A downscan imaging sonar utilizes a linear transducer element to provide improved images of the sea floor and other objects in the water column beneath a vessel. A transducer array may include a plurality of transducer elements and each one of the plurality of transducer elements may include a substantially rectangular shape configured to produce a sonar beam having a beamwidth in a direction parallel to longitudinal length of the transducer elements that is significantly less than a beamwidth of the sonar beam in a direction perpendicular to the longitudinal length of the transducer elements. The plurality of transducer elements may be positioned such that longitudinal lengths of at least two of the plurality of transducer elements are parallel to each other. The plurality of transducer elements may also include at least a first linear transducer element, a second linear transducer element and a third linear transducer element.
|
1. A sonar transducer assembly, comprising:
a plurality of transducer elements, each one of the plurality of transducer elements having a substantially rectangular shape configured to produce a sonar beam having a beamwidth in a direction parallel to a longitudinal length of the transducer element that is significantly less than a beamwidth of the sonar beam in a direction perpendicular to the longitudinal length of the transducer element,
wherein the plurality of transducer elements are positioned such that the longitudinal lengths of the plurality of transducer elements are substantially parallel to each other, and
wherein the plurality of transducer elements include at least:
a first linear transducer element positioned within a housing and configured to project sonar pulses from a first side of the housing in a direction substantially perpendicular to a centerline of the housing,
a second linear transducer element positioned within the housing and spaced laterally from the first linear transducer element, wherein the second linear transducer element lies substantially in a plane with the first linear transducer element and is configured to project sonar pulses from a second side of the housing that is generally opposite of the first side, and is also in a direction substantially perpendicular to the centerline of the housing, and
a third linear transducer element positioned within the housing and configured to project sonar pulses in a direction substantially perpendicular to the plane defined by the first and second linear transducer elements.
57. A sonar transducer assembly for imaging an underwater environment beneath a watercraft traveling on a surface of a body of water, the sonar transducer assembly comprising:
a housing mountable to the watercraft; a linear downscan transducer element positioned within the housing, the linear downscan transducer element having a substantially rectangular shape configured to produce a fan-shaped sonar beam having a relatively narrow beamwidth in a direction parallel to a longitudinal length of the linear downscan transducer element and a relatively wide beamwidth in a direction perpendicular to the longitudinal length of the transducer element, the linear downscan transducer element being positioned with the longitudinal length thereof extending in a fore-to-aft direction of the housing,
wherein the linear downscan transducer element is positioned within the housing to project fan-shaped sonar beams in a direction substantially perpendicular to a plane corresponding to the surface of the body of water, said sonar beams being repeatedly emitted so as to sequentially insonify different fan-shaped regions of the underwater environment as the watercraft travels;
a first linear sidescan transducer element and a second linear sidescan transducer element positioned within the housing, each of the first and second linear sidescan transducer elements having a substantially rectangular shape, extending in the fore-to-aft direction of the housing, and each configured to produce a fan-shaped sonar beam having a relatively narrow beamwidth in a direction parallel to a longitudinal length of the linear downscan transducer element and a relatively wide beamwidth in a direction perpendicular to the longitudinal length of the transducer element, and being oriented in the housing so as to insonify respective fan-shaped regions differing from the fan-shaped regions insonified by the linear downscan transducer element.
32. A sonar system comprising:
a sonar transducer assembly, including:
a plurality of transducer elements, each one of the plurality of transducer elements having a substantially rectangular shape configured to produce a sonar beam having a beamwidth in a direction parallel to a longitudinal length of the transducer element that is significantly less than a beamwidth of the sonar beam in a direction perpendicular to the longitudinal length of the transducer element,
wherein the plurality of transducer elements are positioned such that the longitudinal lengths of the plurality of transducer elements are substantially parallel to each other, and
wherein the plurality of transducer elements include at least:
a first linear transducer element positioned within a housing and configured to project sonar pulses from a first side of the housing in a direction substantially perpendicular to a centerline of the housing,
a second linear transducer element positioned within the housing and spaced laterally from the first linear transducer element,
wherein the second linear transducer element lies substantially in a plane with the first linear transducer element and is configured to project sonar pulses from a second side of the housing that is generally opposite of the first side, and is also in a direction substantially perpendicular to the centerline of the housing, and
a third linear transducer element positioned within the housing and configured to project sonar pulses in a direction substantially perpendicular to the plane defined by the first and second linear transducer elements; and
a sonar module configured to enable operable communication with the transducer assembly, the sonar module including:
a sonar signal processor to process sonar return signals received via the transducer assembly, and
a transceiver configured to provide communication between the transducer assembly and the sonar signal processor.
2. The transducer assembly of
3. The transducer assembly of
4. The transducer assembly of
5. The transducer assembly of
6. The transducer assembly of
7. The transducer assembly of
8. The transducer assembly of
10. The transducer assembly of
11. The transducer assembly of
12. The transducer assembly of
13. The transducer assembly of
14. The transducer assembly of
15. The transducer assembly of
16. The transducer assembly of
17. The transducer assembly of
18. The transducer assembly of
19. The transducer assembly of
21. The transducer assembly of
22. The transducer assembly of
23. The transducer assembly of
24. The transducer assembly of
25. The transducer assembly of
26. The transducer assembly of
27. The transducer assembly of
28. The sonar system of
29. The transducer assembly of
30. The transducer assembly of
31. The transducer assembly of
33. The sonar system of
36. The sonar system of
38. The sonar system of
39. The sonar system of
40. The sonar system of
41. The sonar system of
42. The sonar system of
43. The sonar system of
44. The sonar system of
45. The sonar system of
46. The sonar system of
47. The sonar system of
48. The sonar system of
49. The sonar system of
50. The sonar system of
51. The sonar system of
52. The sonar system of
53. The sonar system of
54. The sonar system of
55. The sonar system of
56. The sonar system of
|
The present invention is a Continuation of U.S. patent application Ser. No. 12/460,139, filed Jul. 14, 2009, entitled “Downscan Imaging Sonar,” which is incorporated by reference in its entirety.
Embodiments of the present invention relate generally to sonar systems, and more particularly, to providing a downscan imaging sonar using a linear transducer.
Sonar has long been used to detect waterborne or underwater objects. For example, sonar devices may be used to determine depth and bottom topography, detect fish or other waterborne contacts, locate wreckage, etc. In this regard, due to the extreme limits to visibility underwater, sonar is typically the most accurate way for individuals to locate objects underwater. Devices such as transducer elements, or simply transducers, have been developed to produce sound or vibrations at a particular frequency that is transmitted into and through the water and also to detect echo returns from the transmitted sound that return to the transducer after reflecting off an object. The transducers can convert electrical energy into sound energy and also convert sound energy (e.g., via detected pressure changes) into an electrical signal, although some transducers may act only as a hydrophone for converting sound energy into an electrical signal without having a transmitting capability. The transducers are often made using piezoelectric materials.
A typical transducer produces a beam pattern that emanates as a sound pressure signal from a small source such that the sound energy generates a pressure wave that expands as it moves away from the source. For instance, a circular transducer (e.g., a cylindrical shaped crystal with a circular face) typically creates a conical shaped beam with the apex of the cone being located at the source. Any reflected sound then returns to the transducer to form a return signal that may be interpreted as a surface of an object. Such transducers have often been directed in various directions from surfaced or submerged vessels in order to attempt to locate other vessels and/or the seabed for the purposes of navigation and/or target location.
Since the development of sonar, display technology has also been improved in order to enable better interpretation of sonar data. Strip chart recorders and other mechanical output devices have been replaced by, for example, digital displays such as LCDs (liquid crystal displays). Current display technologies continue to be improved in order to provide, for example, high quality sonar data on multi-color, high resolution displays having a more intuitive output than early sonar systems were capable of producing.
With display capabilities advancing to the point at which richly detailed information is able to be displayed, attention has turned back to the transducer in order to provide higher quality data for display. Furthermore, additional uses have been developed for sonar systems as transducer and display capabilities have evolved. For example, sonar systems have been developed to assist fishermen in identifying fish and/or the features that tend to attract fish. Historically, these types of sonar systems primarily analyzed the column of water beneath a watercraft with a cylindrical piezo element that produces a conical beam, known as a conical beam transducer or simply as a circular transducer referring to the shape of the face of the cylindrical element. However, with the advent of sidescan sonar technology, fishermen were given the capability to view not only the column of water beneath their vessel, but also view water to either side of their vessel.
Sidescan sonar can be provided in different ways and with different levels of resolution. As its name implies, sidescan sonar is directed to look to the side of a vessel and not below the vessel. In fact, many sidescan sonar systems (e.g., swath and bathymetry sonar systems) have drawn public attention for their performance in the location of famous shipwrecks and for providing very detailed images of the ocean floor, but such systems are costly and complex. Sidescan sonar typically generates a somewhat planar fan-shaped beam pattern that is relatively narrow in beamwidth in a direction parallel to the keel of a vessel deploying the sidescan sonar and is relatively wide in beamwidth in a direction perpendicular to the keel of the vessel. It may be provided in some cases using multibeam sonar systems. Such multibeam sonar systems are typically comprised of a plurality of relatively narrowly focused conventional circular transducer elements that are arrayed next to each other to produce an array of narrowly focused adjacent conical beams that together provide a continuous fan shaped beam pattern.
However, multibeam sonar systems typically require very complex systems to support the plurality of transducers that are employed in order to form the multibeam sonar system. For example, a typical system diagram is shown in
More recently, ceramic sidescan transducer elements have been developed that enable the production of a fan shaped sonar beam directed to one side of a vessel. Accordingly, the sea floor on both sides of the vessel can be covered with two elements facing on opposite sides of the vessel. These types of sidescan transducer elements are linear, rather than cylindrical, and provide a somewhat planar fan-shaped beam pattern using a single transducer to provide sidescan sonar images without utilizing the multibeam array described above. However, employment of these types of sidescan elements typically leaves the column of water beneath the vessel either un-monitored, or monitored using conical beam or circular transducers. In this regard,
Accordingly, it may be desirable to develop a sonar system that is capable of providing an improved downscan imaging sonar.
Accordingly, embodiments of the present invention employ a linear transducer, directed downward to receive high quality images relative to the water column and bottom features directly beneath the linear transducer and the vessel on which the linear transducer is employed. Some other embodiments, in addition to the use of a linear transducer directed downward, also employ at least one sidescan transducer element (e.g., a linear transducer oriented away from the side of the vessel) to ensonify (e.g., emit sonar pulses and detect echo returns) the sea floor on the sides of a vessel. Accordingly, better quality sonar images may be provided for the water column and bottom features beneath the vessel, of a quality that was unavailable earlier. Moreover, embodiments of the present invention may simplify the processing involved in producing high quality sonar images.
In one exemplary embodiment, a transducer array is provided. The transducer array may include a housing and a linear transducer element. The housing may be mountable to a watercraft capable of traversing a surface of a body of water. The linear transducer element may be positioned within the housing and may have a substantially rectangular shape configured to produce a sonar beam having a beamwidth in a direction parallel to longitudinal length of the linear transducer element that is significantly less than a beamwidth of the sonar beam in a direction perpendicular to the longitudinal length of the transducer element. The linear transducer element may also be positioned within the housing to project sonar pulses in a direction substantially perpendicular to a plane corresponding to the surface.
In another exemplary embodiment, a transducer array is provided. The transducer array may include a plurality of transducer elements and each one of the plurality of transducer elements may include a substantially rectangular shape configured to produce a sonar beam having a beamwidth in a direction parallel to longitudinal length of the transducer elements that is significantly less than a beamwidth of the sonar beam in a direction perpendicular to the longitudinal length of the transducer elements. The plurality of transducer elements may be positioned such that longitudinal lengths of at least two of the plurality of transducer elements are parallel to each other. The plurality of transducer elements may also include at least a first linear transducer element, a second linear transducer element and a third linear transducer element. The first linear transducer element may be positioned within the housing to project sonar pulses from a first side of the housing in a direction generally perpendicular to a centerline of the housing. The second linear transducer element may be positioned within the housing to lie in a plane with the first linear transducer element and project sonar pulses from a second side of the housing that is generally opposite of the first side. The third linear transducer element may be positioned within the housing to project sonar pulses in a direction generally perpendicular to the plane.
In another exemplary embodiment, a sonar system is provided. The sonar system may include a transducer array and a sonar module. The transducer array may include a plurality of transducer elements and each one of the plurality of transducer elements may include a substantially rectangular shape configured to produce a sonar beam having a beamwidth in a direction parallel to longitudinal length of the transducer elements that is significantly less than a beamwidth of the sonar beam in a direction perpendicular to the longitudinal length of the transducer elements. The plurality of transducer elements may be positioned such that longitudinal lengths of at least two of the plurality of transducer elements are parallel to each other. The plurality of transducer elements may also include at least a first linear transducer element, a second linear transducer element and a third linear transducer element. The first linear transducer element may be positioned within the housing to project sonar pulses from a first side of the housing in a direction generally perpendicular to a centerline of the housing. The second linear transducer element may be positioned within the housing to lie in a plane with the first linear transducer element and project sonar pulses from a second side of the housing that is generally opposite of the first side. The third linear transducer element may be positioned within the housing to project sonar pulses in a direction generally perpendicular to the plane. The sonar module may be configured to enable operable communication with the transducer array. The sonar module may include a sonar signal processor configured to process sonar return signals received via the transducer array, and a transceiver configured to provide communication between the transducer array and the sonar signal processor.
Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
Exemplary embodiments of the present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all embodiments of the invention are shown. Indeed, the invention may be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like reference numerals refer to like elements throughout.
The display 38 may be configured to display images and may include or otherwise be in communication with a user interface 39 configured to receive an input from a user. The display 38 may be, for example, a conventional LCD (liquid crystal display), a touch screen display, or any other suitable display known in the art upon which images may be rendered. Although each display 38 of
The transducer array 36 according to an exemplary embodiment may be provided in one or more housings that provide for flexible mounting with respect to a hull of the vessel on which the sonar system 30 is employed. In this regard, for example, the housing may be mounted onto the hull of the vessel or onto a device or component that may be attached to the hull (e.g., a trolling motor or other steerable device, or another component that is mountable relative to the hull of the vessel), including a bracket that is adjustable on multiple axes, permitting omnidirectional movement of the housing. The transducer array 36 may include one or more transducer elements positioned within the housing, as described in greater detail below, and each of the transducer elements may be configured to be directed to cover a different area such that one transducer element covers one side of the vessel with a fan shaped beam, another transducer element covers the opposite side of the vessel with a fan shaped beam, and the third fan shaped beam covers a region between the other transducer elements directed below the vessel. In an exemplary embodiment, each of the transducer elements of the transducer array 36 may be substantially identical in terms of construction and therefore may be different only by virtue of the orientation of the respective transducer elements. The transducer array 36 may be configured to both transmit and receive sound pressure waves. However, in some cases, the transducer array 36 could include separate elements for transmission and reception. The transducer array 36 is described in greater detail below in reference to
In an exemplary embodiment, the sonar signal processor 32, the transceiver 34 and an Ethernet hub 42 or other network hub may form a sonar module 44. As such, for example, in some cases, the transducer array 36 may simply be placed into communication with the sonar module 44, which may itself be a mobile device that may be placed (but not necessarily mounted in a fixed arrangement) in the vessel to permit easy installation of one or more displays 38, each of which may be remotely located from each other and operable independent of each other. In this regard, for example, the Ethernet hub 42 may include one or more corresponding interface ports for placing the network 40 in communication with each display 38 in a plug-n-play manner. As such, for example, the Ethernet hub 42 may not only include the hardware needed to enable the displays 38 to be plugged into communication with the network 40 via the Ethernet hub 42, but the Ethernet hub 42 may also include or otherwise be in communication with software modules for providing information to enable the sonar module 44 to communicate with one or more different instances of the display 38 that may or may not be the same model or type of display and that may display the same or different information. In other words, the sonar module 44 may store configuration settings defining a predefined set of display types with which the sonar module is compatible so that if any of the predefined set of display types are placed into communication with the sonar module 44, the sonar module 44 may operate in a plug-n-play manner with the corresponding display types. Accordingly, the sonar module 44 may include a memory storing device drivers accessible to the Ethernet hub 42 to enable the Ethernet hub 42 to properly work with displays for which the sonar module 44 is compatible. The sonar module 44 may also be enabled to be upgraded with additional device drivers to enable expansion of the numbers and types of devices with which the sonar module 44 may be compatible. In some cases, the user may select a display type to check whether a the display type is supported and, if the display type is not supported, contact a network entity to request software and/or drivers for enabling support of the corresponding display type.
The sonar signal processor 32 may be any means such as a device or circuitry operating in accordance with software or otherwise embodied in hardware or a combination of hardware and software (e.g., a processor operating under software control or the processor embodied as an application specific integrated circuit (ASIC) or field programmable gate array (FPGA) specifically configured to perform the operations described herein, or a combination thereof) thereby configuring the device or circuitry to perform the corresponding functions of the sonar signal processor 32 as described herein. In this regard, the sonar signal processor 32 may be configured to analyze electrical signals communicated thereto by the transceiver 34 to provide sonar data indicative of the size, location, shape, etc. of objects detected by the sonar system 30. In some cases, the sonar signal processor 32 may include a processor, a processing element, a coprocessor, a controller or various other processing means or devices including integrated circuits such as, for example, an ASIC, FPGA or hardware accelerator, that is configured to execute various programmed operations or instructions stored in a memory device. The sonar signal processor may further or alternatively embody multiple compatible additional hardware or hardware and software items to implement signal processing or enhancement features to improve the display characteristics or data or images, collect or process additional data, such as time, temperature, GPS information, waypoint designations, or others, or may filter extraneous data to better analyze the collected data. It may further implement notices and alarms, such as those determined or adjusted by a user, to reflect depth, presence of fish, proximity of other watercraft, etc. Still further, the processor, in combination with suitable memory, may store incoming transducer data or screen images for future playback or transfer, or alter images with additional processing to implement zoom or lateral movement, or to correlate data, such as fish or bottom features to a GPS position or temperature. In an exemplary embodiment, the sonar signal processor 32 may execute commercially available software for controlling the transceiver 34 and/or transducer array 36 and for processing data received therefrom. Further capabilities of the sonar signal processor 32 and other aspects related to the sonar module are described in U.S. patent application Ser. No. 12/460,093, entitled “Linear and Circular Downscan Imaging Sonar” filed on even date herewith, the disclosure of which is incorporated herein by reference in its entirety.
The transceiver 34 may be any means such as a device or circuitry operating in accordance with software or otherwise embodied in hardware or a combination of hardware and software (e.g., a processor operating under software control or the processor embodied as an ASIC or FPGA specifically configured to perform the operations described herein, or a combination thereof) thereby configuring the device or circuitry to perform the corresponding functions of the transceiver 34 as described herein. In this regard, for example, the transceiver 34 may include circuitry for providing transmission electrical signals to the transducer array 36 for conversion to sound pressure signals based on the provided electrical signals to be transmitted as a sonar pulse. The transceiver 34 may also include circuitry for receiving electrical signals produced by the transducer array 36 responsive to sound pressure signals received at the transducer array 36 based on echo or other return signals received in response to the transmission of a sonar pulse. The transceiver 34 may be in communication with the sonar signal processor 32 to both receive instructions regarding the transmission of sonar signals and to provide information on sonar returns to the sonar signal processor 32 for analysis and ultimately for driving one or more of the displays 38 based on the sonar returns.
Each of the transducer elements 60 may be a linear transducer element. Thus, for example, each of the transducer elements 60 may be substantially rectangular in shape and made from a piezoelectric material such as a piezoelectric ceramic material, as is well known in the art and may include appropriate shielding (not shown) as is well known in the art. The piezoelectric material being disposed in a rectangular arrangement provides for an approximation of a linear array having beamwidth characteristics that are a function of the length and width of the rectangular face of the transducer elements and the frequency of operation. In an exemplary embodiment, the transducer elements 60 may be configured to operate in accordance with at least two operating frequencies. In this regard, for example, a frequency selection capability may be provided by the sonar module 44 to enable the user to select one of at least two frequencies of operation. In one example, one operating frequency may be set to about 800 kHz and another operating frequency may be set to about 455 kHz. Furthermore, the length of the transducer elements may be set to about 120 mm while the width is set to about 3 mm to thereby produce beam characteristics corresponding to a bearing fan of about 0.8 degrees by about 32 degrees at 800 kHz or about 1.4 degrees by about 56 degrees at 455 kHz. However, in general, the length and width of the transducer elements 60 may be set such that the beamwidth of sonar beam produced by the transducer elements 60 in a direction parallel to a longitudinal length (L) of the transducer elements 60 is less than about five percent as large as the beamwidth of the sonar beam in a direction (w) perpendicular to the longitudinal length of the transducer elements 60. (See generally
Although dual frequency operations providing a specific beam fan for each respective element for given lengths are described above, it should be understood that other operating ranges could alternatively be provided with corresponding different transducer element sizes and corresponding different beamwidth characteristics. Moreover, in some cases, the sonar module 44 may include a variable frequency selector, to enable an operator to select a particular frequency of choice for the current operating conditions. However, in all cases where the longitudinal length of the transducer elements 60 is generally aligned with the centerline of the vessel, the rectangular shape of the transducer elements 60 provides for a narrow beamwidth in a direction substantially parallel to the centerline of the vessel and wide beamwidth in a direction substantially perpendicular to the centerline of the vessel. However, if the transducer array 36 is mounted in a different fashion or to a rotatable accessory on the vessel (e.g., a trolling motor mount), the fan-shaped beams produced will have the wide beamwidth in a direction substantially perpendicular to the longitudinal length of the transducer elements 60 and a narrow beamwidth in a direction substantially parallel to the longitudinal length of the transducer elements 60. Thus, the sonar could also be oriented to provide fore and aft oriented fan-shaped beams or any other orientation relative to the vessel in instances where motion of the vessel is not necessarily in a direction aligned with the centerline of the vessel.
In this regard,
The exemplary linear downscan image on the left side of
Accordingly, by placing a linear transducer in a downward oriented position, a much improved image quality is achieved for bottom data and structures attached to it or rising above it relative to the conventional circular downscan sonar. In this regard, while sidescan images are valued for their ability to provide detailed images of laterally distant bottom features, they are unable to provide depth data or bottom data or water column data below the vessel. A linear downscan element provides the unexpected advantage of providing detailed images of the water column below the vessel (e.g., upwardly extending submerged trees, fish, etc.), as well as details of the features of the bottom or structures resting on or rising above the bottom (e.g., rocks, crevices, submerged trees, sunken objects, etc.), and a depth indication that can be registered (e.g., feet or meters). For example, again referring to the left image of
By providing the downscan element 66 as a linear transducer element of the same type and construction as one or both of the port side linear element 62 and the starboard side linear element 64, embodiments of the present invention provide vivid images of the column of water over which the vessel passes in addition to providing vivid images of the water column on both sides of the vessel, which is provided by conventional sidescan sonar systems that either neglect the column of water beneath the vessel or only scan such region with a conical beam from a transducer element having a cylindrical shape that is not capable of providing the level of detail provided by embodiments of the present invention. Moreover, embodiments of the present invention provide high quality images of the column of water over which the vessel passes without the high degree of complexity and cost associated with a multibeam system.
Notably, the example of
By way of comparison,
Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these embodiments pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
Patent | Priority | Assignee | Title |
10024957, | Sep 17 2015 | NAVICO, INC | Adaptive beamformer for sonar imaging |
10024961, | Jul 14 2009 | NAVICO, INC | Sonar imaging techniques for objects in an underwater environment |
10067228, | Sep 11 2017 | R3VOX LTD | Hyperspectral sonar |
10114119, | May 20 2015 | NAVICO, INC | Sonar systems and methods using interferometry and/or beamforming for 3D imaging |
10132924, | Apr 29 2016 | R3VOX LTD | Multimission and multispectral sonar |
10151829, | Feb 23 2016 | NAVICO, INC | Systems and associated methods for producing sonar image overlay |
10247822, | Mar 14 2013 | NAVICO, INC | Sonar transducer assembly |
10247823, | Dec 07 2011 | NAVICO, INC | Sonar rendering systems and associated methods |
10319356, | Feb 10 2015 | NAVICO, INC | Transducer array having a transceiver |
10324173, | Feb 13 2015 | AIRMAR TECHNOLOGY CORPORATION | Acoustic transducer element |
10377459, | Mar 28 2017 | NAVICO, INC | Connection and features for interchangeable nosecone for a trolling motor |
10412948, | Mar 28 2017 | NAVICO, INC | Sonar transducer with acoustic speaker |
10488503, | Dec 31 2014 | FLIR BELGIUM BVBA | Surface mapping systems and methods using dynamic thresholds |
10597130, | Jan 15 2015 | NAVICO, INC | Trolling motor with a transducer array |
10719077, | Oct 13 2016 | NAVICO, INC | Castable sonar devices and operations in a marine environment |
10864976, | Mar 28 2017 | NAVICO, INC | Connection and features for interchangeable nosecone for a trolling motor |
11054521, | Sep 11 2017 | R3VOX LTD | Hyperspectral sonar |
11079490, | Apr 29 2016 | R3VOX LTD | Multimission and multispectral sonar |
11209543, | Jan 15 2015 | NAVICO, INC | Sonar transducer having electromagnetic shielding |
11249176, | Nov 30 2018 | NAVICO, INC | Systems and associated methods for monitoring vessel noise level |
11367425, | Sep 21 2017 | NAVICO, INC | Sonar transducer with multiple mounting options |
11573566, | Oct 13 2016 | NAVICO, INC | Castable sonar devices and operations in a marine environment |
11774587, | Apr 29 2016 | R3VOX LTD | Multimission and multispectral sonar |
11809179, | Oct 13 2016 | NAVICO, INC | Castable sonar devices and operations in a marine environment |
11846703, | Sep 11 2017 | R3VOX LTD | Hyperspectral sonar |
9142206, | Jul 14 2011 | NAVICO, INC | System for interchangeable mounting options for a sonar transducer |
9182486, | Dec 07 2011 | NAVICO, INC | Sonar rendering systems and associated methods |
9223022, | Jul 14 2009 | NAVICO, INC | Linear and circular downscan imaging sonar |
9244168, | Jul 06 2012 | NAVICO, INC | Sonar system using frequency bursts |
9268020, | Feb 10 2012 | NAVICO, INC | Sonar assembly for reduced interference |
9335412, | Mar 14 2013 | NAVICO, INC | Sonar transducer assembly |
9354312, | Jul 06 2012 | NAVICO, INC | Sonar system using frequency bursts |
9361693, | Jul 06 2012 | NAVICO, INC | Adjusting parameters of marine electronics data |
9495065, | Jul 06 2012 | NAVICO, INC | Cursor assist mode |
9541643, | Jul 14 2009 | NAVICO, INC | Downscan imaging sonar |
9886938, | Feb 10 2015 | NAVICO, INC | Transducer array having a transceiver |
Patent | Priority | Assignee | Title |
1823329, | |||
2416338, | |||
3005973, | |||
3090030, | |||
3142032, | |||
3144631, | |||
3296579, | |||
3359537, | |||
3381264, | |||
3451038, | |||
3458854, | |||
3484737, | |||
3496524, | |||
3553638, | |||
3585578, | |||
3585579, | |||
3618006, | |||
3624596, | |||
3716824, | |||
3742436, | |||
3757287, | |||
3781775, | |||
3895339, | |||
3895340, | |||
3898608, | |||
3907239, | |||
3922631, | |||
3949348, | Oct 15 1970 | Westinghouse Electric Corporation | Sonar apparatus |
3950723, | Feb 21 1974 | Westinghouse Electric Corporation | Sonar apparatus |
3953828, | Nov 08 1968 | The United States of America as represented by the Secretary of the Navy | High power-wide frequency band electroacoustic transducer |
3964424, | Apr 02 1958 | The United States of America as represented by the Secretary of the Navy | Influence detecting gear with improved towing characteristics |
3967234, | Mar 06 1974 | Westinghouse Electric Corporation | Depth-of-field arc-transducer and sonar system |
3975704, | Nov 04 1974 | Klein Associates, Inc. | Method of and apparatus for sonar and related signal texture enhancement of recording media |
4030096, | Dec 05 1975 | Westinghouse Electric Corporation | Automatic target detector |
4047148, | Feb 29 1956 | The United States of America as represented by the Secretary of the Navy | Piston type underwater sound generator |
4052693, | Mar 03 1976 | Westinghouse Electric Corporation | Depth sounder |
4063212, | May 19 1976 | Western Marine Electronics, Inc. | Side scan sonar system |
4068209, | Nov 08 1974 | Thomson-CSF | Electroacoustic transducer for deep submersion |
4075599, | Nov 30 1976 | The International Nickel Company, Inc. | Undersea geophysical exploration |
4121190, | Jul 20 1976 | The Academy of Applied Science, Inc. | Method of and apparatus for sonar detection and the like with plural substantially orthogonal radiation beams |
4184210, | Sep 04 1958 | Sonic echo scanning and facsimile recording of water submerged surfaces | |
4197591, | Aug 04 1958 | Facsimile recording of sonic values of the ocean bottom | |
4198702, | Apr 14 1978 | KEYBANK NATIONAL ASSOCIATION | Time varying gain amplifier for side scan sonar applications |
4199746, | Apr 18 1978 | Northrop Grumman Corporation | Side looking sonar apparatus |
4200922, | Jan 30 1961 | The United States of America as represented by the Secretary of the Navy | Self-propelled vehicle for destroying ground mines |
4204281, | Mar 24 1959 | Signal processing system for underwater transducer | |
4207620, | Sep 26 1974 | Raytheon Company | Oceanographic mapping system |
4216537, | Dec 20 1977 | Institut Francais du Petrole | Sonar for the topographic representation of a submerged surface and underlying strata |
4232380, | Apr 14 1978 | KEYBANK NATIONAL ASSOCIATION | Underwater mapping apparatus and method |
4247923, | Oct 23 1978 | Shell Oil Company | Method and apparatus for detecting the location of a marine pipeline or cable |
4262344, | Sep 14 1979 | Northrop Grumman Corporation | Side looking sonar beam forming utilizing the chirp Z-transform |
4287578, | Nov 07 1979 | The United States of America as represented by the Administrator of the | Method for shaping and aiming narrow beams |
4400803, | May 26 1981 | The United States of America as represented by the Secretary of the Navy | Wide swath precision echo sounder |
4413331, | Apr 26 1976 | Northrop Grumman Corporation | Broad beam transducer |
4422166, | Aug 17 1981 | Klein Associates, Inc. | Undersea sonar scanner correlated with auxiliary sensor trace |
4456210, | Aug 12 1982 | Lowrance Electronics, Inc. | Transducer mounting |
4493064, | Jul 17 1981 | Sintra-Alcatel | Sonar System |
4538249, | Sep 29 1982 | Ultrasonic doppler fish detector | |
4561076, | Jun 04 1982 | FRIED. KRUPP Gesellschaft mit beschrankter Haftung | Sonar method and apparatus |
4596007, | Oct 12 1982 | Thomson-CSF | Interferometric sonar in non-linear acoustics |
4635240, | Mar 26 1985 | Northrop Grumman Corporation | Sonar navigation system |
4641290, | Nov 13 1984 | DELLORFANO, FRED M , JR ; MASSA, DONALD P , TRUSTEES OF THE STONELEIGH TRUST U D T, 12 4 73, COHASSET, MA | Low frequency portable lightweight sonar systems and their method of deployment for greatly increasing the efficiency of submarine surveillance over large areas |
4642801, | Apr 12 1983 | Thomson-CSF | Visual display process for sonars |
4751645, | Aug 12 1986 | Method for sonic analysis of an anomaly in a seafloor topographic representation | |
4774837, | Jan 15 1986 | Brookes & Gatehouse Limited | Transducer assembly for a speed measurement device |
4796238, | Aug 29 1985 | Institut Francais du Petrole | System for measurement of the acoustic coefficient of reflection of submerged reflectors |
4802148, | Nov 08 1982 | Northrop Grumman Corporation | Side-looking sonar apparatus |
4815045, | May 07 1985 | NEC Corporation | Seabed surveying apparatus for superimposed mapping of topographic and contour-line data |
4855961, | Jul 31 1986 | Woods Hole Oceanographic Institute | Imaging apparatus |
4879697, | Aug 05 1988 | LOWRANCE ELECTRONICS, INC | Sonar fish finder apparatus providing split-screen display |
4907208, | Dec 02 1988 | LOWRANCE ELECTRONICS, INC , A CORP OF OK | Sonar transducer assembly for fishing boats |
4912685, | Nov 30 1988 | Northrop Grumman Corporation | Side looking sonar apparatus |
4924448, | Mar 09 1989 | Bistatic system and method for ocean bottom mapping and surveying | |
4935906, | Jan 04 1988 | SPAN, INC | Scanning sonar system |
4939700, | Feb 22 1988 | Bathymetry using computational algorithm field and background of the invention | |
4958330, | Nov 03 1980 | The United States of America as represented by the Secretary of the Navy | Wide angular diversity synthetic aperture sonar |
4970700, | Nov 20 1989 | Northrop Grumman Corporation | Sonar apparatus |
4972387, | Jun 24 1966 | The United States of America as represented by the Secretary of the Navy | High information rate catacoustic system |
4975887, | Jan 09 1987 | The United States of America as represented by the Secretary of the Navy | Bistatic side scan sonar |
4982924, | Feb 24 1989 | AERO MARINE ENGINEERING, INC | Mounting apparatus for sonar transducer |
5033029, | May 12 1983 | Westinghouse Electric Corp. | Interlaced sonar system |
5077699, | Dec 07 1990 | The United States of America as represented by the Secretary of the Navy; UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE NAVY | Digital bottom mapping |
5109364, | Nov 16 1990 | LOWRANCE ELECTRONICS, INC , A COMPANY OF OK | Transducer for high speed boats |
5113377, | May 08 1991 | Atlantic Richfield Company | Receiver array system for marine seismic surveying |
5142497, | Nov 22 1989 | WARROW, THEODORE U , | Self-aligning electroacoustic transducer for marine craft |
5142502, | Sep 24 1991 | MARINE SONIC TECHNOLOGY, LTD , | Microcomputer-based side scanning sonar system |
5155706, | Oct 10 1991 | Northrop Grumman Systems Corporation | Automatic feature detection and side scan sonar overlap navigation via sonar image matching |
5182732, | Oct 29 1991 | Reversible fish finder apparatus | |
5184330, | Jun 25 1991 | TECHSONIC INDUSTRIES, INC | Multi-beam sonar fish detection apparatus providing real-time three-dimensional wire-frame display representation |
5200931, | Jun 18 1991 | OL SECURITY LIMITED LIABILITY COMPANY | Volumetric and terrain imaging sonar |
5214744, | Dec 14 1990 | Northrop Grumman Systems Corporation | Method and apparatus for automatically identifying targets in sonar images |
5231609, | Sep 28 1992 | The United States of America as represented by the Secretary of the Navy | Multiplatform sonar system and method for underwater surveillance |
5237541, | May 21 1992 | Sonetech Corporation | Platform carried bistatic sonar |
5241314, | Aug 16 1991 | KAMAN AEROSPACE CORPORATION, A DE CORP | Image lidar transmitter downlink for command guidance of underwater vehicle |
5243567, | Mar 15 1977 | Northrop Grumman Corporation | Sonar beam shaping with an acoustic baffle |
5245587, | Dec 14 1990 | Multi-dimensional signal processing and display | |
5257241, | May 08 1991 | Atlantic Richfield Company | Method and system for acquisition of 3-dimensional marine seismic data |
5260912, | May 17 1991 | TECHSONIC INDUSTRIES, INC | Side-looking fish finder |
5297109, | Jul 27 1992 | AMERICAN OILFIELD DIVERS, INC | Piling and pier inspection apparatus and method |
5299173, | Nov 01 1990 | British Gas PLC | Method and apparatus for underwater sonar scanning |
5303208, | Dec 31 1969 | Northrop Grumman Systems Corporation | Side looking sonar transducer |
5376933, | Jan 30 1992 | Trawl cable vibration meter | |
5390152, | Sep 09 1993 | AIRMAR TECHNOLOGY CORPORATION | Forward looking echosounder |
5412618, | Apr 07 1994 | Northrop Grumman Systems Corporation | Spotlight-mode synthetic aperture side-look sonar |
5433202, | Jun 07 1993 | Northrop Grumman Systems Corporation | High resolution and high contrast ultrasound mammography system with heart monitor and boundary array scanner providing electronic scanning |
5438552, | Apr 27 1993 | Raytheon Company | Sonar system for identifying foreign objects |
5442358, | Aug 16 1991 | Kaman Aerospace Corporation | Imaging lidar transmitter downlink for command guidance of underwater vehicle |
5455806, | Dec 14 1990 | Multi-dimensional signal processing and display | |
5485432, | Dec 24 1993 | ATLAS ELECTRONIK GMBH | Method of measuring the acoustic backscatter property of the floor of bodies of water |
5493619, | Mar 11 1994 | Northrop Grumman Systems Corporation | Normalization method for eliminating false detections in side scan sonar images |
5515337, | Apr 20 1995 | Northrop Grumman Systems Corporation | Multibeam side-look sonar system grating side lobe reduction technique |
5525081, | Jul 20 1994 | Brunswick Corporation | Transducer system for trolling motor |
5537366, | Jul 03 1995 | Northrop Grumman Systems Corporation | Buried cable pipe detection sonar |
5537380, | Jul 14 1995 | NAVICO HOLDING AS | Sonar system having an interactive sonar viewing apparatus and method of configuring same |
5546356, | Jun 30 1993 | UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE NAVY | Wide beam acoustic projector with sharp cutoff and low side lobes |
5546362, | May 15 1995 | VEXILAR, INC | Depth finder transducer system |
5561641, | Feb 06 1992 | Furuno Electric, Company, Limited | Underwater detection system for determining carrier frequencies of signals arriving from a wide area |
5574700, | Dec 18 1995 | NAVICO HOLDING AS | Ratchet operated kick-up bracket |
5596549, | Jul 06 1995 | Northrop Grumman Systems Corporation | Side look sonar apparatus and method |
5602801, | Dec 06 1995 | The United States of America as represented by the Secretary of the Navy | Underwater vehicle sonar system with extendible array |
5612928, | May 28 1992 | Northrop Grumman Systems Corporation | Method and apparatus for classifying objects in sonar images |
5623524, | Mar 01 1967 | The United States of America as represented by the Secretary of the Navy | Method and apparatus for measuring the depth of an underwater target |
5675552, | Oct 02 1995 | Garmin Switzerland GmbH | Sonar apparatus having a steerable beam |
5694372, | Aug 31 1993 | Thomson-CSF | Sonar system for current meter and doppler log |
5790474, | Aug 04 1989 | HE HOLDINGS, INC , A DELAWARE CORP ; Raytheon Company | Active sonar for under-ice conditions |
5805525, | Dec 11 1996 | The United States of America as represented by the Secretary of the Army | Method and apparatus for hydroacoustic detection and characterization of submersed aquatic vegetation |
5805528, | Mar 05 1996 | Furuno Electric Co., Ltd. | Underwater detection system |
5808967, | Oct 07 1996 | TELEDYNE INSTRUMENTS, INC | Two-dimensional array transducer and beamformer |
5850372, | Dec 09 1994 | LEVITHAN LEGACY, INC | Method of alerting sea cows of the danger of approaching motor vessels |
5930199, | Mar 17 1998 | Imaging system and associated method for surveying underwater objects | |
5991239, | May 08 1996 | Mayo Foundation for Medical Education and Research | Confocal acoustic force generator |
6002644, | Apr 20 1998 | Imaging system and associated method for surveying underwater objects | |
6084827, | Aug 19 1998 | Battelle Memorial Institute | Dual-head multibeam sonar apparatus and method for tracking objects underwater |
6130641, | Sep 04 1998 | Simon Fraser University | Imaging methods and apparatus using model-based array signal processing |
6215730, | Dec 10 1996 | Thomson Marconi Sonar S.A.S | Side scan sonar with synthetic antenna |
6226227, | Mar 25 1998 | Board of Regents, The University of Texas Systems | Manual scan imaging sonar |
6273771, | Mar 17 2000 | Brunswick Corporation | Control system for a marine vessel |
6285628, | Sep 13 1999 | L-3 Communications Corporation | Swept transit beam bathymetric sonar |
6325020, | Oct 28 1999 | Guigne International, Ltd. | Fish sizing sonar system |
6335905, | Dec 17 1999 | Garmin Corporation | Method for elimination of passive noise interference in sonar |
6421299, | Jun 28 2000 | TECHSONIC INDUSTRIES, INC | Single-transmit, dual-receive sonar |
6445646, | Jul 28 1999 | Furuno Electric Company, Limited | Signal processing method and apparatus, and sonar systems |
6449215, | Oct 09 2001 | The United States of America as represented by the Secretary of the Navy | Three-dimensional imaging system for sonar system |
6537224, | Jun 08 2001 | Vermon | Multi-purpose ultrasonic slotted array transducer |
6606958, | Jun 22 1999 | Hydroacoustics Inc. | Towed acoustic source array system for marine applications |
6678403, | Sep 13 2000 | Wilk Patent Development Corporation | Method and apparatus for investigating integrity of structural member |
6738311, | Jun 15 1998 | ENERGY VENTURES II KS | Seabed sonar matrix system |
6778468, | May 20 2002 | FURUNO ELECTRIC COMPANY LIMITED | Automatically tracking scanning sonar |
6842401, | Apr 06 2000 | TeraTech Corporation | Sonar beamforming system |
6899574, | Aug 28 2003 | Garmin Ltd. | Transducer bracket |
6904798, | Aug 08 2002 | AIRMAR TECHNOLOGY CORPORATION | Multi-functional marine sensing instrument |
6941226, | May 31 2002 | VIAVI SOLUTIONS, INC | Method for determining, recording and sending GPS location data in an underwater environment |
6980688, | Sep 13 2000 | Wilk Patent Development Corporation | Method and apparatus for investigating integrity of structural member |
7035166, | Oct 21 2002 | FarSounder, Inc. | 3-D forward looking sonar with fixed frame of reference for navigation |
7236427, | Mar 12 2004 | SWCE | Vessel hull transducer modular mounting system |
7239263, | Aug 10 2006 | JAPAN AGENCY FOR MARINE-EARTH SCIENCE AND TECHNOLOGY | Platform shake compensation method in synthetic aperture processing system |
7242638, | Nov 24 2004 | Raytheon Company | Method and system for synthetic aperture sonar |
7355924, | Oct 17 2003 | FARSOUNDER, INC | 3-D forward looking sonar with fixed frame of reference for navigation |
7369459, | Aug 10 2004 | Furuno Electric Company, Limited | Forward-looking sonar and underwater image display system |
7405999, | Dec 09 2003 | Sensor module for trawl | |
7542376, | Jul 27 2006 | TELEDYNE RESON A S | Vessel-mountable sonar systems |
7652952, | Aug 02 2004 | Johnson Outdoors Inc.; JOHNSON OUTDOORS INC | Sonar imaging system for mounting to watercraft |
7710825, | Aug 02 2004 | Johnson Outdoors Inc. | Side scan sonar imaging system with boat position on display |
7729203, | Aug 02 2004 | Johnson Outdoors Inc. | Side scan sonar imaging system with associated GPS data |
7755974, | Aug 02 2004 | Johnson Outdoors Inc. | Side scan sonar imaging system with enhancement |
7839720, | Sep 28 2006 | TELEDYNE INSTRUMENTS, INC | System and method for acoustic doppler velocity processing with a phased array transducer including using differently coded transmit pulses in each beam so that the cross-coupled side lobe error is removed |
7889600, | Jul 27 2006 | TELEDYNE RESON A S | Sonar systems |
7961552, | Aug 28 2008 | AIRMAR TECHNOLOGY CORPORATION | Fan beam transducer assembly |
8300499, | Jul 14 2009 | NAVICO, INC | Linear and circular downscan imaging sonar |
8305841, | Jun 15 2007 | University of Limerick | Method and apparatus for determining the topography of a seafloor and a vessel comprising the apparatus |
20010026499, | |||
20020071029, | |||
20020085452, | |||
20020126577, | |||
20030202426, | |||
20030206489, | |||
20030214880, | |||
20040184351, | |||
20040221468, | |||
20050036404, | |||
20050043619, | |||
20050099887, | |||
20050216487, | |||
20060002232, | |||
20060023570, | |||
20070025183, | |||
20070091723, | |||
20070159922, | |||
20080013404, | |||
20080137483, | |||
20090031940, | |||
20110007606, | |||
20110012773, | |||
20110013484, | |||
20110013485, | |||
20120106300, | |||
20130016588, | |||
D329615, | Nov 16 1990 | LOWRANCE ELECTRONICS, INC , A COMPANY OF OK | Transducer for attachment to a boat or similar article |
D329616, | Nov 16 1990 | LOWRANCE ELECTRONICS, INC , A COMPANY OF OK | Transducer for attachment to a boat or similar article |
DE1566870, | |||
DE3516698, | |||
EP1272870, | |||
EP1393025, | |||
EP2023159, | |||
GB1306769, | |||
GB1315651, | |||
GB1316138, | |||
GB1329829, | |||
GB1330472, | |||
GB2111679, | |||
GB2421312, | |||
GB823304, | |||
JP10123247, | |||
JP10132930, | |||
JP10186030, | |||
JP10325871, | |||
JP200174840, | |||
JP2004020276, | |||
JP2006064524, | |||
JP385476, | |||
JP4357487, | |||
JP50109389, | |||
JP54054365, | |||
JP57046173, | |||
JP59107285, | |||
JP61102574, | |||
JP61116678, | |||
JP61262674, | |||
JP62099877, | |||
JP62134084, | |||
JP62190480, | |||
JP63261181, | |||
JP7031042, | |||
RE31026, | May 23 1979 | Santa Fe International Corporation | Navigation system for maneuvering a structure about a submerged object |
WO3009276, | |||
WO2005057234, | |||
WO2008105932, | |||
WO2008152618, | |||
WO2011008429, | |||
WO8401833, | |||
WO9102989, | |||
WO9815846, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 20 2009 | MAGUIRE, BRIAN T | NAVICO, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030105 | /0193 | |
Sep 26 2012 | NAVICO HOLDING AS | (assignment on the face of the patent) | / | |||
Jun 24 2013 | NAVICO, INC | NAVICO, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030702 | /0979 | |
Jun 24 2013 | NAVICO, INC | NAVICO HOLDING AS | CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE SHOULD READ NAVICO HOLDING AS INSTEAD OF NAVICO, INC PREVIOUSLY RECORDED ON REEL 030702 FRAME 0979 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 031077 | /0595 | |
Jun 24 2013 | NAVICO, INC | NAVICO HOLDING AS | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031133 | /0129 | |
Mar 31 2017 | NAVICO HOLDING AS | GLAS AMERICAS LLC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 042121 | /0692 | |
Oct 04 2021 | GLAS AMERICAS LLC | NAVICO HOLDING AS | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 057780 | /0496 | |
Mar 10 2023 | NAVICO HOLDING AS | NAVICO, INC | NUNC PRO TUNC ASSIGNMENT SEE DOCUMENT FOR DETAILS | 066338 | /0107 |
Date | Maintenance Fee Events |
May 25 2017 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 13 2021 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 10 2016 | 4 years fee payment window open |
Jun 10 2017 | 6 months grace period start (w surcharge) |
Dec 10 2017 | patent expiry (for year 4) |
Dec 10 2019 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 10 2020 | 8 years fee payment window open |
Jun 10 2021 | 6 months grace period start (w surcharge) |
Dec 10 2021 | patent expiry (for year 8) |
Dec 10 2023 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 10 2024 | 12 years fee payment window open |
Jun 10 2025 | 6 months grace period start (w surcharge) |
Dec 10 2025 | patent expiry (for year 12) |
Dec 10 2027 | 2 years to revive unintentionally abandoned end. (for year 12) |