. Lett. 90, 152109 (2007); Franz-Keldysh Photon-Assisted Voltage-Operated Switching of a Transistor Laser, A. James, N. Holonyak, M. Feng, and G. Walter, Photonics Technology Letters, IEEE Volume: 19 Issue: 9 (2007); Experimental Determination Of The Effective Minority Carrier Lifetime In The Operation Of A Quantum-Well n-p-n Heterojunction Bipolar Light-Emitting Transistor Of Varying Base Quantum-Well Design And Doping, H. W. Then, M. Feng, N. Holonyak, Jr., and C. H. Wu, Appl. Phys. Lett. 91, 033505 (2007); Charge Control Analysis Of Transistor Laser Operation, M. Feng, N. Holonyak, Jr., H. W. Then, and G. Walter, Appl. Phys. Lett. 91, 053501 (2007); Optical Bandwidth Enhancement By Operation And Modulation Of The First Excited State Of A Transistor Laser, H. W. Then, M. Feng, and N. Holonyak, Jr., Appl. Phys. Lett. 91, 183505 (2007); Modulation Of High Current Gain (β>49) Light-Emitting InGaN/GaN Heterojunction Bipolar Transistors, B. F. Chu-Kung, C. H. Wu, G. Walter, M. Feng, N. Holonyak, Jr., T. Chung, J.-H. Ryou, and R. D. Dupuis, Appl. Phys. Lett. 91, 232114 (2007); Collector Characteristics And The Differential Optical Gain Of A Quantum-Well Transistor Laser, H. W. Then, G. Walter, M. Feng, and N. Holonyak, Jr., Appl. Phys. Lett. 91, 243508 (2007); Transistor Laser With Emission Wavelength at 1544 nm, F. Dixon, M. Feng, N. Holonyak, Jr., Yong Huang, X. B. Zhang, J. H. Ryou, and R. D. Dupuis, Appl. Phys. Lett. 93, 021111 (2008); Optical Bandwidth Enhancement Of Heterojunction Bipolar Transistor Laser Operation With An Auxiliary Base Signal, H. W. Then, G. Walter, M. Feng, and N. Holonyak, Jr. Appl. Phys. Lett. 93, 163504 (2008); Bandwidth Extension By Trade-Off Of Electrical And Otical Gain In A Transistor Laser: Three-Terminal Control, H. W. Then, M. Feng, and N. Holonyak, Jr. Appl. Phys. Lett. 94, 013509 (2009); Tunnel Junction Transistor Laser, M. Feng, N. Holonyak, Jr., H. W. Then, C. H. Wu, and G. Walter Appl. Phys. Lett. 94, 041118 (2009); Electrical-Optical Signal Mixing And Multiplication (2 GHz) With A Tunnel Junction Transistor Laser, H. W. Then, C. H. Wu, G. Walter, M. Feng, and N. Holonyak, Jr. Appl. Phys. Lett. 94, 101114 (2009); Scaling Of Light Emitting Transistor For Multigigahertz Optical Bandwidth, C. H. Wu, G. Walter, H. W. Then, M. Feng, and N. Holonyak, Jr. Appl. Phys. Lett. 94, 171101 (2009). Device Performance Of Light Emitting Transistors With C-Doped And Zn-Doped Base Layers, Huang, Y., Ryou, J.-H., Dupuis, R.D., Dixon, F., Holonyak, N., Feng, M., Indium Phosphide & Related Materials, 2009; IPRM '09. IEEE International Conference, 10-14 May 2009, Pages 387-390; Tilted-Charge High Speed (7 GHz) Light Emitting Diode, G. Walter, C. H. Wu, H. W. Then, M. Feng, and N. Holonyak, Jr. Appl. Phys. Lett. 94, 231125 (2009); 4.3 GHz Optical Bandwidth Light Emitting Transistor, G. Walter, C. H. Wu, H. W. Then, M. Feng, and N. Holonyak, Jr. Appl. Phys. Lett. 94, 241101 (2009); and Resonance-Free Frequency Response Of A Semiconductor Laser, M. Feng, H. W. Then, N. Holonyak, Jr., G. Walter, and A. James Appl. Phys. Lett. 95, 033509 (2009).
In the following example of an embodiment of the invention, as described in conjunction with
In the embodiment of
The described high speed optical data link can be used for both simplex (one way) and duplex (two way) data links. Examples of one way data link application standards are HDMI, DVI, and Displayport. Examples of two way data link application standards are Infiniband, Fiber Channel, Gigabit Ethernet, USB, XAUI, PCI-e, SAS, SATA. For two way communication there will be, at each end, a pair or a plurality of pairs of transmitter and receiver.
A further aspect of the invention involves a unique electro-optical communication technique that utilizes an electrical to optical voltage differentiator.
When both electrical ports (BC port and EC port) of a common collector tilted charge device are fed with respective RF signals, the output optical signal (Phv) is proportional to the difference of the two input signal voltages. When biased as shown, the common collector tilted charge device operates as an electrical to optical voltage differentiator. If V2 is characterized so that it is 180° out-of-phase with V1, then the resulting Phv∝|V1|+|V2|. In the configuration of
As described further in conjunction with
The invention has been described with reference to particular preferred embodiments, but variations within the spirit and scope of the invention will occur to those skilled in the art. For example, while the illustrated embodiments have described primarily employment of tilted charge light emitting diodes and light emitting transistors, laser versions of these devices (tilted charge laser diodes and transistor lasers) can alternatively be employed, where appropriate.
Patent | Priority | Assignee | Title |
10142728, | Dec 23 2008 | Molex, LLC | Contactless audio adapter, and methods |
10236938, | Dec 23 2008 | Molex, LLC | Contactless replacement for cabled standards-based interfaces |
10283933, | Oct 23 2017 | The Board of Trustees of the University of Illinois | Transistor laser electrical and optical bistable switching |
10375221, | Apr 30 2015 | Molex, LLC | Adapter devices for enhancing the functionality of other devices |
10595124, | Dec 23 2008 | Molex, LLC | Full duplex contactless communication systems and methods for the use thereof |
10764421, | Apr 30 2015 | Molex, LLC | Adapter devices for enhancing the functionality of other devices |
9304267, | Sep 11 2012 | QUANTUM ELECTRO OPTO SYSTEMS SDN BHD | Method and apparatus for optical coupling and opto-electronic conversion |
9431572, | Aug 02 2012 | QUANTUM ELECTRO OPTO SYSTEMS SDN BHD | Dual mode tilted-charge devices and methods |
9478942, | Dec 06 2012 | The Board of Trustees of the University of Illinois | Transistor laser optical switching and memory techniques and devices |
9525463, | Dec 23 2008 | Molex, LLC | Contactless replacement for cabled standards-based interfaces |
9819397, | Dec 23 2008 | Molex, LLC | Contactless replacement for cabled standards-based interfaces |
Patent | Priority | Assignee | Title |
4176367, | Mar 24 1977 | Tokyo Shibaura Electric Co., Ltd. | Semiconductor optical device |
4580293, | Nov 27 1982 | U S PHILIPS CORPORATION, A CORP OF DE | Circuit arrangement for driving a current-controlled component |
5796714, | Sep 28 1994 | Matsushita Electric Industrial Co., Ltd. | Optical module having a vertical-cavity surface-emitting laser |
6728494, | Jun 08 2000 | Matsushita Electric Industrial Co., Ltd. | Light-emitting device drive circuit, and optical transmission system using the circuit |
7043161, | Mar 11 2000 | OPTICIS CO , LTD | Optical communication interface module connected to electrical communication interface module of I2C communication protocol |
7091082, | Aug 22 2003 | Board of Trustees of the University of Illinois, The | Semiconductor method and device |
7280769, | Jul 28 2003 | Nidec Motor Corporation | Method and apparatus for operating an optical receiver for low intensity optical communication in a high speed mode |
7286583, | Aug 22 2003 | Board of Trustees of the University of Illinois, The | Semiconductor laser devices and methods |
7354780, | Aug 22 2003 | Board of Trustees of the University of Illinois, The | Semiconductor light emitting devices and methods |
7535034, | Feb 27 2006 | Board of Trustees of the University of Illinois, The | PNP light emitting transistor and method |
7711015, | Apr 02 2007 | Board of Trustees of the University of Illinois, The | Method for controlling operation of light emitting transistors and laser transistors |
7813396, | Oct 12 2007 | Board of Trustees of the University of Illinois, The | Transistor laser devices and methods |
20010050934, | |||
20040091270, | |||
20050040387, | |||
20050040432, | |||
20050054172, | |||
20060093010, | |||
20070065160, | |||
20080089368, | |||
20080205461, | |||
20080240173, | |||
20090134939, | |||
20100034228, | |||
20100073086, | |||
20100103971, | |||
20100202483, | |||
20100202484, | |||
20100272140, | |||
20100289427, | |||
20100315018, | |||
20110150487, | |||
JP61270885, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 08 2010 | Quantum Electro Opto Systems Sdn. Bhd. | (assignment on the face of the patent) | / | |||
Dec 17 2010 | WALTER, GABRIEL | QUANTUM ELECTRO OPTO SYSTEMS SDN BHD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025891 | /0198 |
Date | Maintenance Fee Events |
Jan 17 2017 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Mar 15 2021 | REM: Maintenance Fee Reminder Mailed. |
Aug 30 2021 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jul 23 2016 | 4 years fee payment window open |
Jan 23 2017 | 6 months grace period start (w surcharge) |
Jul 23 2017 | patent expiry (for year 4) |
Jul 23 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 23 2020 | 8 years fee payment window open |
Jan 23 2021 | 6 months grace period start (w surcharge) |
Jul 23 2021 | patent expiry (for year 8) |
Jul 23 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 23 2024 | 12 years fee payment window open |
Jan 23 2025 | 6 months grace period start (w surcharge) |
Jul 23 2025 | patent expiry (for year 12) |
Jul 23 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |