A method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking comprising steps of providing an iron-bearing metallurgical waste containing more than 55% by weight FeO and FeO equivalent and a particle size of at least 80% less than 10 mesh, mixing the iron-bearing metallurgical waste with a carbonaceous material to form a reducible mixture where the carbonaceous material is between 80 and 110% of the stoichiometric amount needed to reduce the iron-bearing waste to metallic iron, and as needed additions to provide a silica content between 0.8 and 8% by weight and a ratio of cao/SiO2 between 1.4 and 1.8, forming agglomerates of the reducible mixture over a hearth material layer to protect the hearth, heating the agglomerates to a higher temperature above the melting point of iron to form nodules of metallic iron and slag material from the agglomerates by melting.
|
1. A method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking comprising the steps of:
(a) providing an iron-bearing metallurgical waste containing more than 55% by weight FeO and FeO equivalent and a particle size of at least 80% less than 10 mesh,
(b) mixing the iron-bearing metallurgical waste with a carbonaceous material to form a reducible mixture where the carbonaceous material is between 80 and 110% of the stoichiometric amount needed to reduce the iron-bearing waste to metallic iron, and further providing the reducible mixture with a ratio of cao/SiO2 between 1.4 and 1.8 and a silica content controlled to between 0.8 and 8% by weight. #10#
2. The method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking as claimed in
3. The method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking as claimed in
4. The method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking as claimed in
5. The method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking as claimed in
6. The method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking as claimed in
7. The method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking as claimed in
8. The method of recovering metallic iron from iron-bearing metallurgical waste created in steelmaking as claimed in
9. The method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking as claimed in
10. The method of recovering metallic iron from iron-bearing metallurgical waste created in steelmaking as claimed in
11. The method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking as claimed in
12. The method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking as claimed in
13. The method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking as claimed in
14. The method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking as claimed in
15. The method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking as claimed in
16. The method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking as claimed in
17. The method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking as claimed in
18. The method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking as claimed in
19. The method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking as claimed in
20. The method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking as claimed in
21. The method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking as claimed in
|
This application is a continuation of International Patent Application No. PCT/US2010/021790, filed on Jan. 22, 2010, which claims priority to and the benefit of U.S. patent application Ser. No. 61/146,455, filed on Jan. 22, 2009, the aforementioned applications PCT/US2010/021790 and Ser. No. 61/146,455 are incorporated herein by reference.
The present invention was made with support by the Economic Development Administration, Grant No. 06-69-04501, and the Department of Energy, Sponsor Award DE-FG36-05GO15185. The United States government has certain rights in the invention.
In the making of steel, metallurgical waste dust and sludge is created and collected from various sources. For example, in making of steel by electric arc furnace (EAF), EAF dust is generated that is typically collected in a baghouse or an electrostatic precipitator. Thirty or forty pounds of such EAF dust may be created for each ton of steel produced by EAF process. Similarly, in making steel by basic oxygen furnace (BOF), BOF dust is generated that is typically collected in a baghouse or an electrostatic precipitator in similar quantities. Cooling of the steel during processing using water also produces mill scale in relatively large quantities typically as sludge. In downstream processing in steelmaking, there may also be dust and sludge, such as galvanizing dust and sludge, from galvanizing and other hot dip coating, and spent pickle liquor from cleaning rust from intermediate steel products in pickling lines. In upstream processing, there may also be DRI dust or fines generated in the process of forming DRI from iron ore for use as a starting material in steelmaking, taconite tailings from the beneficiation of taconite to form taconite pellets used as a starting material, and blast furnace slag in making of pig iron in a blast furnace. There may also be fly ash collected in the stacks and flues in both upstream and downstream processes as well as the making of the steel itself.
These steelmaking dusts and sludges are high in iron content, but difficult to recycle or reclaim economically. EAF dust, for example, can be up to 50% by weight iron largely as iron oxide, but may also contains up to 30% by weight zinc and smaller quantities of calcium, magnesium, manganese, lead, cadmium and other metallic elements typically as simple and complex oxides. Because of the high levels of zinc, cadmium and lead, EAF dust, in particular, has been listed as a hazardous waste (KO61) in 40 C.F.R. §261.32 under the Resource Conservation and Recovery Act (“RCRA”), 42 U.S.C. §6901 et seq., requiring specific record keeping and particular handling and processing costs in disposal or recycling. While EAF dust has been subject to stabilization processes and disposed in landfills at considerable cost, one strategy has been to process the EAF dust in a BOF furnace into BOF dust and sludge that contains lower levels of zinc, cadmium and lead. See U.S. Pat. Nos. 6,562,096 and 6,562,101. BOF dust and sludge can be reused directly in steelmaking at some locations, or processed in an induction furnace to produce hot metal or pig iron (See U.S. Pat. No. 6,831,939); however, much BOF dust and sludge has been disposed as waste in land fills.
In another strategy, EAF dust is processed through a tunnel kiln to vaporize and oxidize the dust to recover high purity zinc oxide, and then the low zinc EAF dust is disposed of in land fills. See U.S. Pat. No. 6,682,586. In this process, lead and cadmium in the EAF can be halogenated and vaporized, and volatized halogens of lead and cadmium collected in the baghouse for recovery.
Another approach is to dissolve the EAF dust in nitric acid solution to form nearly complete dissolution of the iron, zinc, cadmium, copper, magnesium, calcium, manganese and lead. See U.S. Pat. No. 5,912,402. Iron is precipitated from the solution by raising the pH and/or by elevating the temperature. Cadmium, copper and lead are then removed in an electrolytic cell with copper and cadmium collected on the cathode and lead collected on the anode. Then calcium nitrate is removed by leaching from a filtrate, and the resulting residue treated with metal amine complexing agents such as ammonium carbonate, ammonium hydroxide, or similar agents to recover the zinc, leaving manganese and magnesium to be separated by acid. This approach resulted in separate recovery of various constituent metals in EAF dust, but has proved expensive and resulted in ancillary environmental concerns with the acids used.
A common metallurgical waste is mill scale, which is ubiquitous in steelmaking. Mill scale includes various forms of iron oxide formed at the surface of steel by oxidation from the surrounding atmosphere. See The Making, Shaping and Treating of Steel, at 946-947 (9th Ed. 1971). Mill scale is formed during heating, hot working and cooling of steel slabs, steel strip, blooms, and billets, as well as most other types of intermediate and finished steel products. The presence of such mill scale is particularly objectionable on the intermediate product to be further processed. For example, such scale typically must be removed and a clean steel surface provided if satisfactory results are to be obtained from the hot rolling of sheet or strip involving reduction or deformation of the steel. Similarly, if the steel sheet is for hot or cold drawing applications, the mill scale is removed as its presence on the steel surface tends to shorten die life, cause irregular and defective drawing conditions, and cause surface defects on the finish product. Scale is also removed if the sheet or strip is to be processed with a hot dip coating to permit proper alloying and adherence of the metallic coating, and satisfactory adherence when non-metallic coatings or paints are to be applied. Even where not a hazardous waste, mill scale such as BOF dust and sludge has been typically disposed of in land fills at considerable cost.
Additionally, other sources of iron-containing waste materials are available. In certain regions, iron-containing mine waste, such as wash-ore tailings and red ore tailings may be available for recovery of iron. Although there are considerable iron units in mill scale and similar metallurgical waste, there has not been available a commercially practical way of reclaiming or recycling of metallurgical waste.
One prior approach commonly used in the disposal of mill scale and similar metallurgical wastes in steelmaking was to “stabilize” or “capture” the waste material in a generally non-leachable form, typically with a basic material, such as lime or cement. Such stabilized waste materials subsequently are buried in designated waste landfills.
In the past, raw materials containing large amounts of FeO have been a problem in solid state reduction processes in hearth furnaces. In such previous processes, FeO melted before being reduced, called “smelting reduction,” producing a highly fluid and aggressive slag. Even the melted FeO that reacted with carbon in reduction caused damage and erosion of refractory hearths. Moreover, large amounts of FeO typically remained in the slag reducing the effectiveness of the reduction process. U.S. Pat. No. 6,630,010 to Ito, et al. discloses a method of reducing metallic waste containing iron oxides describing a complex two step heating process to reduce FeO.
The need for a commercially practical way of reclaiming or recycling iron from mill scale and similar metallurgical waste has been emphasized by public awareness of environmental issues in solid waste, the decreasing availability of landfill areas, and the continuing awareness of the earth's mineral resources. Additionally, economic pressures and the tightening of competition for uses of the earth's natural resources have increased. Further, federal and state regulations regarding the use of the earth's natural resources and the disposal of waste materials have become more encompassing and more restrictive. As a result, there remains a need for reducing mill scale and similar metallurgical waste, and reclaiming and recycling of iron units where economically possible.
What is disclosed is a practical and economical way of disposing of mill scale and similar metallurgical waste in steelmaking, while reclaiming valuable iron units from these metallurgical wastes. It provides as a by-product nodular reduced metallic iron (NRI) that can be used as a substitute for scrap in economically making steel by EAF process.
A method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking is disclosed, including steps of:
(a) providing an iron-bearing metallurgical waste containing more than 55% by weight FeO and FeO equivalent and a particle size of at least 80% less than 10 mesh,
(b) mixing the iron-bearing metallurgical waste with a carbonaceous material to form a reducible mixture where the carbonaceous material is between 80 and 110% of the stoichiometric amount needed to reduce the iron-bearing waste to metallic iron, and as needed additions to provide a silica content between 0.8 and 8% by weight and a ratio of CaO/SiO2 between 1.4 and 1.8,
(c) forming agglomerates of the reducible mixture over a hearth material layer to protect the hearth,
(d) heating the agglomerates to a higher temperature above the melting point of iron to form nodules of metallic iron and slag material from the agglomerates by melting.
The carbonaceous material in the reducible mixture may be between 85 and 100% of the stoichiometric amount needed to reduce the iron-bearing waste to metallic iron.
The iron-bearing metallurgical waste is typically mill scale. Mixed with the mill scale may be iron-bearing metallurgical waste selected from the group of DRI fines, processed EAF dust, BOF sludge, blast furnace dust, wash ore tailings, red ore tailings, and mixtures thereof. The mixture is particular advantageous when the availability of mill scale is in short supply.
The mill scale and similar iron-bearing metallurgical waste may be provided of at least 80% less than 14 mesh. Additionally, the method may further include the step of mechanically reducing particle size of the iron-bearing metallurgical waste to at least 80% less than 14 mesh. The iron-bearing metallurgical waste may be mixed with less than 8% by weight lime and less than 4% by weight fluorspar.
In the present method, the silica source may be at least in part from the iron-bearing metallurgical waste. The silica source may be at least partially selected from the group consisting of sand, EAF slag, LMF slag, BOF slag, fly ash, taconite tailings, wash ore tailings, floatation tailings, DRI fines, blast furnace slag, and mixtures thereof.
The hearth material layer may be a carbonaceous material selected from the group consisting of PRB coal/char, bituminous coal, anthracite and coke of more than 80% between 100 mesh and 3 mesh.
In the present method during the heating step the agglomerate may be heated to greater than 2450° F.
The method may include the additional step after forming the agglomerates and before heating the agglomerates of providing an overlayer of coarse carbonaceous material of between 6 mesh and 1 inch over the agglomerates. Alternatively, the overlayer of coarse carbonaceous material may be between 6 mesh and ⅝ inch. The overlayer of coarse carbonaceous material may be between about 0.5 lb/ft2 (2.44 kg/m2) and about 1.25 lb/ft2 (6.10 kg/m2).
The iron-bearing metallurgical waste may be mixed with a combination of high volatile carbonaceous material selected from the group consisting of sub-bituminous coal and PRB coal and low volatile carbonaceous material selected from the group consisting of anthracite, bituminous coal, coke breeze, coke, and char as the carbonaceous material.
The step of forming the agglomerates on the hearth may involve first forming agglomerates of the reducible mixture and then placing the agglomerates on the hearth material layer.
The above summary of the present invention is not intended to describe each embodiment or every implementation of the present invention. A more complete understanding of the invention and its advantages will become apparent by referring to the following detailed description and claims in conjunction with the accompanying drawings.
Referring now to
As shown in block 12 of
Additionally, a combination of refractory board and refractory brick may be selected for thermal protection for an underlying substructure. In one or more embodiments, the hearth may include a supporting substructure that carries the refractory material (e.g., a refractory lined hearth) forming the hearth 40. The supporting substructure may be formed from one or more different materials, such as, for example, stainless steel, carbon steel, or other metals, alloys, or combinations thereof that have the required high temperature characteristics for furnace processing.
With reference to block 14 of
The hearth material layer 44 may comprise a mixture of finely divided coal and a material selected from the group of coke, char, and other carbonaceous material found to be beneficial to increase the efficiency of iron reduction. The coal particles may be a mixture of different coals such as non-coking coal, or non-caking coal, sub-bituminous coal, or lignite. The hearth material layer 44 may include Powder River Basin (“PRB”) coal and/or char. Additionally, although up to one hundred percent coal is contemplated for use as a hearth material layer, in some embodiments the finely divided coal may comprise up to twenty-five percent (25%) and may be mixed with coke, char, other carbonaceous material, or mixtures thereof. In other embodiments, up to fifty percent (50%) of the hearth material layer may comprise coal, or up to seventy-five percent (75%) of the hearth material layer may comprise coal, with the remaining portion coke, char, other carbonaceous material, or mixtures thereof.
Using coal in the hearth material layer provides volatiles in the coal to the furnace to be combusted providing heat for the process. The volatiles can be directly burned near the location of their volatilization from the coal, or may be communicated to a different location in the furnace to be burned at a more desirable location. Regardless of the location in the hearth furnace, the volatiles can be consumed to heat the reducible material efficiently. Thus, the addition of coal may decrease the necessity for externally supplied fuel sources while still protecting the hearth refractories.
The hearth material layer 44 may be provided in a thickness sufficient to prevent molten slag from penetrating the hearth material layer 44 and contacting the refractory material of the hearth 40. For example, the carbonaceous material may be ground or pulverized to an extent such that it is fine enough to prevent the slag from such penetration, but typically not so fine as to create excess ash. Contact of molten slag with the refractory hearth 40 during the metallic iron nodule process 10 may produce undesirable damage to the refractory material of hearth 40. A suitable particle size for the hearth layer is less than 6 mesh and desirably between 6 and 100 mesh where the reducible material is formed in situ. For separately formed reducible mixtures in briquettes, balls, or other compacts, the hearth material may be, for example, −3 mesh or larger as desired. A hearth layer thickness of between about ½ to one inch may be effective protection for the hearth 40 from penetration of the slag and metallic iron during processing. Alternatively, the hearth layer thickness may be greater than one inch, such as up to 2 inches, or more, as desired. Carbonaceous material less than 100 mesh is generally high in ash and also may result in entrained dust that is difficult to handle in commercial operations. Carbonaceous material less than 100 mesh is typically higher in ash and may react with the hearth refractory As used herein, measurements of mesh sizes of particles are provided in Tyler Mesh Size.
Referring to block 18 of
The reducible mixture 46 may contain mill scale containing more than 55% by weight FeO and FeO equivalent. FeO equivalent is formed from metallic Fe (Fe°). FeO equivalent is defined as the lesser of:
metallic Fe×3×72/56, or
(total Fe−metallic Fe−(FeO×56/72))×3/2×72/56.
Alternatively, the reducible mixture 46 may contain a mixture of mill scale with other similar metallurgical waste as described below, the mixture containing more than 55% by weight FeO and FeO equivalent. For example, the similar metallurgical waste for mixing with mill scale may include recyclable iron-bearing material, pellet plant wastes and pellet screened fines. Such pellet plant wastes and pellet screened fines may include a substantial quantity of hematite. In one alternative, the iron-bearing metallurgical waste material includes a mixture of mill scale and at least one selected from the group consisting of processed electric arc furnace (EAF) dust, basic oxygen furnace (BOF) sludge, blast furnace dust, and mixtures thereof. Alternatively, or in addition, iron bearing material metallurgical waste material for mixing with mill scale may include iron ore concentrate, taconite pellets, magnetite concentrates, oxidized iron ores, and red ore tailings. Also, less expensive iron ores high in silica may be used. In yet another alternative, the iron-bearing material may include micro metallic iron nodules formed in the process of producing metallic iron nodules. Micro metallic iron nodules, or micro-nodules, include small particles of agglomerated iron having a size between about 20 mesh and about 3 mesh. Metallic iron nodules less than 20 mesh can also be used depending on handling to recycle.
The reducible mixture 46 may include mill scale more than 55% FeO and FeO equivalent, or mixtures of mill scale with similar metallurgical waste materials. The iron-bearing metallurgical waste may, for example, be one hundred percent (100%) mill scale or be mill scale mixed with DRI fines or processed EAF dust, or other similar metallurgical waste.
The iron-bearing material may be finely-ground or otherwise physically reduced in particle size. The particle size of the mill scale or mixture of mill scale and similar metallurgical waste may be at least 80% less than 10 mesh. Alternatively, the iron-bearing metallurgical waste may be of a particle size of at least 80% less than 14 mesh. In one alternative, the iron-bearing material may be ground to less than 65 mesh (i.e., −65 mesh) or less than 100 mesh (i.e., −100 mesh) in size for processing according to the disclosed processes. Larger size particles, however, of iron-bearing material may also be used. For example, pellet screened fines and pellet plant wastes are generally approximately 3 mesh (about 0.25 inches) in average size. Such material may be used directly, or may be reduced in particle size to increase surface contact of carbonaceous reductant with the iron bearing material during processing. A smaller particle size tends to reduce fusion time in the present method.
The reducing material in the reducible mixture 46 comprises carbonaceous material. The carbonaceous material may be ground to 100 mesh or smaller in size. Alternatively, such carbonaceous material may be provided in the range of 65 mesh to 100 mesh. However, carbonaceous material in the range between about 200 mesh to about 8 mesh may also be used. The use of coarse carbonaceous material (e.g., coal) may require increased amounts of coal in the reducible mixture for carrying out the reduction process. Finer ground carbonaceous material may be more effective in the reducible mixture. We have found that larger sized carbonaceous material may also be used. For example, carbonaceous material of less than about 6 to 7 mesh (e.g., about 0.13 inch to about 0.11 inch) in average size may be used directly in the reducible mixture 46, or may be ground to −65 or −100 mesh for better contact and more efficiently react with the iron-bearing reducible material during processing. When other additives are also added to the reducible mixture, such additives may also be ground to a particle size similar to the particle size of the carbonaceous material, as desired.
Various carbonaceous materials may be used in providing the reducible mixture of reducing material and reducible iron-bearing material. For example, eastern anthracite and bituminous non-caking coals may be used as the carbonaceous reductant in at least one embodiment. However, sub-bituminous non-caking coal may also be used, such as PBR coal. Sub-bituminous coal may be useful in some geographical regions, such as on the Iron Range in Northern Minnesota, as such coals are more readily accessible with the rail transportation systems already in place and in some cases are lower in cost and lower in sulfur levels. As such, western sub-bituminous coals may be used in one or more processes as described herein. Alternatively, or in addition, the sub-bituminous coals may be carbonized, such as at 900° C., prior to its use. Other coals may be provided, such as low sulfur bituminous coal from Elkhorn seams from eastern Kentucky, as described below. In any case, the carbonaceous material in the reducible mixture may contain an amount of sulfur in a range from about 0.2% to about 1.5%, and more typically, in the range of 0.5% to 0.8%.
The amount of reducing material in the mixture of reducing material and reducible iron bearing material will depend on the stoichiometric quantity necessary for complete metallic reduction of the iron in the reducing reaction in the furnace process. Such a quantity may vary depending upon the iron-bearing metallurgical waste material used in the mixture with mill scale, on the furnace used, and on the furnace atmosphere in which the reducing reaction takes place. The reducible mixture 46 may include an amount of carbonaceous material that is between 80 and 110% of the stoichiometric amount needed to reduce the iron-bearing material to metallic iron. In one or more alternative embodiments, the quantity of reducing material necessary to carry out the reduction of the iron-bearing material is between about 85 percent and 105 percent of the stoichiometric quantity of reducing material needed for carrying out the reduction to completely metallize the iron. For certain reducible mixtures 46 containing mill scale, the carbonaceous material may be used at different stoichiometric levels, such as 90 percent or 100 percent depending upon the iron-bearing metallurgical waste material used in the mixture with mill scale. In one alternative, the carbonaceous material may be between 90 and 105% of the stoichiometric amount needed to reduce the iron-bearing waste mixture to metallic iron.
As shown by block 20 of
Further, rather than adding Ca(OH)2 to the feed material, EAF slag instead may be added to the feed material. Typical EAF slag contains about thirty percent (30%) by weight of lime or calcium oxide (CaO). The addition of EAF slag not only provides a mechanism to dispose of another metallurgical waste through recycling of the waste, but also lessens the dependence on external supplies of hydrated lime. Additionally, fluorspar (CaF2) also may be added to the reducible mixture 46, as discussed below. The reducible mixture 46 may include iron-bearing metallurgical waste mixed with less than 8% by weight lime and less than 4% by weight fluorspar. Additives may be added before or after grinding, or both.
The reducible mixture 46 may include, as needed, additions to provide a silica content between 0.8 and 8% by weight and a ratio of CaO/SiO2 between 1.4 and 1.8. The silica source may be at least in part from the iron-bearing metallurgical waste provided as an iron-bearing material. Alternatively, or in addition, the silica source may be at least partially selected from the group consisting of sand, EAF slag, LMF slag, BOF slag, fly ash from steelmaking and other sources, taconite tailings, wash ore tailings and other gravity concentration tailings, floatation tailings of nonferrous metals and nonmagnetic ores, DRI fines, blast furnace slag, and mixtures thereof, and other industrial byproducts. For example, if mill scale, or mixtures thereof, is used that has low silica content, silica may be added before or after grinding. In one embodiment, silica may added by an amount to obtain a feed material having approximately five percent by weight of silica. The silica content helps drive sulfur in the iron-bearing industrial waste into the slag during iron and slag melting, fusing, and partitioning in the formation of metallic iron nodules.
The reducible mixture 46 may be provided above the hearth in a layer of reducible mixture 46. Alternatively or in addition, the reducible mixture 46 may be formed into agglomerates or compacts such as briquettes, balls, or extrusions before being placed above the hearth 40 for use in the disclosed process of forming metallic iron nodules. For example, for agglomerates containing coal at 80% of the stoichiometric amount to completely reduce the iron oxide, balls may have a density of about 2.1 g/cm3, and briquettes or extrusions may have a density of about 2.1 g/cm3. It should also be noted that different pressurization during formation of the agglomerates may result in different processing characteristics as desired for the particular embodiment of the present process. One or more binders may be added to the feed material as desired to achieve a desired strength of agglomeration, such as molasses. Certain binders, such as molasses, provide in addition a source of carbon.
In yet another alternative, not shown, the reducible mixture may be provided above the hearth in a layer, and then channel openings formed in the reducible mixture layer that extend at least partially through the reducible mixture layer. Additionally, the reducible mixture may be compacted as the channel openings are formed, such as mounds formed in situ above the hearth. In this embodiment, the channel openings may be filled with a fill material that includes at least carbonaceous material.
The layer of reducible mixture 46 may have a thickness between about 0.25 inches (6.35 mm) and 2.0 inches (50.8 mm), or more as desired. In some embodiments, the reducible mixture 46 may have a thickness of less than 1 inch (25.4 mm) and more than 0.5 inch (12.7 mm). In other embodiments, the reducible mixture 46 may have a thickness of about 0.5 inches or less (12.7 mm or less). For example, an embodiment of a briquette may have a dimension of 1.33 inches by 0.84 inches by 0.56 inches. Such briquettes would have a major dimension of 1.33 inches and a minor dimension of 0.56 inches. In another embodiment, a briquette may have a dimension of 1.38 inches by 0.88 inches by 0.48 inches. Such briquettes would have a major dimension of 1.38 inches and a minor dimension of 0.48 inches. The thickness of the reducible mixture or minor dimension of briquette may be determined by the effective heat penetration therein. Increased surface area of iron bearing material and carbonaceous material in the reducible mixture allows for improved heat transfer and reduction activity.
With reference to
The formed agglomerates of reducible mixture 46, and optionally the carbonaceous overlayer 48, are provided above the hearth 40 of a hearth furnace 34 (shown in
Slag beads on hearth material layer 44 are separated from the iron nodules or attached thereto. With reference to block 28 of
We have found that the presence of CO in the furnace atmosphere accelerated the fusion process somewhat as compared to a N2 only atmosphere, and the presence of CO2 in furnace atmospheres adjacent the reducible mixture 46 slowed the fusion behaviors of metallic iron nodules. A presence of CO2 in furnace atmospheres during iron nodule formation starting at about 1325° C. (2417° F.), the temperature on the verge of forming fused iron nodules, has been observed to inhibit the formation of the metallic iron nodules. As shown by the plot set forth as
The process of formation of the metallic iron nodules is markedly improved by the overlayer 48 of coarse carbonaceous material. The partitioning of the sulfur in the slag of the intermediate slag/metallic nodule product is improved by lowering the sulfur levels in the metallic iron nodules without large amounts of MgO in the slag. As formed, the carbonaceous material of the coarse overlayer may contain an amount of sulfur in a range from about 0.2% to about 1.5%, and more typically, in the range of 0.5% to 0.8%. Alternatively, the metallic iron nodules may have less than 0.2% sulfur. The ratio of sulfur in the slag to sulfur in the nodules may be greater than 12, or 15 or 30.
The metallic iron nodule process 10 may be carried out by the furnace system 32 as shown generally in
An additional charging apparatus 37 may also be used to provide the coarse carbonaceous overlayer 48 over the agglomerates, which may also partially fill areas surrounding the agglomerates.
Referring to
The hearth 40 provided within the furnace may comprise a series of movable hearth cars 42 positioned contiguously end to end as they convey the reducible mixture 46 and carbonaceous material through the furnace 34. The hearth cars 42 are moved on wheels that typically engage rails or other suitable guides. The upper portion of the hearth cars 42 are lined with a refractory material suitable to withstand the temperatures for reduction of the iron oxide bearing material into metallic iron as explained herein. The hearth cars are positioned contiguously end to end to move through the furnace 34, such that the lower portions of the hearth cars are shielded from the heat generated in the furnace. Alternatively, the hearth 40 may be movement belt or other suitable conveyance medium that with the refractory material described below, is able to withstand the temperatures of the furnace atmospheres as described below and convey the reducible mixture 46 through the furnace 34.
The hearth furnace 34 may be linear as generally illustrated in
The zones of the furnace 34 are generally characterized by the temperature reached in each zone. In the drying/preheat zone, moisture is generally driven off from the materials on the hearth, and the reducible mixture 46 is heated to a temperature short of fluidizing volatiles in and associated with the reducible material positioned on the hearth cars 42. The design is to reach in the drying/preheat atmosphere a cut-off temperature in the reducible mixture 46 just short of significant volatilization of carbonaceous material in and associated with the reducible material. This temperature is generally somewhere in the range of about 300-600° F. (150-315° C.), depending in part on the particular composition of the reducible mixture 46.
The conversion zone 54 is characterized by heating the reducible mixture 46 first to drive off remaining the moisture and most of the volatiles in the reducible mixture, and then to initiate the reduction process in forming the reducible mixture 46 into metallic iron material and slag. The conversion zone 54 is generally characterized by heating the reducible mixture 46 to about 1500 to 2100° F. (815 to 1150° C.) depending on the particular composition and form of reducible material.
The fusion zone 56 involves further heating the reducible mixture 46, now absent of most volatile materials and commencing to form metallic iron, to fuse the metallic iron material and separate slag. The fusion zone generally involves heating the reducible mixture 46 to about 2450 to 2550° F. (about 1345-1400° C.), or higher, so that metallic iron nodules are formed with only a low percentage of iron oxide in the metallic iron. If the process is carried out efficiently, there will also be a low percentage of iron oxide in the slag, since the process is designed to reduce very high percentage of the iron oxide in the reducible material to metallic iron.
The heating of the reducible mixture 46 in the conversion zone 54 and fusion zone 56 may be done by oxy-fuel burners 60 in the side wall of the furnace housing as shown in
Cooling zone 58 cools the metallic iron material from its formation temperature in the conversion zone 54 and fusion zone 56 to a temperature at which the metallic iron material can be reasonably handled and further processed. This temperature is generally about 500° F. (260° C.) or below. The cooling can be achieved by injection of nitrogen, carbon monoxide, methane, flue gas or other cooling gas through nozzles 64 in the roofs and/or side walls of the furnace housing. Also, water spray may be used for the cooling in the cooling zone 58, if desired and provision made for water handling within the system.
A baffle or partition 66 may be provided between zones, as shown in
Further as shown in
In the absence of any other information of the furnace gas composition of iron nodule processes, most of the laboratory tests in a box furnace described herein were carried out in an atmosphere of 90% N2 and 10% CO (18 L/min and 2 L/min, respectively), assuming that CO2 in a natural gas-fired burner gas would be converted rapidly to CO in the presence of carbonaceous reductants and hearth layer materials by the Boudouard (i.e., carbon solution) reaction (CO2+C=2CO) at temperatures higher than 1000° C., and a CO-rich atmosphere would prevail at least in the vicinity of the reducible mixture 46 largely by reason of the presence of the coarse overlayer. In these tests, carbon dioxide often predominated and could reach levels of over 16%. The use of the coarse carbonaceous overlayer, however, enabled production of metallic iron nodules even under these adverse conditions.
One or more different reducing furnaces may be used according to the disclosed processes depending on the particular application. For example, laboratory furnaces have been used to perform the thermal treatment. The laboratory furnace may use sample trays or pallets, such as 30 inch square refractory lined pallets with a flat bottom. Alternatively, a linear hearth furnace such as that is described in U.S. Pat. No. 7,413,592, entitled “Linear hearth furnace system and methods regarding same,” may also be used.
The above described furnace systems are given to further illustrate the nodule formation process 10, and has provided certain aspects in testing and the results reported herein. However, any suitable furnace system capable of carrying out one or more embodiments of a metallic iron nodule formation process using mill scale or mixture with mill scale described herein may be used.
In certain furnaces (e.g., such as natural gas fired furnaces with high CO2 and highly turbulent gas atmospheres), added carbonaceous material (e.g., coal) in feed mixtures (e.g., such as those reducible mixtures described herein) is lost by the carbon solution (Boudouard) reaction in certain zones of the furnace (e.g., pre-heating and conversion zones). To compensate for this loss, it may be necessary to add reducing material (e.g., carbonaceous material) up to or in excess of the stoichiometric amount theoretically necessary for complete metallization. However, such an addition of reducing material (e.g., coal) may lead to formation of larger amounts of micro metallic iron nodules, i.e., nodules that are too large to pass through a 20 mesh screen (+20 mesh material) and less than about ⅛″ (about 3 mm). We have found such micro-nodule formation related to the gas turbulence and its composition in the furnace atmosphere in an area near the reducible mixture during processing.
As stated above, certain reducible mixtures with mill scale or mixtures of mill scale with similar metallurgical waste material may include a predetermined quantity of reducing material (e.g., carbonaceous reductant) between about 80 percent and about 110 percent of the stoichiometric amount necessary for complete metallization thereof. As seen in
In addition, the control of the amount of reducing material in the reducible mixture based on the stoichiometric amount theoretically necessary to complete the metallization process, applies not only to the methods described with reference to
As described previously with reference to
Use of fluorspar, for example, as well as one or more other fluxing agents, lowers the fusion temperature of the slag phase during formation of the metallic iron nodules, and at the same time reduces the generation of micro-nodules. Fluorspar has been found to lower not only the nodule formation temperature, but also to be effective in decreasing the amount of micro-nodules generated.
It is common practice in the steel industry to increase the basicity of slag by adding lime to slag under a reducing atmosphere for removing sulfur from metallic iron, for example, in blast furnaces. However, increasing lime may lower sulfur but increase the fusion temperature and the amount of micro-nodules generated. In the present process, the use of fluxing additives that lower the slag fusion temperature, such as fluorspar, may be used to (i) lower the temperature of iron nodule formation, (ii) decrease sulfur in the iron nodules, and, (iii) decrease the amount of micro-nodules formed in processing. For example, addition of certain additives, such as fluorspar to the feed mixture may reduce the amount of micro-nodules produced during processing of the reducible feed mixture.
Although fluorspar is reported to be a not particularly effective desulfurizer in steelmaking slag, we have found that sulfur in iron nodules was found to be lowered with increasing fluorspar addition in our methods as described herein. Therefore, the use of fluorspar not only lowered the operating temperature and further lowered the sulfur in iron nodules, but also has also been found to have the unexpected benefit of minimizing the generation of micro-nodules with the metallic iron nodules. It is believed that the melting temperature for the slag components is lower when fluorspar is employed. An increased amount of liquid slag is thus available to interact with the sulfur and capture the sulfur within the slag. If lime is present as an additive, the slag volume is increased and the fluorspar is more effective in increasing sulfur levels in the slag and decreasing sulfur levels in the metallic iron nodules.
With reference to
Also shown in
Concentrations of CO, expressed as percentages of the CO+CO2 mixtures in the atmosphere, were plotted in the equilibrium concentration diagrams of iron oxide reduction and carbon solution (Boudouard) reactions as shown in
Samples of mill scale were taken from three Nucor Steel mills as shown in
Metallic iron nodules were produced using the mill scale in mixture with varying amounts of EAF slag. As shown in
Other metallurgical wastes have been investigated to mix with mill scale in producing metallic iron nodules by the present method. An iron-bearing waste product sold by Horsehead Corporation was tested, Horsehead IRM. Horsehead utilizes a Waelz kiln to process EAF dust and other waste. In addition, iron-bearing material from Steel Dust Recycling, LLC (SDR) was also analyzed. The analysis of these various metallurgical wastes is shown in
In recent experiments producing iron nodules in the laboratory box furnace, mill scale was reduced to form metallic iron nodules using Elkhorn coal as the reducing material, as shown in
The analytical results of products are shown in
Tests were performed to determine the briquette strength of reducible mixtures of mill scale and Elkhorn coal both without a binder and with molasses binder, shown in
The role that molasses plays in generating micro-nodules was investigated by using feed mixtures with different amounts of Elkhorn coal in the presence of 4% molasses binder. The composition of feed mixtures is shown in
This invention has been described with reference to illustrative embodiments and is not meant to be construed in a limiting sense. It will be apparent to one skilled in the art that elements or process steps from one or more embodiments described herein may be used in combination with elements or process steps from one or more other embodiments described herein, and that the present invention is not limited to the specific embodiments provided herein but only as set forth in the accompanying claims. Various modifications of the illustrative embodiments, as well as additional embodiments to the invention will be apparent to persons skilled in the art upon reference to this description.
Hendrickson, David W., Iwasaki, Iwao
Patent | Priority | Assignee | Title |
10323298, | Feb 09 2017 | U S DEPARTMENT OF ENERGY | Method for recovering target materials from source materials |
Patent | Priority | Assignee | Title |
5779877, | May 12 1997 | Drinkard Metalox, Inc.; Drinkard Metalox, Inc | Recycling of CIS photovoltaic waste |
5897685, | May 12 1997 | U S DEPARTMENT OF ENERGY | Recycling of CdTe photovoltaic waste |
5912402, | Oct 30 1995 | METALOX, L L C | Metallurgical dust recycle process |
5980842, | Feb 29 1996 | Drinkard Metalox, Inc. | Separation of calcium from metal compounds |
5997718, | May 12 1997 | Drinkard Metalox, Inc. | Recycling of CdTe photovoltaic waste |
6264909, | Feb 29 1996 | ALTILIUM LICENSING LIMITED | Nitric acid production and recycle |
6562096, | Feb 06 2002 | Heritage Environmental Services, LLC | Management of electric arc furnace dust through a basic oxygen furnace |
6562101, | Feb 06 2002 | Heritage Environmental Services, LLC | Processing electric arc furnace dust through a basic oxygen furnace |
6630010, | Mar 30 2000 | Midrex International B.V. Zurich Branch | Method of producing metallic iron |
6682586, | Oct 09 2001 | Heritage Environmental Services, LLC | Assemblies and methods for processing zinc-bearing materials |
6831939, | Nov 12 2002 | Heritage Environmental Services, LLC | Dual use of an induction furnace to produce hot metal or pig iron while processing iron and volatile metal containing materials |
7628839, | Dec 07 2004 | Nu-Iron Technology, LLC | Method and system for producing metallic iron nuggets |
7632335, | Dec 07 2004 | Nu-Iron Technology, LLC | Method and system for producing metallic iron nuggets |
7641712, | Dec 07 2004 | Nu-Iron Technology, LLC | Method and system for producing metallic iron nuggets |
7695544, | Dec 07 2004 | Nu-Iron Technology, LLC | Method and system for producing metallic iron nuggets |
8021460, | Jul 26 2006 | Nu-Iron Technology, LLC | System and method for producing metallic iron nodules |
8158054, | Dec 07 2004 | Nu-Iron Technology, LLC | Method and system for producing metallic iron nuggets |
20050241439, | |||
20060248981, | |||
JP11229046, | |||
JP2004292837, | |||
JP2005264310, | |||
JP9143578, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 21 2011 | Nu-Iron Technology, LLC | (assignment on the face of the patent) | / | |||
Jul 31 2011 | IWASAKI, IWAO | Nu-Iron Technology, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 026851 | /0547 | |
Aug 01 2011 | HENDRICKSON, DAVID W | Nu-Iron Technology, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 026851 | /0547 |
Date | Maintenance Fee Events |
Mar 03 2017 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Feb 18 2021 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jan 09 2025 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Sep 17 2016 | 4 years fee payment window open |
Mar 17 2017 | 6 months grace period start (w surcharge) |
Sep 17 2017 | patent expiry (for year 4) |
Sep 17 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 17 2020 | 8 years fee payment window open |
Mar 17 2021 | 6 months grace period start (w surcharge) |
Sep 17 2021 | patent expiry (for year 8) |
Sep 17 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 17 2024 | 12 years fee payment window open |
Mar 17 2025 | 6 months grace period start (w surcharge) |
Sep 17 2025 | patent expiry (for year 12) |
Sep 17 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |