Techniques, devices and systems for using dielectric materials, without metal or electrically conductive materials, to construct photonic rf and microwave receivers and concentrators.
|
45. A device for receiving radio frequency (rf) signals, comprising:
a dielectric rf horn antenna that receives an rf signal;
a dielectric waveguide taper coupled to the dielectric rf horn antenna to direct the received rf signal from the rf horn antenna to a narrow part of the dielectric waveguide taper to increase an intensity of the received rf signal;
a dielectric rf resonator which is coupled to the dielectric waveguide taper to receive the rf signal and store the received rf signal and includes:
a dielectric cylindrical disk shaped to include a hollow cylindrical void inside dielectric cylindrical disk and off center from a symmetric axis of the dielectric cylindrical disk to form a narrow dielectric material section near an external side surface of the dielectric cylindrical disk; and,
an optical resonator located to interact with the rf signal at the narrow dielectric material section near the external side surface of the dielectric cylindrical disk.
1. A method for receiving a radio frequency (rf) signal, comprising:
using an all-dielectric rf antenna free of a metal to wirelessly receive an rf signal;
coupling the rf signal received by the all-dielectric rf antenna into an all-dielectric rf waveguide free of a metal to guide the received rf signal away from the all-dielectric rf antenna;
coupling the received rf signal in the all-dielectric rf waveguide into an all-dielectric rf resonator free of a metal that stores rf energy of the received rf signal that is coupled into the all-dielectric rf resonator;
exposing an electro-optic material, which is free of a metal and exhibits an electro-optic effect, to the rf energy stored by the all-dielectric rf resonator;
coupling continuous wave (CW) light into the electro-optic material to mix the CW light with the rf energy stored by the all-dielectric rf resonator to cause optical modulation of the CW light to produce modulated light that carries the rf signal; and
processing the modulated light to extract the rf signal.
26. A device for receiving radio frequency (rf) signals, comprising:
a dielectric rf antenna structured to receive an input rf signal and to output the received input rf signal; and
an optical whispering gallery mode (WGM) resonator formed of an electro-optic material and located outside the dielectric rf antenna to directly receive the rf input signal to cause an electro-optic modulation of light in one or more WGM modes inside the optical WGM resonator based on interaction between the received input rf signal and the light in the electro-optic material so that the modulated light carries the input rf signal,
wherein:
the dielectric rf antenna is structured to have an input end with a large cross section that receives the input rf signal and an output end with a small cross section smaller that the large cross section, and a tapered waveguide horn section connected between the input end and the output end and structured to have a cross section that reduces from the input end to the output end to guide the input rf signal to the output end, the output end being structured to have a concave opening to form a cavity or notch for outputting the input rf signal.
30. A device for receiving radio frequency (rf) signals, comprising:
a dielectric rf antenna structured to receive an input rf signal;
a dielectric rf waveguide that is electromagnetically coupled to the dielectric rf antenna to receive the input rf signal;
a dielectric rf resonator that is electromagnetically coupled to the dielectric rf waveguide section to receive the input rf signal and is structured to be in resonance with the received the rf input signal; and
an optical whispering gallery mode (WGM) resonator formed of an electro-optic material and located outside the dielectric rf resonator to be in electromagnetic coupling to the dielectric rf resonator to receive the rf input signal that interacts with the electro-optic material to cause an electro-optic modulation of light in one or more WGM modes inside the optical WGM resonator so that the modulated light carries the input rf signal,
wherein the dielectric rf antenna includes a cylindrical dielectric rf antenna section, and
wherein:
the dielectric rf resonator is spaced from the narrow dielectric rf waveguide section, and
the device comprises a mechanism that adjusts a spacing between the dielectric rf resonator and the narrow dielectric rf waveguide section.
43. A device for receiving radio frequency (rf) signals, comprising
a dielectric rf resonator antenna that receives and stores an rf signal without carrying an optical beam, and includes:
a first tapered waveguide side that has a larger first end and a smaller second end, and a tapered waveguide section connected between the larger first end and the smaller second end and structured to have a cross section that reduces from the larger first end to the smaller second end, and
a second tapered waveguide side that has a larger second end and a second tapered waveguide section connected to the larger second end and structured to (1) have a cross section that reduces from the larger second end and (2) connect to the smaller second end to form a waist section, wherein the first tapered waveguide section and the second tapered waveguide section receive the rf signal and concentrate the received rf signal to the waist section with a higher rf intensity; and
an optical resonator that exhibits an electro-optic effect and is located to interact with the rf signal at the waist section of the dielectric rf resonator antenna to modulate optical light inside the optical resonator to produce modulated light that carries the rf signal initially received by the rf resonator antenna.
16. A device for receiving a radio frequency (rf) signal, comprising:
an all-dielectric rf waveguide free of a metal including a first waveguide end that receives an rf signal and a second waveguide end to which the received rf signal is guided;
an all-dielectric rf resonator free of a metal that is electromagnetically coupled to the second waveguide end of the all-dielectric rf waveguide to receive and store rf energy of the rf signal;
an optical resonator, which is formed of a dielectric material exhibiting an electro-optic effect and free of a metal, positioned relative to the all-dielectric rf resonator to be exposed to rf energy stored by the all-dielectric rf resonator;
an optical coupling device coupling continuous wave (CW) light into the optical resonator to mix the CW light with the rf energy to cause optical modulation of the CW light based on the electro-optic effect to produce modulated light that carries the rf signal;
an all-dielectric optical waveguide coupled to receive the modulated light from the optical resonator and to guide the modulated light away from the optical resonator; and
an rf protected photodiode that receives the modulated light from the all-dielectric optical waveguide and converts the modulated light into an electrical signal representing the rf signal.
35. A device for receiving radio frequency (rf) signals, comprising:
a tapered dielectric rf antenna structured to receive an input rf signal and to include a tapered waveguide that has a larger first end that receives the received input rf signal and a smaller second end, and a tapered waveguide section connected between the larger first end and the smaller second end and structured to have a cross section that reduces from the larger first end to the smaller second end and focuses the received input rf signal towards the smaller second end;
a narrow dielectric rf waveguide including a first tapered tip that is electromagnetically coupled to the smaller second end of the tapered dielectric rf antenna to receive the input rf signal and a narrow dielectric rf waveguide section connected to the first tapered tip to guide the rf input signal away from the first tapered tip;
a dielectric rf resonator that is electromagnetically coupled to the narrow dielectric rf waveguide section to receive the input rf signal and is structured to be in resonance with the received the rf input signal; and
an optical whispering gallery mode (WGM) resonator formed of an electro-optic material and located outside the dielectric rf resonator to be in electromagnetic coupling to the dielectric rf resonator to receive the rf input signal that interacts with the electro-optic material to cause an electro-optic modulation of light in one or more WGM modes inside the optical WGM resonator so that the modulated light carries the input rf signal.
2. The method as in
directing the modulated light produced by mixing the CW light with the rf energy stored by the all-dielectric rf resonator in the electro-optic material along a dielectric waveguide to an rf protected chamber in which the modulated light is processed to extract the rf signal.
3. The method as in
using a photodiode inside the rf protected chamber to convert the modulated light into an electrical signal in extracting the rf signal.
4. The method as in
placing the electro-optic material inside the all-dielectric rf resonator to expose the electro-optic material to the rf energy stored by the all-dielectric rf resonator.
5. The method as in
placing the electro-optic material outside the all-dielectric rf resonator to be adjacent to the all-dielectric rf resonator to expose the electro-optic material to the rf energy stored by the all-dielectric rf resonator.
7. The method as in
the optical resonator is a whispering gallery mode optical resonator.
8. The method as in
making the all-dielectric rf antenna to have a tapered structure.
9. The method as in
making the all-dielectric rf antenna to include a tapered waveguide that has a larger first end that receives the received rf signal and a smaller second end, and a tapered waveguide section connected between the larger first end and the smaller second end and structured to have a cross section that reduces from the larger first end to the smaller second end and focuses the received rf signal towards the smaller second end.
10. The method as in
making the all-dielectric rf waveguide to include a first tapered tip that is electromagnetically coupled to the smaller second end of the tapered dielectric rf antenna to receive the input rf signal and a narrow dielectric rf waveguide section connected to the first tapered tip to guide the rf input signal away from the first tapered tip.
11. The method as in
separating the all-dielectric rf resonator from the all-dielectric rf waveguide by a gap; and
adjusting the gap to control coupling of the received rf signal in the all-dielectric rf waveguide into the all-dielectric rf resonator.
12. The method as in
making the all-dielectric rf antenna to have a horn structure with a tapered shape that reduces in dimension towards the all-dielectric rf resonator.
13. The method as in
structuring the all-dielectric rf antenna to efficiently receive the rf signal from the air; and
independently structuring the all-dielectric rf resonator to concentrate the rf energy in a small volume for efficient coupling with the electro-optic material.
14. The method as in
structuring the all-dielectric rf resonator to include:
a first tapered waveguide side that has a larger first end and a smaller second end, and a tapered waveguide section connected between the larger first end and the smaller second end and structured to have a cross section that reduces from the larger first end to the smaller second end; and
a second tapered waveguide side that has a larger second end and a second tapered waveguide section connected to the larger second end and structured to (1) have a cross section that reduces from the larger second end and (2) connect to the smaller second end to form a waist section,
wherein the electro-optic material is located to interact with the rf signal at the waist section of the all-dielectric rf resonator.
15. The method as in
structuring the all-dielectric rf resonator to include:
a dielectric cylindrical disk shaped to include a hollow cylindrical void inside dielectric cylindrical disk and off center from a symmetric axis of the dielectric cylindrical disk to form a narrow dielectric material section near an external side surface of the dielectric cylindrical disk; and,
wherein the electro-optic material is located to interact with the rf signal at the narrow dielectric material section near the external side surface of the dielectric cylindrical disk.
17. The device as in
the optical resonator is a whispering gallery mode optical resonator.
18. The device as in
the optical resonator is located inside the all-dielectric rf resonator.
19. The device as in
the optical resonator is located outside the all-dielectric rf resonator to be adjacent to the all-dielectric rf resonator to be exposed to the rf energy stored by the all-dielectric rf resonator.
20. The device as in
an all-dielectric rf antenna structured to wirelessly receive the rf signal from the air and electromagnetically coupled to the first waveguide end of the all-dielectric rf waveguide to couple the rf signal into the all-dielectric rf waveguide.
21. The device as in
the all-dielectric rf antenna includes a tapered waveguide that has a larger first end that receives the rf signal and a smaller second end coupled to the first waveguide end of the all-dielectric rf waveguide, and a tapered waveguide section connected between the larger first end and the smaller second end and structured to have a cross section that reduces from the larger first end to the smaller second end and focuses the rf signal towards the smaller second end.
22. The device as in
the first waveguide end of the all-dielectric rf waveguide is a first tapered tip and a narrow dielectric rf waveguide section connected to the first tapered tip to guide the rf input signal away from the first tapered tip.
23. The device as in
the all-dielectric rf resonator is separate from the all-dielectric rf waveguide by a gap; and
a mechanism that adjusts the gap to control coupling of the rf signal in the all-dielectric rf waveguide into the all-dielectric rf resonator.
24. The device as in
the all-dielectric rf resonator includes:
a first tapered waveguide side that has a larger first end and a smaller second end, and a tapered waveguide section connected between the larger first end and the smaller second end and structured to have a cross section that reduces from the larger first end to the smaller second end; and
a second tapered waveguide side that has a larger second end and a second tapered waveguide section connected to the larger second end and structured to (1) have a cross section that reduces from the larger second end and (2) connect to the smaller second end to form a waist section,
wherein the optical resonator is located to interact with the rf signal at the waist section of the all-dielectric rf resonator.
25. The device as in
the all-dielectric rf resonator includes:
a dielectric cylindrical disk shaped to include a hollow cylindrical void inside dielectric cylindrical disk and off center from a symmetric axis of the dielectric cylindrical disk to form a narrow dielectric material section near an external side surface of the dielectric cylindrical disk; and,
wherein the optical resonator is located to interact with the rf signal at the narrow dielectric material section near the external side surface of the dielectric cylindrical disk.
27. The device as in
the optical WGM resonator is structured to be axially or cylindrically symmetric around an optic axis of the electro-optic material around which the WG modes circulate in a circular path or the equator, and
the optical WGM resonator is oriented to have the optic axis in alignment of an axis of the a tapered waveguide horn section of the tapered dielectric antenna.
28. The device as in
a phase grating formed on the input end to cause the input rf signal to have a nonzero momentum at the optical WGM resonator.
29. The device as in
the dielectric rf antenna and the optical WGM resonator are free of a metallic component.
31. The device as in
the dielectric rf waveguide includes a first tapered tip that is electromagnetically coupled to the dielectric rf antenna to receive the input rf signal and a narrow dielectric rf waveguide section connected to the first tapered tip to guide the rf input signal away from the first tapered tip.
32. The device as in
the dielectric rf antenna, the dielectric rf waveguide, the dielectric rf resonator and the optical WGM resonator are free of a metallic component.
33. The device as in
the dielectric rf resonator includes:
a first tapered waveguide side that has a larger first end and a smaller second end, and a tapered waveguide section connected between the larger first end and the smaller second end and structured to have a cross section that reduces from the larger first end to the smaller second end; and
a second tapered waveguide side that has a larger second end and a second tapered waveguide section connected to the larger second end and structured to (1) have a cross section that reduces from the larger second end and (2) connect to the smaller second end to form a waist section,
wherein the optical WGM resonator is located to interact with the rf signal at the waist section of the all-dielectric rf resonator.
34. The device as in
the dielectric rf resonator includes:
a dielectric cylindrical disk shaped to include a hollow cylindrical void inside dielectric cylindrical disk and off center from a symmetric axis of the dielectric cylindrical disk to form a narrow dielectric material section near an external side surface of the dielectric cylindrical disk; and,
wherein the optical WGM resonator is located to interact with the rf signal at the narrow dielectric material section near the external side surface of the dielectric cylindrical disk.
36. The device as in
the optical WGM resonator is structured to be axially or cylindrically symmetric around an optic axis of the electro-optic material around which the WG modes circulate in a circular path or the equator, and
the optical WGM resonator is oriented to have the optic axis parallel to an electric polarization of the input rf signal.
37. The device as in
the optical WGM resonator is structured to be axially or cylindrically symmetric around an optic axis of the electro-optic material around which the WG modes circulate in a circular path or the equator, and
the optical WGM resonator is oriented to have the optic axis perpendicular to an electric polarization of the input rf signal.
38. The device as in
an optical coupler coupled to the optical WGM resonator to coupling light into the optical WGM resonator and to coupling the modulated light of the optical WGM resonator.
39. The device as in
the dielectric rf resonator is spaced from the narrow dielectric rf waveguide section,
the device comprises a mechanism that adjusts a spacing between the dielectric rf resonator and the narrow dielectric rf waveguide section.
40. The device as in
the tapered dielectric rf antenna, the narrow dielectric rf waveguide, the dielectric rf resonator and the optical WGM resonator are free of a metallic component.
41. The device as in
the dielectric rf resonator includes:
a first tapered waveguide side that has a larger first end and a smaller second end, and a tapered waveguide section connected between the larger first end and the smaller second end and structured to have a cross section that reduces from the larger first end to the smaller second end; and
a second tapered waveguide side that has a larger second end and a second tapered waveguide section connected to the larger second end and structured to (1) have a cross section that reduces from the larger second end and (2) connect to the smaller second end to form a waist section,
wherein the optical WGM resonator is located to interact with the rf signal at the waist section of the dielectric rf resonator.
42. The device as in
the dielectric rf resonator includes:
a dielectric cylindrical disk shaped to include a hollow cylindrical void inside dielectric cylindrical disk and off center from a symmetric axis of the dielectric cylindrical disk to form a narrow dielectric material section near an external side surface of the dielectric cylindrical disk; and,
wherein the optical WGM resonator is located to interact with the rf signal at the narrow dielectric material section near the external side surface of the dielectric cylindrical disk.
44. The device as in
the dielectric rf resonator is made of a dielectric material with a refractive index for the rf signal is 10 and
the first and second tapered waveguide sides are structured to concentrate the rf signal at the waist section with a volume of 10−6 cm3.
46. The device as in
the optical resonator exhibits an electro-optic effect and, in response to the rf signal at the narrow dielectric material section, modulates optical light inside the optical resonator to produce modulated light that carries the rf signal initially received by the rf horn antenna.
47. The device as in
a mechanism that adjusts a spacing between the dielectric rf resonator and the dielectric waveguide taper to provide an adjustable coupling gap.
48. The device as in
the rf resonator antenna includes a straight dielectric waveguide section with a small cross section in the waist section between the first and second tapered waveguide sections.
|
This patent document claims priorities of U.S. Provisional Application No. 61/171,188 entitled “DIELECTRIC TAPER-BASED METAL FREE FRONT-END PHOTONIC RF RECEIVERS” and filed on Apr. 21, 2009 and U.S. Provisional Application No. 61/248,939 entitled “RF FIELD CONCENTRATOR FOR METAL FREE FRONT END PHOTONIC RF RECEIVERS” and filed on Oct. 6, 2009, the entire disclosures of which are incorporated by reference as part of this document.
This specification relates to radio frequency (RF) and microwave receivers and devices.
RF and microwave circuits and devices commonly use metal components or electrically conductive components. The presence of metal or electrically conductive components renders these circuits and devices highly susceptible to interferences and damage from electromagnetic energy. Compact RF and microwave circuits operating at low voltages are especially vulnerable to such interferences and damage. Notably, RF and microwave communication devices and systems are equipped with antennas as part of their wireless receiver and transmitter modules which provide a direct pathway for electromagnetic radiation to RF and microwave circuits and devices within such systems and can cause undesired interferences or damage to the RF and microwave circuits and devices.
This document describes, among others, devices, systems and techniques for using dielectric materials, without metal or electrically conductive materials, to construct photonic RF and microwave receivers and concentrators. Implementations of the described devices, systems and techniques can be used to reduce adverse impact of electromagnetic interferences or damages.
In one aspect, a method for receiving a radio frequency (RF) signal is provided to include using an all-dielectric RF antenna free of a metal to wirelessly receive an RF signal; coupling the RF signal received by the all-dielectric RF antenna into an all-dielectric RF waveguide free of a metal to guide the received RF signal away from the all-dielectric RF antenna; coupling the received RF signal in the all-dielectric RF waveguide into an all-dielectric RF resonator free of a metal that stores RF energy of the received RF signal that is coupled into the all-dielectric RF resonator; exposing an electro-optic material, which is free of a metal and exhibits an electro-optic effect, to the RF energy stored by the all-dielectric RF resonator; coupling continuous wave (CW) light into the electro-optic material to mix the CW light with the RF energy stored by the all-dielectric RF resonator to cause optical modulation of the CW light to produce modulated light that carries the RF signal; and processing the modulated light to extract the RF signal. In implementations, the all-dielectric RF antenna can be structured to efficiently receive the RF signal from the air; and, independently, the all-dielectric RF resonator can be structured to concentrate the RF energy in a small volume for efficient coupling with the electro-optic material.
In another aspect, a device for receiving a radio frequency (RF) signal is provided to include an all-dielectric RF waveguide free of a metal including a first waveguide end that receives an RF signal and a second waveguide end to which the received RF signal is guided; an all-dielectric RF resonator free of a metal that is electromagnetically coupled to the second waveguide end of the all-dielectric RF waveguide to receive and store RF energy of the RF signal; an optical resonator, which is formed of a dielectric material exhibiting an electro-optic effect and free of a metal, positioned relative to the all-dielectric RF resonator to be exposed to RF energy stored by the all-dielectric RF resonator; an optical coupling device coupling continuous wave (CW) light into the optical resonator to mix the CW light with the RF energy to cause optical modulation of the CW light based on the electro-optic effect to produce modulated light that carries the RF signal; an all-dielectric optical waveguide coupled to receive the modulated light from the optical resonator and to guide the modulated light away from the optical resonator; and an RF protected photodiode that receives the modulated light from the all-dielectric optical waveguide and converts the modulated light into an electrical signal representing the RF signal.
In another aspect, a device for receiving radio frequency (RF) signals is provided to include a tapered dielectric RF antenna structured to have an input end with a large cross section that receives an input RF signal and an output end with a small cross section smaller that the large cross section, and a tapered waveguide horn section connected between the input end and the output end and structured to have a cross section that reduces from the input end to the output end to guide the input RF signal to the output end, the output end being structured to have a concave opening to form a cavity or notch for outputting the input RF signal; and an optical whispering gallery mode (WGM) resonator formed of an electro-optic material and located outside the second end of the tapered dielectric RF antenna to directly receive the RF input signal from the second end to cause an electro-optic modulation of light in one or more WGM modes inside the optical WGM resonator based on interaction between the received input RF signal and the light in the electro-optic material so that the modulated light carries the input RF signal.
In another aspect, a device for receiving radio frequency (RF) signals is provided to include a dielectric RF antenna structured to receive an input RF signal and to output the received input RF signal; and an optical whispering gallery mode (WGM) resonator formed of an electro-optic material and located outside the dielectric RF antenna to directly receive the RF input signal to cause an electro-optic modulation of light in one or more WGM modes inside the optical WGM resonator based on interaction between the received input RF signal and the light in the electro-optic material so that the modulated light carries the input RF signal.
In another aspect, a device for receiving radio frequency (RF) signals is provided to include a dielectric RF antenna structured to receive an input RF signal; a dielectric RF waveguide that is electromagnetically coupled to the dielectric RF antenna to receive the input RF signal; a dielectric RF resonator that is electromagnetically coupled to the dielectric RF waveguide section to receive the input RF signal and is structured to be in resonance with the received the RF input signal; and an optical whispering gallery mode (WGM) resonator formed of an electro-optic material and located outside the dielectric RF resonator to be in electromagnetic coupling to the dielectric RF resonator to receive the RF input signal that interacts with the electro-optic material to cause an electro-optic modulation of light in one or more WGM modes inside the optical WGM resonator so that the modulated light carries the input RF signal.
In another aspect, a device for receiving radio frequency (RF) signals is provided to include a tapered dielectric RF antenna structured to receive an input RF signal and to include a tapered waveguide that has a larger first end that receives the received input RF signal and a smaller second end, and a tapered waveguide section connected between the larger first end and the smaller second end and structured to have a cross section that reduces from the larger first end to the smaller second end and focuses the received input RF signal towards the smaller second end; a narrow dielectric RF waveguide including a first tapered tip that is electromagnetically coupled to the smaller second end of the tapered dielectric RF antenna to receive the input RF signal and a narrow dielectric RF waveguide section connected to the first tapered tip to guide the RF input signal away from the first tapered tip; a dielectric RF resonator that is electromagnetically coupled to the narrow dielectric RF waveguide section to receive the input RF signal and is structured to be in resonance with the received the RF input signal; and an optical whispering gallery mode (WGM) resonator formed of an electro-optic material and located outside the dielectric RF resonator to be in electromagnetic coupling to the dielectric RF resonator to receive the RF input signal that interacts with the electro-optic material to cause an electro-optic modulation of light in one or more WGM modes inside the optical WGM resonator so that the modulated light carries the input RF signal.
In another aspect, a device for receiving radio frequency (RF) signals is provided to include a dielectric RF resonator that stores an RF signal. The RF resonator includes a first tapered waveguide side that has a larger first end and a smaller second end, and a tapered waveguide section connected between the larger first end and the smaller second end and structured to have a cross section that reduces from the larger first end to the smaller second end, and a second tapered waveguide side that has a larger second end and a second tapered waveguide section connected to the larger second end and structured to (1) have a cross section that reduces from the larger second end and (2) connect to the smaller second end to form a waist section. The device also includes an optical resonator located to interact with the RF signal at the waist section of the dielectric RF resonator.
In yet another aspect, a device for receiving radio frequency (RF) signals is provided to include a dielectric RF resonator which stores an RF signal and includes a dielectric cylindrical disk shaped to include a hollow cylindrical void inside dielectric cylindrical disk and off center from a symmetric axis of the dielectric cylindrical disk to form a narrow dielectric material section near an external side surface of the dielectric cylindrical disk; and an optical resonator located to interact with the RF signal at the narrow dielectric material section near the external side surface of the dielectric cylindrical disk.
Particular embodiments of the described aspects can be implemented to realize one or more of advantages. For example, front ends of RF and microwave receivers can be metal-free to reduce electromagnetic interferences and damage in environments where high power RF or microwave signals are present.
The details of these and other aspects are set forth in the accompanying drawings, the description and the claims below.
Like reference numbers and designations in the various drawings indicate like elements.
RF or microwave circuits and devices having metal or electrically conductive components are subject to electromagnetic interferences or damage. When unshielded and exposed to strong electromagnetic fields, e.g., in close proximity of RF transmitters, such as radars, TV or radio towers, such RF or microwave circuits and devices may experience significant operational disruption, stop functioning, or become damaged. These RF or microwave circuits and devices can also be destroyed by high power electromagnetic weapons including narrow band sources, known as high power microwave devices, and broadband (pulse) sources, known as electromagnetic pulse devices. Photonic technology allows reducing the impact of unwanted powerful RF radiation on the RF receiver by providing metal-free, all dielectric RF or microwave receiver front ends without having unshielded electronic circuitry and metal interconnects.
As illustrated, an optical detector 112, e.g., a high-speed photodiode, is provided in the module 101 to receive the modulated laser light 126 and converts the received light into an electrical signal 114 that carries or represents the received RF or microwave signal 102 at the antenna 122. The optical detector 112 and the subsequent electronic circuitry for signal processing are shielded to ensure their proper operations. A laser 110 that produces the CW laser light 112 can also be included in the module 101 and thus shielded from electromagnetic interference or damage.
In implementations, the metal-free, all dielectric receiver front end 120 can include an all-dielectric RF waveguide free of a metal that is connected between the antenna 122 and the modulator 124 to guide the received RF or microwave signal 102. This all-dielectric RF waveguide can include a first waveguide end that receives the RF signal 102 from the antenna 122 and a second waveguide end to which the received RF signal 102 is guided. The all dielectric receiver front end 120 includes an all-dielectric RF resonator free of a metal that is electromagnetically coupled to the second waveguide end of the all-dielectric RF waveguide to receive and store RF energy of the RF signal 102. An optical resonator, which is formed of a dielectric material exhibiting an electro-optic effect and free of a metal, is positioned relative to the all-dielectric RF resonator to be exposed to RF energy stored by the all-dielectric RF resonator. As illustrated by examples below, the optical resonator can be either located inside the RF resonator or outside the RF resonator. Notably, the modulator 124 is formed from this optical resonator without any metal parts to apply the RF signal 102. Instead, the RF signal 102 is directly coupled to the optical resonator by being physically located within the field of the RF signal 102. An optical coupling device is provided to couple the CW laser light 112 into the optical resonator to mix the CW light 102 with the RF energy to cause optical modulation of the CW light 102 based on the electro-optic effect to produce modulated light 126 that carries the RF signal 102. An all-dielectric optical waveguide, such as optical fiber, can be used to receive the modulated light 126 from the optical resonator 124 and to guide the modulated light 126 away from the optical resonator 124 to the RF protected or shielded optical detector 112. The optical detector 112 receives the modulated light 126 from the all-dielectric optical waveguide and converts the modulated light 126 into the electrical signal 114 representing the RF signal 102.
Specific examples for the above all-dielectric RF or microwave photonic receiver are described based on optical whispering gallery mode resonator technology. The operational principle of the front-end system involves mixing of the RF signal of interest and coherent light by means of an electro-optic mixer (electro-optic modulator). The mixer is all-dielectric. The RF field is concentrated with a dielectric antenna to increase the mixing efficiency. The RF signal is imposed to the optical carrier (the light is modulated with the RF signal) as the result of the mixing. The modulated light is sent along a dielectric waveguide to an RF protected chamber to be demodulated on a photodiode and processed further. Electro-optic whispering gallery mode (WGM) microresonators in the described examples are used as a mixer of the RF signal and the light in the reported previously design of the all-dielectric receiver. Other electro-optic optical resonators or electro-optic materials or devices can also be used to provide the desired electro-optic modulation. In one example, a cylindrical RF antenna is proposed for the concentration of the RF signal. To achieve the mixing the WGM electro-optic resonator has to be placed within the antenna body. One of the basic problems of the integration of the microresonator mixer and the antenna is the significant difference of their sizes. The geometrical size of the RF field localization within the antenna could exceed significantly the size of the resonator which leads to the increased phase mismatch between the RF and the optical fields. Reduction of the phase matching of the fields results in the inefficient mixing of the RF and light and, hence, leads to the reduction of the overall sensitivity of the RF reception.
Several exemplary configurations of all-dielectric photonic receivers are provided below to provide efficient RF reception. For example, tapered waveguides of various morphologies can be used to produce high concentration of the RF radiation in the vicinity of the optical WGM resonator. The increased RF concentration not only improves the gain of the antenna with respect to the developed previously cylindrical antenna, but also improves the phase matching between the RF and the light resulting in enhanced field mixing efficiency. A properly phase matched taper can be attached to a cylindrical antenna to improve the coupling with the WGM resonator.
The techniques described in this document can be used to provide a dielectric structure that is able to focus RF radiation into an RF resonator having dimensions comparable with those of the optical WGM resonator. The RF modes of the dielectric resonator should be phase matched with the optical WGM modes for better frequency mixing. All the dielectric parts should be RF transparent. The primary RF attenuation in the structure should come from the interaction of light and RF radiation. The electromagnetic power will not be absorbed in the structure and will go through the structure without causing damage and only a small part of the electromagnetic power will be upconverted to the optical frequency. One limitation for the concentration efficiency of the RF structure (antenna gain) is the intrinsic damage of the material with the high power RF radiation.
The morphology of a dielectric microwave antenna utilized with an all-dielectric microwave photonic receiver front-end can be designed to provide sufficient electro-magnetic field concentration to achieve high reception sensitivity. A dielectric resonator antenna that relies upon conventional diffraction-limited high-Q microwave modes does not provide the required enhancement of the microwave signal. On the other hand, near-field concentrators of microwave radiation result in achieving sensitivity levels comparable to the sensitivity of conventional electronic receivers.
RF field concentration is inherently smaller in all-dielectric receivers when compared with conventional metallic electronic receivers, so efficient electro-optical mixers are required to make the all-dielectric technology usable. The proposed all-dielectric receivers in this document can use electro-optically active crystalline whispering gallery mode (WGM) resonators due to their high quality (Q) factors resulting in high mixing efficiency. WGM RF photonic mixers are promising for practical applications because their performance fundamentally does not depend on the RF frequency. Nonlinear WGM resonators can be used in photonic front-end receiver applications operating in the frequency bands ranging from X-band to Ka-band. In general, WGM-based mixers operate well at RF frequencies ranging from several GHz to 1 THz. The all-dielectric receiver configurations considered in this document tend to be robust at high RF and microwave frequencies due to the use of all-dielectric waveguides and components.
The phenomenon of three-wave mixing in a solid state resonator possessing quadratic nonlinearity is the physical basis for the operation of the resonant photonic mixer. An RF signal is sent into an RF resonator with a mode that geometrically overlaps the modes in the optical resonator. The pump light interacts with the RF radiation creating optical harmonics at frequencies corresponding to the sum and/or difference of the optical and RF carrier frequencies. The optical harmonics mix with the RF signal and create new harmonics. The process occurs if the phase matching condition is fulfilled and if there are optical modes to host the generated harmonics. Naturally, the operation bandwidth of the mixer is restricted by the spectral width of optical and RF resonances.
Examples described in this document separate the dielectric antenna and the RF resonator that interacts with the photonic electro-optic mixer to provide flexibility in tuning the system, and significant enhancement in the sensitivity of the receiver. The sensitivity increases because of larger, sub-wavelength, concentration of the RF field that enhances the electro-optic process in the dielectric photonic mixer. This is in part because the structural requirements for efficiently receiving an RF or microwave signal tend to be different from structural requirements for storing and spatially concentrating the energy of the RF or microwave signal in the RF resonator. Separation of the dielectric antenna and the RF resonator allows for separately configuring the dielectric antenna and the RF resonator to meet their different structural requirements.
In receivers based on resonant photonic mixers the information carried by the RF signal is retrieved by means of processing and detecting the optical harmonics leaving the optical resonator. WGM-based photonic mixers have a significant practical shortcoming. Their bandwidth is usually less than a few megahertz. Such a narrow bandwidth value restricts the number of applications of the devices. An increase of the bandwidth at the expense of the optical Q-factor results in a decrease of the mixing efficiency proportionally to Q2. This is generally unacceptable because increase of the mixing bandwidth from, say, 5 MHz to 500 MHz leads to increased sensitivity loss by a factor of 104, which is too large for many applications. Thus another goal of the present contribution is to assess the properties of resonant photonic mixers and to find a way for utilization of extremely high-Q WGM resonators that allows achieving high mixing efficiency on the one hand, and maintaining a comparably large mixing bandwidth, on the other. For this purpose, we consider using two optical modes in the mixer, one of which possesses very-high and the other—comparably low Q-factors. The immediate bandwidth of such a mixer is given by the low-Q mode, while the high-Q mode results in increased mixer efficiency.
In
In
The dielectric horn antenna 210 has an opening area Aa that is impedance matched with free space at one side and with a dielectric waveguide resonator at the other side (Aw cross-section, ρw is the resistance, nRF is the refractive index, and F is the finesse of the resonator). Comparing the power flow entering the antenna (|ERF in|2An/(2η0), η0=√{square root over (μ0/∈0)} is the resistance of vacuum) and the power flow entering the resonator (|Eω|2Aωη2RF/(2η0)) can be used to find the maximal RF field enhancement coefficient to be independent of the refractive index of the RF resonator material:
Our study suggests that direct antenna/slot configuration is equivalent to the ideal horn/waveguide/resonator/slot configuration with horn area Aa=Awn2RF. The maximal sensitivity of the ideal receiver with the field concentrator exceeds the sensitivity of a receiver based on an RF antenna which also serves as an RF resonator if Aa/Aw>n2RF. This condition can be implemented since the effective cross-section area of a dielectric waveguide resonator can be made smaller than the diffraction limit (λRF/2nRF)2 and the area of the antenna cross-section can significantly exceed (λRF/2)2.
It is known that a slot waveguide can be used for increasing the amplitude of the electromagnetic field (nw/nslot)2 times (nw>>nslot). The field is strongly enhanced in the low index region near the interfaces because of the field discontinuity at the high index contrast interfaces. The power of the field in the low index area is enhanced as well. Changing the waveguide cross-section shape from rectangular to bowtie leads to further field localization and enhancement so that the mode volume reduces to approximately 0.1(λ/2n)3, where λ is the optical wavelength and n is the optical index of refraction.
Applying the result to the RF train in
In
It is known that creating a special phase grating at the top of a dielectric cylinder allows transforming a plain electromagnetic wave into a Bessel beam (a wave with a nonzero orbital momentum). The wave with a nonzero orbital momentum can be used to realize an efficient wave mixing between the RF wave and the light waves having cylindrical symmetry. The orbital momentum of the RF wave interacting with WGMs along the entire rim of the WGM resonator should be equal to the difference of the orbital momentum of the pumping WGM and the modulation sideband WGM. The particular example of the horn RF antenna in
Hence, the example in
Optical processing of RF signals generally involves electro-optical modulators for upconversion of the RF field to the optical domain. The efficiency of the upconversion, that determines the performance of the RF photonic devices, critically depends on the concentration of the RF signal in an electro-optical material used for the upconversion. Metallic electrodes allow achieving strong concentration of the RF field to the dimensions much less compared with the wavelength of the RF radiation in the material. Strong concentration of the RF radiation becomes an issue in the case of technical requirements prohibiting usage of metal in the photonic devices. Dielectric RF resonators generally have mode volume exceeding (λRF/2nRF)3, where λRF is the wavelength of the RF signal in the vacuum, and nRF2 is the dielectric susceptibility of the material. The described here RF resonators are macroscopic structures with microscopic mode volumes. The volume of the RF mode of the proposed here resonator can be as small as the volume achieved in the metal strip-line RF resonators.
The resonator designs in
In
Numerical simulations were performed for the resonator shown in
Based on the above examples, the RF field concentration in an all-dielectric photonic link can approach the field concentration in the conventional RF photonic links. To create efficient RF photonic mixing to realize a high performance system, a photonic mixer can be configured based on single-sideband (SSB) electro-optic modulator (EOM) to achieve high sensitivity in the all-dielectric microwave photonic receiver. The basic advantage of the SSB EOM is in its ability to create coupling between WGMs having different quality factors; this results in a photonic link/receiver configuration having resonantly enhanced sensitivity and wider reception bandwidth. The operation of the photonic mixer is based on the RF and optical wave mixing in a solid state WGM resonator possessing a quadratic nonlinearity. An RF signal is fed into an RF waveguide or resonator to interact with the optical resonator, which is pumped with continuous wave laser light. The pumping light is mixed with RF radiation generating an optical harmonic at a frequency corresponding either to the sum or to the difference of the optical and RF carrier frequencies. Wave mixing occurs if phase matching condition is fulfilled and if there are optical modes to support generated modulation side-bands. The optical spectrum of the resonator determines the sideband frequency shift with respect to the carrier (if the generated optical sideband has higher or lower frequency with respect to the carrier). For SSB modulation, only two optical modes participate in the interaction. The nondiagonal elements of the linear electro-optic tensor introduce a coupling between TE and TM WGMs, if the shape of the microwave electrode applied to an electro-optic WGM resonator is properly designed, and the resonator is made out of a proper material.
In one implementation, a whispering gallery mode optical resonator based photonic device is provided to include a single sideband modulator and a frequency control mechanism. The single sideband modulator includes an optical resonator made of an electro-optic crystal and structured to support optical whispering gallery modes in a first polarization mode and a second polarization mode orthogonal to the first polarization mode, both of which circulate near a rim of the optical resonator, and electrodes formed on the optical resonator to receive an RF or microwave signal to the optical resonator in an electric field polarization oriented relative to a crystal axis of the electro-optic crystal to effectuate coupling between an optical whispering gallery mode in the first polarization mode and another optical whispering gallery mode in the second polarization mode to produce an optical single sideband by modulation of continuous wave light at an optical carrier frequency at a sideband frequency different from the optical carrier frequency. The frequency control mechanism is coupled to the optical resonator to tune a frequency spacing between the optical single sideband and the optical carrier frequency. Examples of SSB modulators based on WGM resonators with electrodes are described in U.S. application Ser. No. 12/618,704 entitled “TUNABLE SINGLE SIDEBAND MODULATORS BASED ON ELECTRO-OPTIC OPTICAL WHISPERING GALLERY MODE RESONATORS AND THEIR APPLICATIONS” and filed on Nov. 13, 2009, which is incorporated by reference as part of this document. The SSB can be implemented in electro-optic resonators described in this document in absence of metal electrodes.
While this document contains many specific implementation details, these should not be construed as limitations on the scope of the invention or of what may be claimed, but rather as descriptions of features specific to particular embodiments of the invention. Certain features that are described in this document in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.
Only a few implementations are disclosed. Variations, modifications and enhancements of the disclosed implementations and other implementations can be made based on what is described and illustrated in this document.
Savchenkov, Anatoliy, Ilchenko, Vladimir, Matsko, Andrey B., Maleki, Lute, Seidel, David
Patent | Priority | Assignee | Title |
10079434, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
10270181, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
10345674, | Feb 12 2015 | Michigan Technological University | Electro-optic modulator, microwave photonic link including an electro-optic modulator, and method of communicating a signal with an electro-optic modulator |
10355361, | Oct 28 2015 | Rogers Corporation | Dielectric resonator antenna and method of making the same |
10374315, | Oct 28 2015 | Rogers Corporation | Broadband multiple layer dielectric resonator antenna and method of making the same |
10374319, | Oct 21 2014 | AT&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
10476164, | Oct 28 2015 | Rogers Corporation | Broadband multiple layer dielectric resonator antenna and method of making the same |
10522917, | Oct 28 2015 | Rogers Corporation | Broadband multiple layer dielectric resonator antenna and method of making the same |
10541661, | Aug 18 2016 | University of Georgia Research Foundation, Inc. | Continuously tunable and highly reconfigurable multiband RF filter |
10547280, | Mar 12 2015 | University of Georgia Research Foundation, Inc. | Photonics based tunable multiband microwave filter |
10587039, | Oct 28 2015 | Rogers Corporation | Broadband multiple layer dielectric resonator antenna and method of making the same |
10601137, | Oct 28 2015 | Rogers Corporation | Broadband multiple layer dielectric resonator antenna and method of making the same |
10644398, | Jul 28 2017 | UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA | Antenna for generating arbitrarily directed Bessel beam |
10804611, | Oct 28 2015 | Rogers Corporation | Dielectric resonator antenna and method of making the same |
10811776, | Oct 28 2015 | Rogers Corporation | Broadband multiple layer dielectric resonator antenna and method of making the same |
10854982, | Oct 28 2015 | Rogers Corporation | Broadband multiple layer dielectric resonator antenna and method of making the same |
10892544, | Jan 15 2018 | Rogers Corporation | Dielectric resonator antenna having first and second dielectric portions |
10892556, | Oct 28 2015 | Rogers Corporation | Broadband multiple layer dielectric resonator antenna |
10910722, | Jan 15 2018 | Rogers Corporation | Dielectric resonator antenna having first and second dielectric portions |
11031697, | Nov 29 2018 | Rogers Corporation | Electromagnetic device |
11108159, | Jun 07 2017 | Rogers Corporation | Dielectric resonator antenna system |
11283189, | May 02 2017 | Rogers Corporation | Connected dielectric resonator antenna array and method of making the same |
11367959, | Oct 28 2015 | Rogers Corporation | Broadband multiple layer dielectric resonator antenna and method of making the same |
11367960, | Oct 06 2017 | Rogers Corporation | Dielectric resonator antenna and method of making the same |
11482790, | Apr 08 2020 | Rogers Corporation | Dielectric lens and electromagnetic device with same |
11552390, | Sep 11 2018 | Rogers Corporation | Dielectric resonator antenna system |
11581946, | Dec 10 2020 | OEWAVES, INC | Wideband photonic synthesizer stabilized to a reference clock using photonic components |
11616302, | Jan 15 2018 | Rogers Corporation | Dielectric resonator antenna having first and second dielectric portions |
11637377, | Dec 04 2018 | Rogers Corporation | Dielectric electromagnetic structure and method of making the same |
11876295, | May 02 2017 | Rogers Corporation | Electromagnetic reflector for use in a dielectric resonator antenna system |
11888553, | Oct 18 2019 | Nokia Technologies Oy | Massive MIMO antenna array |
8938170, | Jul 01 2010 | Analysis First LLC | Handheld identification and communication systems |
8971713, | Jul 01 2010 | Analysis First LLC | Identification and communication systems |
8976822, | Mar 27 2012 | OEWAVES, INC | Tunable opto-electronic oscillator having optical resonator filter operating at selected modulation sideband |
8995838, | Jul 18 2008 | HRL Laboratories, LLC | Waveguide assembly for a microwave receiver with electro-optic modulator |
9040919, | Oct 25 2010 | Photomixer-waveguide coupling tapers | |
9097790, | Feb 02 2012 | The United States of America as represented by the Secretary of the Army; ARMY, UNITED STATES GOVERNMENT AS REPRESENTED BY THE SECRETARY OF THE, THE | Method and apparatus for providing radio frequency photonic filtering |
9166678, | Sep 06 2012 | OPENLIGHT PHOTONICS, INC | Heterogeneous microwave photonic circuits |
9335568, | Jun 02 2011 | HRL Laboratories, LLC | Electro-optic grating modulator |
9703266, | Nov 04 2014 | Spectracom Corporation | Independent fiber-optic reference apparatuses and methods thereof |
9885888, | Feb 08 2016 | International Business Machines Corporation | Integrated microwave-to-optical single-photon transducer with strain-induced electro-optic material |
Patent | Priority | Assignee | Title |
5015052, | Jul 20 1989 | Battelle Memorial Institute | Optical modulation at millimeter-wave frequencies |
5204640, | Feb 10 1992 | California Institute of Technology | Widely tunable oscillator stabilization using analog fiber optic delay line |
5220292, | Jan 02 1992 | Raytheon Company | Microwave oscillator with noise degeneration feedback circuit |
5652556, | May 05 1994 | Agilent Technologies Inc | Whispering gallery-type dielectric resonator with increased resonant frequency spacing, improved temperature stability, and reduced microphony |
5723856, | Aug 01 1995 | California Institute of Technology | Opto-electronic oscillator having a positive feedback with an open loop gain greater than one |
5751747, | Dec 20 1995 | California Institute of Technology | Linear swept frequency generator |
5777778, | Aug 01 1996 | California Institute of Technology | Multi-Loop opto-electronic microwave oscillator with a wide tuning range |
5917179, | May 12 1997 | California Institute of Technology | Brillouin opto-electronic oscillators |
5929430, | Jan 14 1997 | California Institute of Technology | Coupled opto-electronic oscillator |
5936589, | Nov 29 1994 | Murata Manufacturing Co., Ltd. | Dielectric rod antenna |
5985166, | Oct 29 1997 | California Institute of Technology | Chemical etching of fiber probe |
6080586, | Apr 05 1996 | California Institute of Technology | Sub-micron chemical imaging with near-field laser desorption |
6178036, | Jan 14 1997 | YAO, X STEVE | Opto-electronic devices and systems based on brillouin selective sideband amplification |
6203660, | Oct 29 1997 | California Institute of Technology | Device for chemically etching a fiber probe |
6317094, | May 24 1999 | TENXC WIRELESS INC | Feed structures for tapered slot antennas |
6389197, | Feb 10 1999 | California Institute of Technology | Coupling system to a microsphere cavity |
6417957, | Oct 27 1999 | Institute of Technology, California | Opto-electronic devices for processing and transmitting RF signals based on brillouin selective sideband amplification |
6473218, | Jun 11 1999 | California Institute of Technology | Light modulation in whispering-gallery-mode resonators |
6476959, | Jan 10 2000 | California Institute of Technology | Optical pulse synthesis using brillouin selective sideband amplification |
6487233, | Feb 23 2000 | California Institute of Technology | Fiber-coupled microsphere laser |
6488861, | Feb 10 1999 | California Institute of Technology | Coupling system to a microsphere cavity |
6490039, | Aug 08 2000 | California Institute of Technology | Optical sensing based on whispering-gallery-mode microcavity |
6501433, | Jan 12 2000 | HRL Laboratories, LLC | Coaxial dielectric rod antenna with multi-frequency collinear apertures |
6535328, | Jan 14 1997 | YAO, X STEVE | Methods and devices based on brillouin selective sideband amplification |
6567436, | Jan 26 1999 | California Institute of Technology | Opto-electronic oscillators having optical resonators |
6580532, | Jan 28 1999 | California Institute of Technology | Opto-electronic techniques for reducing phase noise in a carrier signal by carrier supression |
6594061, | Jun 09 2000 | California Institute of Technology | Acceleration-insensitive opto-electronic oscillators |
6633696, | Dec 07 1998 | CALIFONIA INSTITUTE OF TECHNOLOLOGY | Resonant optical wave power control devices and methods |
6762869, | Apr 09 2002 | California Institute of Technology | Atomic clock based on an opto-electronic oscillator |
6781696, | Oct 06 1999 | The Board of Regents for Oklahoma State University; Nomadics, Inc. | Apparatus and method for a microsphere whispering-gallery mode evanescent-wave sensor |
6785435, | Jul 26 2001 | Battelle Memorial Institute | Waveguides and devices incorporating optically functional cladding regions |
6795481, | Mar 22 2000 | California Institute of Technology | Non-spherical whispering-gallery-mode microcavity |
6798947, | Feb 10 2000 | CALIFORNIA INSTITUTE TECHNOLOGY OF | Coupling system to a microsphere cavity |
6853479, | Aug 30 2001 | OEWAVES, INC | Apparatus and method for coupling light between an optical resonator and a semiconductor chip with a minimum number of components and alignment steps |
6859582, | Nov 09 2000 | California Institute of Technology | Dual-wavelength hybrid waveguide coupler |
6871025, | Jun 15 2000 | California Institute of Technology | Direct electrical-to-optical conversion and light modulation in micro whispering-gallery-mode resonators |
6873631, | Jan 26 1999 | California Institute of Technology | Integrated opto-electronic oscillators having optical resonators |
6879752, | Apr 03 2002 | OEWAVES, INC | Film spacer for setting the gap between an optical coupler and a whispering-gallery mode optical resonator |
6901189, | May 17 2002 | California Institute of Technology | Graded-index whispering gallery mode resonators |
6906309, | Nov 15 2001 | HRL Laboratories, LLC | Injection-seeding of a multi-tone photonic oscillator |
6922497, | May 17 2002 | California Institute of Technology | Whispering gallery mode resonators based on radiation-sensitive materials |
6928091, | Sep 26 2001 | OEWAVES, INC | Opto-electronic oscillator including a tunable electro-optic filter |
6943934, | May 28 2002 | California Institute of Technology | Nonlinear optical whispering gallery mode resonators |
6987914, | May 17 2002 | California Institute of Technology | Optical filter having coupled whispering-gallery-mode resonators |
7024069, | Oct 01 2003 | California Institute of Technology | Tunable resonator-based devices for producing variable delays and narrow spectral linewidths |
7043117, | May 28 2002 | CALIFONRIA INSTITUTE TECHNOLOGY; California Institute of Technology | Electro-optical modulation and other optical applications using poled optical whispering gallery mode resonators |
7050212, | Nov 22 2002 | California Institute of Technology | Active mode-locked lasers and other photonic devices using electro-optic whispering gallery mode resonators |
7061335, | Apr 15 2004 | OEWAVES, INC | Processing of signals with regenerative opto-electronic circuits |
7062131, | Jul 03 2003 | OEWAVES, INC | Optical coupling for whispering-gallery-mode resonators via waveguide gratings |
7092591, | Feb 03 2003 | California Institute of Technology | Tunable optical filters having electro-optic whispering-gallery-mode resonators |
7133180, | Jun 03 2003 | OEWAVES, INC | Resonant impedance matching in microwave and RF device |
7173749, | Aug 04 2003 | California Institute of Technology | Opto-electronic feedback for stabilizing oscillators |
7184451, | Oct 15 2003 | OEWAVES, INC | Continuously tunable coupled opto-electronic oscillators having balanced opto-electronic filters |
7187870, | Oct 15 2003 | OEWAVES, INC | Tunable balanced opto-electronic filters and applications in opto-electronic oscillators |
7218662, | Feb 12 2004 | OEWAVES, INC | Coupled opto-electronic oscillators with low noise |
7248763, | Jul 03 2003 | OEWAVES, INC | Optical resonators with reduced OH-content |
7260279, | Jun 09 2004 | OEWAVES, INC | Integrated opto-electronic oscillators |
7283707, | Jul 25 2001 | OEWAVES, INC | Evanescently coupling light between waveguides and whispering-gallery mode optical resonators |
7292112, | Mar 18 2005 | THE DEPARTMENT OF TRADE AND INDUSTRY | Whispering gallery oscillator |
7356214, | Mar 22 2004 | OEWAVES, INC | Optical waveguide coupler for whispering-gallery-mode resonators |
7362927, | Jun 01 2004 | OEWAVES, INC | Tunable RF or microwave photonic filters using temperature-balanced whispering gallery mode optical resonators |
7369722, | Mar 17 2005 | OEWAVES, INC | Coupled and non-coupled opto-electronic oscillators with enhanced performance |
7389053, | Oct 15 2003 | OEWAVES, INC | Tunable filtering of RF or microwave signals based on optical filtering in Mach-Zehnder configuration |
7400796, | Jul 08 2003 | OEWAVES, INC | Whispering-gallery-mode resonator architectures and manufacturing processes |
7440651, | Nov 17 2004 | California Institute of Technology | Single mode whispering-gallery-mode resonator |
7460746, | Jan 13 2005 | OEWAVES, INC | Tunable multi-loop opto-electronic oscillator with tunable RF or microwave filter based on optical filtering |
7480425, | Jun 09 2004 | OEWAVES, INC | Integrated opto-electronic oscillators |
7570850, | Jun 19 2006 | The United States of America as represented by the National Aeronautics and Space Administration | WGM resonators for studying orbital angular momentum of a photon, and methods |
7587144, | Jan 12 2004 | OEWAVES, INC | Tunable radio frequency and microwave photonic filters |
7630417, | Jun 24 2004 | California Institute of Technology | Crystal whispering gallery mode optical resonators |
7634201, | Sep 01 2006 | OEWAVES, INC | Wideband receiver based on photonics technology |
7715081, | Sep 24 2007 | Lockheed Martin Corporation | Radio frequency photonic link with differential drive to an optical resonator electro-optic modulator |
7777583, | May 23 2008 | Keysight Technologies, Inc | Mode selective coupler for whispering-gallery dielectric resonator |
7801189, | Nov 13 2007 | OEWAVES, INC | Cross modulation-based opto-electronic oscillator with tunable electro-optic optical whispering gallery mode resonator |
7813651, | Jan 12 2004 | OEwaves, Inc. | Tunable radio frequency and microwave photonic filters |
7835600, | Jul 18 2008 | HRL Laboratories, LLC | Microwave receiver front-end assembly and array |
7869472, | Mar 11 2008 | GM Global Technology Operations LLC | Optical locking based on optical resonators with high quality factors |
7929589, | Jun 13 2007 | OEWAVES, INC | Diffractive grating coupled whispering gallery mode resonators |
7965745, | Oct 12 2007 | OEWAVES, INC | RF and microwave receivers based on electro-optic optical whispering gallery mode resonators |
7970245, | Jul 18 2007 | Sungkyunkwan University Foundation for Corporate Collaboration | Optical biosensor using SPR phenomenon |
7982944, | May 04 2007 | MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN E V | Method and apparatus for optical frequency comb generation using a monolithic micro-resonator |
7991025, | Jun 13 2007 | GM Global Technology Operations LLC | Tunable lasers locked to whispering gallery mode resonators |
8055136, | Nov 15 2004 | BAE SYSTEMS PLC | Data communications system |
8089684, | Mar 14 2008 | OEWAVES, INC | Photonic RF and microwave phase shifters |
8094359, | May 15 2008 | OEWAVES, INC | Electro-optic whispering-gallery-mode resonator devices |
8102597, | May 15 2008 | OEWAVES, INC | Structures and fabrication of whispering-gallery-mode resonators |
8111722, | Mar 03 2008 | OEWAVES, INC | Low-noise RF oscillation and optical comb generation based on nonlinear optical resonator |
8155913, | Nov 13 2007 | OEWAVES, INC | Photonic-based cross-correlation homodyne detection with low phase noise |
8155914, | Nov 13 2007 | OEWAVES, INC | Measuring phase noise in radio frequency, microwave or millimeter signals based on photonic delay |
8159736, | Nov 13 2008 | OEWAVES, INC | Tunable single sideband modulators based on electro-optic optical whispering gallery mode resonators and their applications |
8180183, | Jul 18 2008 | HRL Laboratories, LLC | Parallel modulator photonic link |
8218232, | Sep 26 2007 | Kabushiki Kaisha Toshiba | Optical resonator with structure to improve mode-particle interaction |
8289616, | May 15 2008 | OEwaves, Inc. | Optical devices based on optically coupled optical whispering gallery-mode resonators formed on a rod |
8311376, | May 15 2008 | OEwaves, Inc. | Optical devices based on connected and optically coupled optical whispering-gallery-mode resonators formed on a rod |
20010038651, | |||
20020018611, | |||
20020018617, | |||
20020021765, | |||
20020081055, | |||
20020085266, | |||
20020097401, | |||
20030160148, | |||
20040100675, | |||
20040109217, | |||
20040218880, | |||
20040240781, | |||
20050017816, | |||
20050063034, | |||
20050074200, | |||
20050123306, | |||
20050128566, | |||
20050147355, | |||
20050151604, | |||
20050175358, | |||
20050196103, | |||
20050220411, | |||
20050248823, | |||
20050253672, | |||
20050286602, | |||
20060285799, | |||
20070009205, | |||
20070153289, | |||
20080001062, | |||
20080023632, | |||
20080024119, | |||
20080063411, | |||
20080075464, | |||
20080212968, | |||
20080285617, | |||
20080310463, | |||
20090016729, | |||
20090047023, | |||
20090097516, | |||
20090135860, | |||
20090208205, | |||
20090251705, | |||
20090289729, | |||
20090310629, | |||
20090324251, | |||
20100232810, | |||
20110064415, | |||
20110110387, | |||
20110150485, | |||
20110253897, | |||
20110255094, | |||
20120039346, | |||
20120194893, | |||
20120195590, | |||
WO2001096936, | |||
WO2005038513, | |||
WO2005055412, | |||
WO2005067690, | |||
WO2005122346, | |||
WO2006076585, | |||
WO2007143627, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 21 2010 | OEwaves, Inc. | (assignment on the face of the patent) | / | |||
Jun 10 2010 | MATSKO, ANDREY B | OEWAVES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024628 | /0555 | |
Jun 10 2010 | SEIDEL, DAVID | OEWAVES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024628 | /0555 | |
Jun 10 2010 | MALEKI, LUTE | OEWAVES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024628 | /0555 | |
Jun 11 2010 | SAVCHENKOV, ANATOLIY | OEWAVES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024628 | /0555 | |
Jun 14 2010 | ILCHENKO, VLADIMIR | OEWAVES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024628 | /0555 | |
Apr 15 2015 | OEWAVES, INC | Square 1 Bank | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 035497 | /0755 | |
Oct 03 2016 | PACIFIC WESTERN BANK AS SUCCESSOR IN INTEREST BY MERGER TO SQUARE 1 BANK | OEWAVES, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 040350 | /0076 |
Date | Maintenance Fee Events |
Oct 20 2014 | ASPN: Payor Number Assigned. |
Jan 23 2017 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Mar 22 2021 | REM: Maintenance Fee Reminder Mailed. |
Sep 06 2021 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jul 30 2016 | 4 years fee payment window open |
Jan 30 2017 | 6 months grace period start (w surcharge) |
Jul 30 2017 | patent expiry (for year 4) |
Jul 30 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 30 2020 | 8 years fee payment window open |
Jan 30 2021 | 6 months grace period start (w surcharge) |
Jul 30 2021 | patent expiry (for year 8) |
Jul 30 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 30 2024 | 12 years fee payment window open |
Jan 30 2025 | 6 months grace period start (w surcharge) |
Jul 30 2025 | patent expiry (for year 12) |
Jul 30 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |