A method of masking a cryptographic operation using a secret value, comprising the steps of dividing the secret value into a plurality of parts; combining with each part a random value to derive a new part such that the new parts when combined are equivalent to the original secret value; and utilizing each of the individual parts in the operation.

Patent
   8542821
Priority
Jan 11 1999
Filed
Jul 15 2010
Issued
Sep 24 2013
Expiry
Jan 11 2020
Assg.orig
Entity
unknown
0
52
EXPIRED
13. A device comprising:
memory; and
one or more processors operable to:
define private values such that a sum of the private values, modulo a specified integer, is equal to an elliptic curve private key, wherein defining the private values includes combining a random value with one or more other private values; and
use the private values in an elliptic curve cryptographic operation, wherein using the private values includes producing a plurality of products by multiplying each respective private value by another value.
1. A computer-implemented elliptic curve cryptography method comprising:
defining, by one or more processors, private values such that a sum of the private values, modulo a specified integer, is equal to an elliptic curve private key, wherein defining the private values includes combining a random value with one or more other private values; and
using the private values in an elliptic curve cryptographic operation, wherein using the private values includes producing a plurality of products by multiplying each respective private value by another value.
7. A non-transitory computer-readable medium storing instructions that, when executed by one or more processors, perform operations comprising:
defining private values such that a sum of the private values, modulo a specified integer, is equal to an elliptic curve private key, wherein defining the private values includes combining a random value with one or more other private values; and
using the private values in an elliptic curve cryptographic operation, wherein using the private values includes producing a plurality of products by multiplying each respective private value by another value.
2. The method of claim 1, wherein the specified integer is equal to at least one of the order of an elliptic curve generator and the order of an elliptic curve.
3. The method of claim 1, further comprising:
after using the private values, updating the private values such that a sum of the updated private values, modulo the specified integer, is equal to the elliptic curve private key; and
using the updated private values in another elliptic curve cryptographic operation.
4. The method of claim 3, wherein updating the private values comprises randomly modifying at least two of the private values.
5. The method of claim 1, wherein using the private values in an elliptic curve cryptographic operation comprises generating a digital signature of a message.
6. The method of claim 5, wherein the digital signature is generated from the private values in a manner that is mathematically equivalent to generating a digital signature from the elliptic curve private key.
8. The computer-readable medium of claim 7, wherein the specified integer is equal to at least one of the order of an elliptic curve generator and the order of an elliptic curve.
9. The computer-readable medium of claim 7, wherein the operations further comprise:
after using the private values, updating the private values such that a sum of the updated private values, modulo the specified integer, is equal to the elliptic curve private key; and
using the updated private values in another elliptic curve cryptographic operation.
10. The computer-readable medium of claim 9, wherein updating the private values comprises randomly modifying at least two of the private values.
11. The computer-readable medium of claim 7, wherein using the private values in an elliptic curve cryptographic operation comprises generating a digital signature of a message.
12. The computer-readable medium of claim 11, wherein the digital signature is generated from the private values in a manner that is mathematically equivalent to generating a digital signature from the elliptic curve private key.
14. The device of claim 13, wherein the specified integer is equal to at least one of the order of an elliptic curve generator and the order of an elliptic curve.
15. The device of claim 13, wherein the one or more processors are further operable to:
after using the private values, update the private values such that a sum of the updated private values, modulo the specified integer, is equal to the elliptic curve private key; and
use the updated private values in another elliptic curve cryptographic operation.
16. The device of claim 15, wherein updating the private values comprises randomly modifying at least two of the private values.
17. The device of claim 13, wherein using the private values in an elliptic curve cryptographic operation comprises generating a digital signature of a message.
18. The device of claim 17, wherein the digital signature is generated from the private values in a manner that is mathematically equivalent to generating a digital signature from the elliptic curve private key.

This application is a continuation of U.S. patent application Ser. No. 11/483,553 filed on Jul. 11, 2006 which is a continuation of U.S. patent application Ser. No. 09/900,959 filed on Jul. 10, 2001, and now issued as U.S. Pat. No. 7,092,523, which is a continuation-in-part of PCT Application No. PCT/CA00/00021 filed on Jan. 11, 2000, which claims priority from Canadian Patent Application No. 2,258,338 filed on Jan. 11, 1999 and is also a continuation-in-part of PCT Application No. PCT/CA00/00030 filed on Jan. 14, 2000, which claims priority from Canadian Patent Application No. 2,259,089 filed on Jan. 15, 1999 all of which are hereby incorporated by reference.

This invention relates to cryptographic systems and in particular to a method and apparatus for minimizing successful power analysis attacks on processors.

Cryptographic systems generally owe their security to the fact that a particular piece of information is kept secret, without which it is almost impossible to break the scheme. This secret information must generally be stored within a secure boundary, making it difficult for an attacker to get at it directly however, various schemes or attacks have been attempted in order to obtain the secret information. Of particular risk are portable cryptographic tokens, including smart cards and the like. Of the more recent attacks performed on these particularly vulnerable devices are simple power analysis, differential power analysis, higher order differential power analysis and other related techniques. These technically sophisticated and extremely powerful analysis tools can be used by an attacker to extract secret keys from cryptographic devices. It has been shown that these attacks can be mounted quickly and can be implemented using readily available hardware. The amount of time required for these attacks depends on the type of attack and varies somewhat by device. For example it has been shown that a simple power attack (SPA) typically take a few seconds per card, while the differential power attacks (DPA) can take several hours.

Encryption operations are performed in a processor operating in a sequential manner by performing a sequence of fundamental operations, each of which generates a distinct timing pattern. Laborious but careful analysis of end-to-end power waveforms can decompose the order of these fundamental operations performed on each bit of a secret key and thus be, analyzed to find the entire secret key, compromising the system.

In the simple power analysis (SPA) attacks on smart cards and other secure tokens, an attacker directly measures the token's power consumption changes over time. The amount of power consumed varies depending on the executed microprocessor instructions. A large calculation such as elliptic curve (EC) additions in a loop and DES rounds, etc, may be identified, since the operations performed with a microprocessor vary significantly during different parts of these operations. By sampling the current and voltage at a higher rate, i.e., higher resolution, individual instructions can be differentiated.

The differential power analysis attack (DPA) is a more powerful attack than the SPA and is much more difficult to prevent. Primarily, the DPA uses statistical analysis and error correction techniques to extract information which may be correlated to secret keys, while the SPA attacks use primarily visual inspection to identify relevant power fluctuations. The DPA attack is performed in two steps. The first step is recording data that reflects the change in power consumed by the card during execution of cryptographic routines. In the second step, the collected data is statistically analyzed to extract information correlated to secret keys. A detailed analysis of these attacks is described in the paper entitled “Introduction to Differential Power Analysis and Related Attacks” by Paul Kocher et al.

Various techniques for addressing these power attacks have been attempted to date. These include hardware solutions such as providing well-filtered power supplies and physical shielding of processor elements. However, in the case of smart cards and other secure tokens, this is unfeasible. The DPA vulnerabilities result from transistor and circuit electrical behaviors that propagate to expose logic gates, microprocessor operation and ultimately the software implementations.

In software implementation of cryptographic routines, particularly on smart cards, branches in program flow are particularly vulnerable to power analysis measurements. Generally, where the program flow reaches a branch, then based on some distinguishing value V, one of two branches of the program is executed. To distinguish between the two possible cases, V is compared with a threshold value and a jump to one of two locations is executed as a result of the comparison. This is illustrated by referring to FIG. 1, where a flow diagram showing the implementation of a typical conditional jump according to the prior art is shown generally by 10. Generally a conditional jump implements an “IF condition THEN statement1 ELSE statement2” clause. In this case, the flow diagram indicates a scenario where a distinguishing value V varies within a range and the condition is whether a threshold value TH is crossed by the distinguishing value V or not. The threshold TH is a random number between an upper limit and a lower limit VMAX and VMIN, respectively. Thus, it may be seen in FIG. 1 if V<TH the program executes statements1 or if V≧TH, the program executes statement2. This may be repeated for all values of V from VMIN to VMAX.

As outlined earlier by utilizing a simple power analysis technique, it is possible for an observer to distinguish whether the “IF” branches or the “ELSE” branch is being executed. This however, does assume that the statements1 and statements2 consist of two identical sets of instructions that serve different purposes. Power or current consumption measurements on some smart cards can reveal which branch was taken. In some cases, some status flags on the chip may be set or reset. These flags may also be used for SPA.

Accordingly, there is a need for a system for reducing the risk of a successful power analysis attacks and which is particularly applicable to current hardware environments.

It is an object of this invention is to provide a method for minimizing power analysis attacks on processors.

In accordance with this invention there is provided a method of masking a conditional jump operation in a processor, wherein program execution jumps to one of two branches dependent on a first or second condition of a distinguishing value V relative to a reference value and wherein the reference is bounded by an upper limit Vmax and a lower limit Vmin, the method comprising the steps of:

determining the location of a conditional jump; and

inserting code thereat for executing instructions to change program execution to a respective one of the two branches by using said distinguishing value and a base address to compute a target address, wherein for each evaluation of said condition a different number of instructions are executed, thereby minimizing the effectiveness of a differential power attack.

In a further embodiment the distinguishing value is combined with a random value, thereby adding a random number of instructions on every condition evaluation.

These and other features of the preferred embodiments of the invention will become more apparent in the following detailed description in which reference is made to the appended drawings wherein:

FIG. 1 is schematic diagram of a conditional operation;

FIG. 2 is part of a computer program according to an embodiment of the present invention;

FIG. 3 is part of a computer program according to a further embodiment of the present invention;

FIG. 4 is part of a computer program according to a still further embodiment of the present invention; and

FIG. 5 is a flow diagram illustrating another embodiment of the invention.

Referring to FIG. 2, a schematic diagram of a method for masking conditional jump statements in a computer program, according to an embodiment of the present invention, is shown generally by numeral 50. We assume that the following code fragments are executed by a processor and that a distinguishing value V varies within a known range and the condition is whether a threshold value TH is crossed by the distinguishing value V or not. The threshold TH is a random number in the known range having an upper limit and a lower limit VMAX and VMIN, respectively. In a generalized embodiment, the method comprises the steps of identifying a location for a conditional jump operation, and inserting at the location a call 52 to a subroutine 54, the subroutine 54 including instructions for changing the return address of the subroutine to one of two program branches to execute branch statements1 or branch statements2 in response to the result of a comparison of the distinguishing value V to the threshold value.

As may be seen in FIG. 2, the location of the conditional jump that is replaced is identified by code block a. The subroutine is identified as IRRITATE_1 (54) and includes code blocks identified as b and c. The code block c includes a first and second sections 56 and 58, respectively. The start address of the second section 58 is predetermined and is indicated by the value KNOWN_DISPLACEMENT. The start address of the first section 56 is then determined by the difference between KNOWN_DISPLACEMENT and the upper limit of the distinguishing value V. The first section 56 consists of a series of conditional jumps to an address L1 and the second section 58 consists of a series of unconditional jumps to an address L2. The locations L1 and L2 contain code for returning program flow to execute statements1 and statements2 respectively. The code block b included in the subroutine IRRITATE_1 includes code for computing a difference between the KNOWN_DISPLACEMENT address and the THRESHOLD. The resulting address is then added to the distinguishing value V to derive a target address location in one of the sections 56 or 58.

As may be seen in block a the distinguishing value V is preserved while calling the subroutine, which in turn does not contain any conditional jumps. In this subroutine we change the return address of the subroutine (which resides on the stack) depending on whether V is below or above TH in such a way that, after returning from the subroutine, the program will continue execution in the desired branch.

An addressing mode known as extended addressing is used to determine the target address. With extended addressing the address at which the execution of the program has to continue is computed as the sum of the content of two registers. For example JMP @A+DPTR in the assembly language of the Intel 8051 family means that the address at which the program execution has to continue is computed by adding the content of the accumulator A and the data pointer DPTR. Other processors may support similar mechanisms for addressing. The code fragments shown in FIG. 2 illustrate the method. To refer to lines of these code fragments we use labels consisting of a letter and a number. Thus to implement this method we have to specify:

The operation of the code fragments shown in FIG. 2 will be discussed below. The code fragments may be located within a loop, which sequentially changes the value of V in a given range for iterations of the loop. For example V may the value of the loop counter. The goal is to continue execution at the label DO_REAL, line d1, as long as V<THRESHOLD and continue execution of instructions at the label DO_VOID, line e1, for V>=THRESHOLD.

As mentioned earlier the THRESHOLD value is a random value within the known range of Vmin and Vmax. At line a1 the distinguishing value V is stored in the accumulator of the processor and the subroutine IRRITATE_1 is called at line a2. The return address from this subroutine will be line a3, which is automatically stored on the stack by the processor.

The KNOWN_DISPLACEMENT in line b1 is a constant value that specifies the beginning location of the second section 58 and indicates the address of line c9. Thus KNOWN_DISPLACEMENT−Vmax is the address of line c1, the beginning location of the first section 56.

In Block b the value of KNOWN_DISPLACEMENT is stored in a register at line b1. Next at line b2 the register is updated with the difference of KNOWN_DISPLACEMENT and THRESHOLD. This difference is moved to in DPTR at line b3. Thus, DPTR contains the address of one of the lines c1 through c8 in block c. For example for THRESHOLD=3 DPTR would point to line c6. Assume next V and thus the contents of the accumulator can vary from 0 (Vmin) to 7 (Vmax). Then since DPTR may vary from the address of c1 to c8, the address @A+DPTR computed at line b4 can vary from the address of line c6 through c12 as V varies from 0 to 7. Therefore, for V<3 the JMP L1 instructions in the first section will be executed and for V>=3 the JMP L2 instructions in the second section will be executed.

The labels L1 and L2 point to addresses located at lines c17 and c21 respectively. In lines c17 through c19 the return address of the subroutine IRRITATE_1 is retrieved and changed such that the program counter will point to line a3 after returning from the subroutine. In lines c21 through c23 the return address of the subroutine IRRITATE_1 is also retrieved and changed such that the program counter will point to line a4 after returning from the subroutine. The simple jump instructions at lines a3 and a4.

It may be noted that the actual distinction between the two branches to be taken is decided at lines c18 and c22 where the retrieved subroutine return address is changed to the appropriate line in block a. In the present embodiment values of 0 and 1 have been chosen since the redirection jump instructions were located immediately after the call instruction to the subroutine IRRITATE_1, at lines a3 and a4 respectively. In other implementations different values with equal number of 1's in their binary presentation may be used so that the difference in the add operations at lines c18 and c22 is indistinguishable to an attacker. In this case an appropriate number of NOP's would be added to code block a in order to adjust the return addresses.

Furthermore, the jump instructions in lines a3 and a4, which redirect program flow to statements1 and statements2 respectively, should be placed at addresses with the same number of 1's in their binary representation. This would result in homogenous power consumption on the address bus while addressing these two different locations. The same precaution applies to the lines d1 and c1, the beginning location of statements1 and statements2 respectively. In addition, in line b2 special attention should be paid to the choice of values of THRESHOLD and KNOWN_DISPLACEMENT to avoid changes in flags in the processors status word while the SUB instruction is being executed.

Referring to FIG. 3, a second embodiment of the present invention is shown generally by numeral 100. This embodiment also utilizes extended addressing as described earlier. Again, assembly language of the Intel 8051 family of processors is used to illustrate the method. For clarity the symbols op1 through op7 are used to represent program instructions. In this embodiment, the distinguishing value V is one of two distinct values Vmax and Vmin, rather than a range of values. Thus, the condition in this case is when the distinguishing value V is one or the other of the distinct values Vmax or Vmin. Once again a call to a subroutine is inserted at a conditional jump location, the subroutine including instructions for changing the return address of the subroutine to one of two program branches to execute branch statements1 or branch statements2 in response to the distinguishing value V being one of the two distinct values Vmax or Vmin.

As may be seen in FIG. 3, the location of the conditional jump that is replaced is identified by code block f. The subroutine is identified as IRRITATE_2 (102) and includes code blocks identified as blocks g, h and i. The code block h also includes first and second sections 106 and 108, respectively. Each of the sections contain a series of dummy operations op1 indicated at lines h1 through h7 and at lines h12 through h18. Each of the sections is terminated by a sequence of instructions for retrieving the return address of the subroutine IRRITATE_2 and changing it such that the program counter will point to line f4 or f5 after returning from the subroutine. The lines f4 and f4 include jumps to one of the two branches indicates as block i and block j which contain statements1 and statements2 respectively.

The target destination address is comprised of two components, namely the distinguishing value V or a value derived from V and a random number MASKED_RANDOM, that are added at line g1. The beginning address of the first and second sections are chosen such that this target address is either in the range of lines h1 through h8 or h12 through h19. Since, the second component of the target address is a random number, a random number of dummy operations will be executed before the return address of the subroutine IRRITATE_2 is computed at lines h8 to h10 (or h19 to h21).

As in the previous embodiment the ADD values at lines h9 and h20 may be chosen to have the same hamming weight (number of 1's), with appropriate number of NOP instructions added to block f. In addition the jump instructions at lines f4 and f5 may be placed at addresses with the same number of one's. Additional JMP instructions may also be inserted between the lines h1 and h8 with a destination in the same segment.

This embodiment thus uses unconditional jumps instead of conditional jumps and adds a random number of dummy operations to the code. The former property is a countermeasure against SPA and the latter makes DPA attacks more difficult. In particular this embodiment adds a random mask or noise to the program execution path since the jump to a random address within a segment causes program execution of a random number of operations before one of the branches is executed. Therefore each time one of the branches is executed, the number of operations performed by the processor varies randomly making DPA attacks more difficult.

In the above embodiments, a subroutine is used to redirect program flow, however in FIG. 4, a simple series of jumps are used. The invention is thus not restricted to the embodiments shown.

Referring to FIG. 5 an embodiment of a method for masking a private key or secret value used in a cryptographic operation is shown generally by numeral 200. The method comprises the steps of dividing a secret value into a plurality of parts and combining with each part a random value modulo n (where n is the number of points on the elliptic curve) to derive a new part such that the new parts are combined to be equivalent to the original secret value and utilizing each of the individual parts in the operation. Typically, the secret value is a private key, which is used to compute a public key, and more frequently used in signatures, decryption and possible key exchange protocols, such as Diffie-Hellman key exchange.

For illustrative purposes, we will in the following discussion assume an elliptic curve (EC) scheme, where P is a point on the elliptic curve. The secret key d is normally combined with the point P to derive dP, the public key. However, the private key may also be used more frequently in various other cryptographic operations as described above. The cryptographic processor is generally initialized at manufacture time with the public key or secret value d. Initially, the value d may be divided into a number of parts, e.g. d=b10+b20.

In a first step the bi's are initialized to b1=b10 and b2=b20 such that d=b10+b20. These initial values of b1 and b2 are stored instead of d. Alternatively the d value may also be stored if so desired, however in the case of a smart card where memory is limited this may not be desirable.

Typically when a computation using the value d is required, at a next step, a random number π is generated and values b1 and b2 are updated as follows:
b1=b1+π mod n
b2=b2−π mod n.
The updated values b1 and b2 are stored. Computation is then performed on the point P using the components b1 and b2 as follows:
dP mod n=b1P+b2P mod n
where, P is a point on the curve which is a predefined parameter of the system.

Thus assuming the value π is randomly generated for each session, then an attacker is unlikely to observe a predictable power signature.

In a typical application of the present invention a signature component s has the form:
s=œ+k(mod n)
where:

The sender sends to the recipient a message including m, s and r and the signature is verified by the computing the value R=(sP−eQ) which should correspond to R. If the computed values correspond then the signature is verified. Both the secret keys in the above example may be masked using the method of the present invention.

Specifically referring back to the above example, calculation of the product e may reveal some information on some platforms in some environments. To minimize this, the present invention is applied. The product æ is computed as æ=(b0+b1)e for (b0+b1)=a; where b0, b1 sum to a. The components b0, b1 are updated periodically as described above. This updating of the components can be made on every new signature operation.

In the above embodiments the secret value was divided into two components b0, b1, however this may be generalized to a plurality of components b0 . . . bn−1. Furthermore the above signature scheme is used for illustrative purposes and other schemes and operations may equally well be applied using the present invention.

Although the invention has been described with reference to certain specific embodiments, various modifications thereof will be apparent to those skilled in the art without departing from the spirit and scope of the invention as outlined in the claims appended hereto.

Pezeshki, Farhad, Lambert, Robert John

Patent Priority Assignee Title
Patent Priority Assignee Title
4519036, Jan 05 1983 Thorn EMI Patents Limited Program storage hardware with security scheme
5201000, Sep 27 1991 International Business Machines Corporation Method for generating public and private key pairs without using a passphrase
5202995, Oct 12 1989 International Business Machines Corporation Method for removing invariant branches from instruction loops of a computer program
5511198, Apr 28 1993 Fujitsu Limited Optimizing compiler for shortening execution time of object program
5524222, Mar 27 1992 VIA-Cyrix, Inc Microsequencer allowing a sequence of conditional jumps without requiring the insertion of NOP or other instructions
5581616, Sep 17 1991 NEXT SOFTWARE, INC Method and apparatus for digital signature authentication
5627893, Dec 22 1992 Telstra Corporation Limited Cryptographic method
5650948, Dec 31 1991 Texas Instruments Incorporated Method and system for translating a software implementation with data-dependent conditions to a data flow graph with conditional expressions
5675645, Apr 18 1995 Ricoh Company, LTD Method and apparatus for securing executable programs against copying
5757918, Jan 20 1995 Hewlett Packard Enterprise Development LP Method and apparatus for user and security device authentication
5764772, Dec 15 1995 International Business Machines Corporation Differential work factor cryptography method and system
5768389, Jun 21 1995 Nippon Telegraph and Telephone Corporation Method and system for generation and management of secret key of public key cryptosystem
5778069, Apr 10 1996 Microsoft Technology Licensing, LLC Non-biased pseudo random number generator
5825880, Jan 13 1994 CERTCO, INC , A CORPORATION OF DELAWARE Multi-step digital signature method and system
5892899, Jun 13 1996 Intel Corporation Tamper resistant methods and apparatus
5937066, Oct 02 1996 International Business Machines Corporation Two-phase cryptographic key recovery system
6279110, Nov 10 1997 Certicom Corp Masked digital signatures
6298135, Apr 29 1999 Google Technology Holdings LLC Method of preventing power analysis attacks on microelectronic assemblies
6304658, Jan 02 1998 Cryptography Research, Inc. Leak-resistant cryptographic method and apparatus
6334189, Dec 05 1997 TUMBLEWEED HOLDINGS LLC Use of pseudocode to protect software from unauthorized use
6411715, Nov 10 1997 EMC Corporation Methods and apparatus for verifying the cryptographic security of a selected private and public key pair without knowing the private key
6419159, Jun 14 1999 Microsoft Technology Licensing, LLC Integrated circuit device with power analysis protection circuitry
6446207, Jan 31 1997 Certicom Corp Verification protocol
6496929, Apr 08 1998 Citibank, NA Generating RSA moduli including a predetermined portion
6724894, Nov 05 1999 Pitney Bowes Inc. Cryptographic device having reduced vulnerability to side-channel attack and method of operating same
6873706, Sep 29 1999 Hitachi, LTD Processing apparatus, program, or system of secret information
7421074, Oct 09 2003 Samsung Electronics Co., Ltd. Security system using RSA algorithm and method thereof
20010053220,
20020166058,
20030044003,
20030048903,
20030061498,
20080140995,
CA2129203,
CA2316227,
EP383985,
EP383985,
FR2672402,
JP10091531,
JP10200520,
JP2008146384,
JP962596,
WO42733,
WO77973,
WO9800771,
WO9852319,
WO9935782,
WO42733,
WO77973,
WO9800771,
WO9852319,
WO9935782,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 15 2010Certicom Corp.(assignment on the face of the patent)
Date Maintenance Fee Events


Date Maintenance Schedule
Sep 24 20164 years fee payment window open
Mar 24 20176 months grace period start (w surcharge)
Sep 24 2017patent expiry (for year 4)
Sep 24 20192 years to revive unintentionally abandoned end. (for year 4)
Sep 24 20208 years fee payment window open
Mar 24 20216 months grace period start (w surcharge)
Sep 24 2021patent expiry (for year 8)
Sep 24 20232 years to revive unintentionally abandoned end. (for year 8)
Sep 24 202412 years fee payment window open
Mar 24 20256 months grace period start (w surcharge)
Sep 24 2025patent expiry (for year 12)
Sep 24 20272 years to revive unintentionally abandoned end. (for year 12)