A method and apparatus for providing more reliable wireless communication and power to sensors in electrically challenging bioprocess environments is disclosed. An unconnected antenna is located within the bioprocess environment, preferably in the same plane as the primary powered antenna. This unconnected antenna, also referred to as reflective antenna, enhances and confines the electromagnetic field created by the powered antenna. This reflective antenna is incorporated in or proximate to the devices containing a sensor or communication device. In one embodiment, the reflective antenna is incorporated into the filter housing. In another embodiment, it is incorporated into the filtering element itself. In another embodiment, it is incorporated into or affixed on the disposable bioprocess components, such as bags and tubes.
|
13. A disposable system for manufacturing pharmaceuticals, comprising:
a. a powered inductive loop;
b. a container for holding pharmaceutical material, comprising an electronic device, said electronic device comprising an antenna adapted to receive an electromagnetic field generated by said powered inductive loop and convert it to alternating current; and
c. an unpowered electromagnetically resonant antenna positioned so as to enhance said electromagnetic field received by said electronic device.
7. A filtering system, comprising:
a. a housing;
b. a powered inductive loop inside said housing;
c. a filtering element, located with said housing, comprising a membrane and a wireless electronic device, said electronic device comprising an antenna adapted to receive an electromagnetic field generated by said powered inductive loop and convert it to alternating current; and
d. an unpowered electromagnetically resonant antenna located with said housing positioned so as to enhance said electromagnetic field received by said electronic device.
1. A filtering element comprising:
a. a cylindrical body, having a membrane having an outer surface exposed to unfiltered material and an inner surface;
b. a closed end;
c. an open end through which filtered material passes;
d. a wireless electronic device affixed to said filtering element, said electronic device comprising an antenna adapted to receive an electromagnetic field generated by a powered loop antenna and convert it to alternating current; and
e. an unpowered electromagnetically resonant antenna affixed to said filtering element positioned so as to enhance said electromagnetic field received by said electronic device.
2. The filtering element of
3. The filtering element of
8. The filtering system of
9. The filtering system of
11. The filtering system of
17. The system of
21. The system of
22. The system of
|
The use of RFID tags and other electronic devices, such as Bluetooth® and Zigbee® devices has become prevalent, especially in the management of assets, particularly those applications associated with inventory management. For example, the use of RFID tags permits the monitoring of the production line and the movement of assets or components through the supply chain.
To further illustrate this concept, a manufacturing entity may adhere RFID tags to components as they enter the production facility. These components are then inserted into the production flow, forming sub-assemblies in combination with other components, and finally resulting in a finished product. The use of RFID tags allows the personnel within the manufacturing entity to track the movement of the specific component throughout the manufacturing process. It also allows the entity to be able to identify the specific components that comprise any particular assembly or finished product.
In addition, the use of RFID tags has also been advocated within the drug and pharmaceutical industries. In February 2004, the United States Federal and Drug Administration issued a report advocating the use of RFID tags to label and monitor drugs. This is an attempt to provide pedigree and to limit the infiltration of counterfeit prescription drugs into the market and to consumers.
Since their introduction, RFID tags have been used in many applications, such as to identify and provide information for process control in filter products. U.S. Pat. No. 5,674,381, issued to Den Dekker in 1997, (U.S. ReIssue Pat. No. 39,361E) discloses the use of “electronic labels” in conjunction with filtering apparatus and replaceable filter assemblies. Specifically, the patent discloses a filter having an electronic label that has a read/write memory and an associated filtering apparatus that has readout means responsive to the label. The electronic label is adapted to count and store the actual operating hours of the replaceable filter. The filtering apparatus is adapted to allow use or refusal of the filter, based on this real-time number. The patent also discloses that the electronic label can be used to store identification information about the replaceable filter.
U.S. Pat. No. 7,259,675 issued to Baker et al, discloses a process equipment tracking system. This system includes the use of RFID tags in conjunction with process equipment. The RFID tag is described as capable of storing “at least one trackable event”. These trackable events are enumerated as cleaning dates, and batch process dates. The publication also discloses an RFID reader that is connectable to a PC or an internet, where a process equipment database exists. This database contains multiple trackable events and can supply information useful in determining “a service life of the process equipment based on the accumulated data”. The application includes the use of this type of system with a variety of process equipment, such as valves, pumps, filters, and ultraviolet lamps.
In addition to RFID tags, the possibility exists to include other electronics in the filtering elements as well. U.S. Pat. No. 7,048,775, issued to Jornitz et al discloses a device and method for monitoring the integrity of filtering installations.
This patent describes the use of filters containing an onboard memory chip and communications device, in conjunction with a filter housing. The filter housing acts as a monitoring and integrity tester. That application also discloses a set of steps to be used to insure the integrity of the filtering elements used in multi-round housings. These steps include querying the memory element to verify the type of filter that is being used, its limit data, and its production release data.
More and more, other electronics such as sensors, including pressure sensors, temperature sensors and concentration sensors, have also been added to filtering elements to further expand the capabilities of these devices. Co-pending U.S. Patent Application Publication Nos. 2007/0240578, 2007/0243113 and 2007/0240492 all describe additional electronics that can be added to filtering elements to improve system performance and availability.
However, despite the rapid increase in the ability and the desire to add advanced electronics to filtering elements, there remain significant drawbacks. For example, the issue of effectively communicating to an electronic device within a stainless steel (or other metal) housing remains problematic.
Similarly, disposable bioprocess systems may also present wireless power and communication difficulties. In this environment, disposable components are often mated with one or more wireless electronic device, such as an RFID tag, a temperature or pressure sensor, or other suitable component. Although these disposable systems are not contained in a metal housing, their environment may still be electrically challenging. For example, the typical bioprocess system passes fluids. Fluids and other aqueous environments are known to distort or attenuate wireless signals, and therefore have a negative effect on any wireless power or communication scheme. Furthermore, these disposable systems, while primarily constructed of plastic, are often supported by metal structures or fixtures. These metal structures, like fluids, tend to degrade or distort the wireless signals in their vicinity. Furthermore, the size of a disposable bioprocess setup may be sufficiently large so as to make the distance from the antenna to the sensors within the disposable components problematic. Thus, disposable systems may encounter the same issues regarding wireless communication and power that affects bioprocess system contained in traditional housing environments.
A more reliable system and method of communicating with and wirelessly powering devices in electrically challenging bioprocess environments is needed.
The problems of the prior art are minimized by the present invention, which discloses a method and apparatus for providing more reliable wireless communication and power to sensors in electrically challenging bioprocess environments.
An unconnected antenna is located within the bioprocess environment. In essence, this unconnected antenna is an unpowered electromagnetically resonant circuit, designed to resonate with a powered antenna, emitting at specific frequency. This unconnected antenna, also referred to as a reflective antenna, enhances and controls the electromagnetic field created by the powered antenna. This reflective antenna is incorporated in or proximate to the devices containing a sensor or communication device. Since electromagnetic induction is dependant on the design, or shape, of the antenna the reflective antenna can be a magnetic loop or electrical dipole.
In one embodiment, an inductive field is created by a loop antenna. The location of this loop antenna may be limited by constraints within the bioprocess environment. For example, it may be impractical to locate the loop sufficiently close to the communication device in the filtering element. There may be various reasons for this, including concerns about the effects that the loop may have on temperature distribution, or fluid flow. Thus, the efficacy of the inductive loop is compromised. This fact, coupled with the amount of fluid and metal in the environment, can greatly degrade the performance of the inductive loop.
By placing a reflective antenna in or near the electronic components in the system, the electromagnetic field can be enhanced and properly confined. In one embodiment, the reflective antenna is incorporated into the filter housing. In another embodiment, it is incorporated into the filter element itself. In yet another embodiment, it is incorporated into the disposable bioprocess components, such as bioreactor bags and tubes.
It is well known that induction can be utilized to provide power to a device to which there is no physical connection. Typically, a wire coil is wound a number of times, and an alternating current is passed through it. This alternating current produces a changing magnetic field around the coil. A secondary coil, located in a device physically separate and remote from the first coil, can then be used to convert this changing magnetic field back into an alternating current. This current can then be used by the device to power its integrated electronics.
Traditionally, stainless steel is used to make these housings. However, other metals can also be utilized. In another embodiment, plastic material can also be molded to form the housing components.
One or more filter elements may be installed in the lower housing. After these elements are installed, the upper housing 110 is positioned atop the lower housing, and secured in place. Typically fasteners 150, such as metal clasps, Tri-clamps, Laddish clamps or band clamps, are used to hold the two portions together.
To insure a proper seal between the upper and lower housings, a gasket 160, such as an O-ring, is typically utilized. In most cases, this gasket 160 is ring-shaped, or annular. This gasket 160 is constructed from a biocompatible material, which is able to withstand the temperatures attained within the housing. In addition, the material must also be sufficiently elastic, so as to form an air and fluid tight seal. In a preferred embodiment, a silicone-based material is molded into the required shape. This gasket 160 is then placed between the upper 110 and lower housings 120, preferably in a groove formed in one or both of the upper and lower housings to ensure proper alignment during assembly.
In one embodiment, one or more electrical conduits (not shown), such as wires, are molded into the gasket 160. The gasket 160 is preferably produced using a double molding process, so as to insure that the conduits are completely encapsulated within the gasket material.
In one embodiment, one large powered inductive loop is provided along the inner circumference of the annular gasket, as shown in
To enhance or confine the field, an unconnected, or reflective, antenna (not shown) is inserted into the environment. The placement of this reflective antenna is critical to achieve the required result. In one embodiment, the reflective antenna is located within the filtering element itself.
The filter may be made of one or more membranes of any variety commonly used in filtering including but not limited to microporous membranes, ultrafiltration membranes, nanofiltration membranes, or reverse osmosis membranes. Preferably microporous membranes are used. Representative suitable microporous membranes include nitrocellulose, cellulose acetate, polysulphones including polyethersulphone and polyarylsulphones, polyvinylidene fluoride, polyolefins such as ultrahigh molecular weight polyethylene, low density polyethylene and polypropylene, nylon and other polyamides, PTFE, thermoplastic fluorinated polymers such as poly (TFE-co-PFAVE), e.g. PFA, polycarbonates or particle filled membranes such as EMPORE® membranes available from 3M of Minneapolis, Minn. Such membranes are well known in the art, may be symmetrical or asymmetrical or a combination of the two and are commercially available from a variety of sources including Durapore® membranes and Millipore Express® membranes available from Millipore Corporation of Bedford, Mass.
Representative ultrafiltration or nanofiltration membranes include polysulphones, including polyethersulphone and polyarylsulphones, polyvinylidene fluoride, and cellulose. These membranes typically include a support layer that is generally formed of a highly porous structure. Typical materials for these support layers include various non-woven materials such as spun bounded polyethylene or polypropylene, or glass or microporous materials formed of the same or different polymer as the membrane itself. Such membranes are well known in the art, and are commercially available from a variety of sources such as Millipore Corporation of Bedford, Mass.
Numerous patent applications, including co-pending Patent Application Publication Nos. 2007/0240578, 2007/0243113 and 2007/0240492 all describe additional electronics that can be added to filtering elements to improve system performance and availability. Many of these electronic devices 470 are most advantageously located within the hollow inner cylinder of the filtering element. In this manner, temperature, pressure, concentration and other parameters of the filtered material can be measured. Furthermore, often it is desirable to place the electronic device 470 on or affixed to the closed end 420 of the filtering element.
The size of these filtering elements often means that there may be many inches, and sometimes several feet, between the base of the filtering element (i.e. the open end) and the opposite closed end, where the electronic device is generally located. With the powered inductive loop 300 being located near the open end, as shown in
In one embodiment, the reflective antenna 480 is located in the hollow inner cylinder of the filtering element 400. The loop 480 may be near the closed end 420, so as to be near the electronic device 470. Alternatively, it may be located in any other suitable location. Preferably, the reflective antenna 480 is molded into the frame 440 along its inner surface 455 so as not to be exposed to the fluid path. Thus, the reflective antenna 480 must be located between the hollow inner cylinder and the filter material.
In another embodiment, the reflective antenna 480 is located in the closed end 420 of the filtering element. Again, the reflective antenna is preferably molded into the plastic to as not to be exposed to the fluid flow.
In another embodiment, the reflective antenna 480 is located in the frame 440 along the outer surface 460 of the filtering device 400. Again, the loop is preferably molded into the plastic so as not to be exposed to the fluid flow.
Since the reflective antenna 480 is not connected, there is no need to supply any electrical conduits to the loop. Thus, its integration into the filtering element 400 is achieved by molding the loop into the plastic housing. As stated above, the exact location of the loop 480 within the filtering element is an implementation decision and is not limited by the present invention.
The above description recites the inclusion of a single reflective antenna in a filtering element. The invention is not so limited. For example, the reflective antenna may have as many turns as are necessary. Similarly, more than one reflective antenna may be incorporated into a single filtering element. Moreover, it is contemplated that in an environment with multiple filtering elements within a single housing, that each filtering element may be equipped with its own associated reflective antenna. Alternatively, not all filtering elements within a housing need to be equipped with a reflective antenna.
The above description recites a gasket that exists between an upper and lower housing in a housing assembly; however, other locations are possible. For example, a gasket of the type described can be introduced between any two separable portions of the housing. For example, in certain embodiments, a gasket exists between the top vent and the top vent pipe. In this embodiment, it is possible to insert the gasket of the present invention between these two separable portions. Any location in which two separable portions of housing come together can be used to insert this gasket.
In the housing environment, there are other locations in which the reflective antenna can be placed. For example, often an alignment plate is placed atop the filtering element(s) to hold them in place.
In addition to smart devices used in filter housings, the present invention has utility with disposable bioprocess solutions. Disposable bioprocess solutions replicate the basic unit operations of manufacturing processes by replacing the reusable permanent components with disposable components. Although there are numerous benefits to a disposable bioprocess solution, chief among them are the cost savings of eliminating maintenance from cleaning and testing. Disposable bioprocess solutions are generally made of low cost physically flexible components that are placed into a reusable support structures. A commercially available system such as a Mobius™ Disposable Solution from Millipore Corporation contains disposable components. Disposable components include tubes, connectors, bags such as for storage, mixing, cell growth (bioreactors), conducting reactions and the like, filters and other similar components. A bioprocess environment can be created on a flat surface, such as a tabletop, or stacked on a frame. The various components are arranged as required by the particular task. Often, many of these components are equipped by electronics or smart devices. These smart devices can be used to measure temperature, pressure, pH, concentration, or other information.
Fixtures or structures, often made of metal for strength, support the various components in this bioprocess setup. To power these smart devices, a powered inductive loop can be placed proximate to the bioprocess setup. In one embodiment, the powered loop is laid on the flat surface, circumscribing one or more elements of the bioprocess setup. The electromagnetic field generated by this loop is then used by one or each of the smart devices, using the technique described above. Additional powered loops may also be used for a cluster of elements or for each individual element as desired.
However, many of the challenges mentioned earlier, such as distance, aqueous environments, and high metal concentration can also be present in a disposal bioprocess setup. Therefore, to maximize the transfer of the electromagnetic power from the powered loop to the smart devices, a reflective antenna can be installed in some or all of the disposable pharmaceutical components.
In the case of bioreactor bags, the reflective antenna can be embedded in the material used to form at least a portion of the bag or the entire bag if desired, or may be affixed to at least a portion of the outer surface of the bag. In one embodiment, the electronic device is affixed to the outer surface of the bag, with the reflective antenna also affixed to the bag, around the device.
Located on bioreactor bag 500 is an electronic component, or smart device 550. To improve the electromagnetic field near this smart device, a reflective antenna 560 is placed around the bioreactor bag 500. While the reflective antenna 560 in
In one embodiment, the reflective antenna 560 is affixed to the bioreactor bag 500, such as by heating. In another embodiment, the reflective antenna 560 is embedded in the bioreactor bag 500. In another embodiment, the reflective antenna 560 is affixed to the support structure 530, which in turn holds the bioreactor bag 500. In another embodiment, the reflective antenna 560 is embedded in the support structure 530. Those skilled in the art will recognize that a variety of techniques may be used to affix the reflective antenna 560 to the bioreactor bag 500 or the support structure 530.
While the term bioreactor bag is used in the description above, it should be realized that the present invention can operate with any container. Furthermore, a similar approach can be used with other disposable components, such as tubes. The reflective antenna can be embedded in the plastic tube, or can be affixed, preferably to the outer surface of the tube.
Though someone skilled in the art of inductive antenna design may be able to maximize the induced current by optimizing the source and receiver coil, there may still be limits of size or cost of the receiver coil. The integration of a reflective antenna in a device potentially reduces cost and setup complexity by improving the electromagnetic flux relative to the device. This can be especially true for disposable bioprocess solutions where the user, not the manufacturer of the devices will determine the physical setup of the devices. This invention improves the flexibility of the physical setup at the user site.
It is known that the use of a reflective antenna to improve the induction of electrical power can also be used to improve the ability to communicate wirelessly with the end device. A powered antenna can be used as a transceiver antenna with a modulated electrical signal that supplies power and two-way communication to the end device. This is the typical function of RFID reader antennae. Similarly in
Though the embodiments in this disclose primarily describe magnetic induction loops, this invention is not so limited. The reflective antenna can also be of a different shape, such as that of a dipole, more typically used for communications.
Patent | Priority | Assignee | Title |
10363502, | Aug 14 2015 | 3M Innovative Properties Company | Electromagnetic sensor for active monitoring of filter media within a filtration system |
9575087, | Sep 06 2012 | Parker Intangibles, LLC | Risk-managed, single-use, pre-calibrated, pre-sterilized sensors for use in bio-processing applications |
Patent | Priority | Assignee | Title |
5581019, | Jul 16 1992 | W L GORE & ASSOCIATES, INC | Gasket/insertable member and method for making and using same |
5674381, | Mar 29 1993 | TACK SMART FILTER TECHNOLOGY B V | Assembly of filtering apparatus and replaceable filter; and filtering apparatus and filter for use therein |
7048775, | Oct 17 2001 | Sartorius Stedim Biotech GmbH | Device and method for monitoring the integrity of filtering installations |
7259675, | Mar 16 2004 | NEWAGE INDUSTRIES, INC | Process equipment tracking system |
7811665, | Feb 29 2008 | Procter & Gamble Company, The | Embossed fibrous structures |
7898495, | Mar 26 2008 | EMD Millipore Corporation | Antenna gasket for process housing |
7969380, | Mar 26 2008 | EMD Millipore Corporation | Antenna gasket for process housings |
20020021208, | |||
20030047517, | |||
20030127644, | |||
20040032330, | |||
20040182761, | |||
20040256328, | |||
20050205658, | |||
20060178695, | |||
20070200703, | |||
20070210923, | |||
20070240492, | |||
20070240578, | |||
20070243113, | |||
20070262867, | |||
20080042837, | |||
20080065290, | |||
20080069736, | |||
20080087588, | |||
20090225626, | |||
20130057081, | |||
CN101073732, | |||
CN101122947, | |||
CN1370134, | |||
EP2264304, | |||
JP2002531237, | |||
JP2003232444, | |||
JP2003262274, | |||
JP2005102101, | |||
JP2007312004, | |||
JP2007537870, | |||
RE39361, | Mar 29 1993 | TACK SMART FILTER TECHNOLOGY B V | Assembly of filtering apparatus and replaceable filter; and filtering apparatus and filter for use therein |
WO40322, | |||
WO78681, | |||
WO2005113112, | |||
WO2006045477, | |||
WO2006130528, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 26 2008 | EMD Millipore Corporation | (assignment on the face of the patent) | / | |||
Jun 02 2008 | BURKE, AARON | Millipore Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021134 | /0216 | |
Jun 02 2008 | ADHIKARI, JIWAN | Millipore Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021134 | /0216 | |
Jan 01 2012 | Millipore Corporation | EMD Millipore Corporation | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 027620 | /0891 | |
Oct 10 2017 | EMD Millipore Corporation | EMD Millipore Corporation | CHANGE OF ADDRESS | 045341 | /0166 |
Date | Maintenance Fee Events |
Jan 26 2017 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jan 20 2021 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 06 2016 | 4 years fee payment window open |
Feb 06 2017 | 6 months grace period start (w surcharge) |
Aug 06 2017 | patent expiry (for year 4) |
Aug 06 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 06 2020 | 8 years fee payment window open |
Feb 06 2021 | 6 months grace period start (w surcharge) |
Aug 06 2021 | patent expiry (for year 8) |
Aug 06 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 06 2024 | 12 years fee payment window open |
Feb 06 2025 | 6 months grace period start (w surcharge) |
Aug 06 2025 | patent expiry (for year 12) |
Aug 06 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |