A method for fabricating semiconductor devices includes: (a) forming a layered structure that includes a temporary substrate, a plurality of spaced apart sacrificial film regions on the temporary substrate, and a plurality of valley-and-peak areas among the sacrificial film regions; (b) growing laterally and epitaxially an epitaxial film layer over the sacrificial film regions and the valley-and-peak areas, wherein gaps are formed among the epitaxial film layer and the valley-and-peak areas; (c) forming a conductive layer to contact the epitaxial film layer; (d) forming a plurality of grooves to divide the epitaxial film layer and the conductive layer into a plurality of epitaxial structures on the temporary substrate; and (e) removing the temporary substrate and the sacrificial film regions from the epitaxial structures by etching the sacrificial film regions through the gaps and the grooves.
|
1. A method for fabricating semiconductor devices, comprising:
(a) forming a layered structure that includes a temporary substrate, a plurality of spaced apart sacrificial film regions on the temporary substrate, and a plurality of valley-and-peak areas among the sacrificial film regions;
(b) growing laterally and epitaxially an epitaxial film layer over the sacrificial film regions and the valley-and-peak areas, wherein gaps are formed among the epitaxial film layer and the valley-and-peak areas;
(c) forming a conductive layer to contact the epitaxial film layer;
(d) forming a plurality of grooves to divide the epitaxial film layer and the conductive layer into a plurality of epitaxial structures on the temporary substrate; and
(e) removing the temporary substrate and the sacrificial film regions from the epitaxial structures by etching the sacrificial film regions through the gaps and the grooves.
2. The method of
3. The method of
4. The method of
5. The method of
6. The method of
7. The method of
8. The method of
|
This application claims priority of Taiwanese application no. 099132768, filed on Sep. 28, 2010.
1. Field of the Invention
This invention relates to a method for fabricating semiconductor devices, more particularly to a method for fabricating semiconductor devices with epitaxial structures.
2. Description of the Related Art
Currently, there are various semiconductor devices with epitaxial structures mainly manufactured through an epitaxial process. Taking an example of a vertical-conducting light-emitting diode (LED) shown in
When fabricating the optoelectronic semiconductor device 1 (i.e., the vertical-conducting LED), a sapphire (Al2O3) substrate, which has a better lattice match for an epitaxial film layer formed thereon and which is in the form of a wafer, and is selected to serve as a temporary substrate. Then, on the temporary substrate, the epitaxial film layer of gallium nitride (GaN) is epitaxially grown; a conductive layer serving as a permanent substrate is formed on the epitaxial film layer; and the temporary substrate is subsequently removed from the epitaxial film layer. Thereafter, a plurality of the electrodes are formed on a surface of the epitaxial film layer that is exposed after the temporary substrate is removed, followed by cutting into a plurality of the optoelectronic semiconductor devices 1.
In the above conventional process, the temporary substrate is removed from the epitaxial film layer using a laser lift-off process or a mechanical polishing process. However, the laser lift-off process involves relatively high fabrication costs. On the other hand, the mechanical polishing process is likely to induce residual stress that could damage the structure of the epitaxial film layer.
Therefore, an object of the present invention is to provide a method for fabricating semiconductor devices that can overcome the aforesaid drawbacks of the prior art.
According to the present invention, there is provided a method for fabricating semiconductor devices, comprising:
(a) forming a layered structure that includes a temporary substrate, a plurality of spaced apart sacrificial film regions on the temporary substrate, and a plurality of valley-and-peak areas among the sacrificial film regions;
(b) growing laterally and epitaxially an epitaxial film layer over the sacrificial film regions and the valley-and-peak areas, wherein gaps are formed among the epitaxial film layer and the valley-and-peak areas;
(c) forming a conductive layer to contact the epitaxial film layer;
(d) forming a plurality of grooves to divide the epitaxial film layer and the conductive layer into a plurality of epitaxial structures on the temporary substrate; and
(e) removing the temporary substrate and the sacrificial film regions from the epitaxial structures by etching the sacrificial film regions through the gaps and the grooves.
Other features and advantages of the present invention will become apparent in the following detailed description of the preferred embodiments of the invention, with reference to the accompanying drawings, in which:
Before the present invention is described in greater detail with reference to the accompanying preferred embodiments, it should be noted herein that like elements are denoted by the same reference numerals throughout the disclosure.
Referring to
Referring to
The epitaxial unit 32, the electrode 40, and the conductive member 31 are electrically connected, and electricity may be applied to the epitaxial unit 32 so that light may be emitted through an optoelectronic effect.
As shown in
Referring to
Referring to
Referring to
Referring to
In this embodiment, the conductive layer 54 has a single layer structure. However, referring to
Referring to
In addition, although the temporary substrate 51 is roughened to form the peaks and valleys 512, 513 in step 22 of the first embodiment, in practice, the temporary substrate 51 may be roughened to form peaks and valleys 512, 513 on the temporary substrate 51 before the sacrificial film layer 52 is formed on the temporary substrate 51 in step 21. Optionally, the roughened temporary substrate 51 may be further roughened to increase the height differences between the peaks and valleys 512, 513 after the sacrificial film regions 521 are formed so as to provide the gaps 531 with a larger space to facilitate subsequent steps. Alternatively, as shown in
Referring to
In view of the above, it is understood that in accordance with the method for fabricating semiconductor devices of this invention, the removal speed of the temporary substrate 51 is increased by the sacrificial film regions 521. Moreover, by virtue of the formation of the valley-and-peak areas on the temporary substrate 51, the gaps 531 can be formed at the interface of the epitaxial film layer 53 and the temporary substrate 51 when the epitaxial film layer 53 is formed. Therefore, the epitaxial structures 3 can be further quickly removed from the temporary substrate 51.
In the present invention, the formation of the gaps 531 not only reduces the contact surface area between the epitaxial film layer 53 and the temporary substrate 51 and the connection strength, but also increases the contact surface area of the etching agent, thereby permitting quick removal of the epitaxial structures 3 from the temporary substrate 51. In addition, since the method does not involve a grinding process which potentially results in residual stress, the structural integrity of the epitaxial structures 3 can be ensured, thereby improving the performance of the semiconductor device 4 made according to the method of the present invention.
Referring to
Unlike the first preferred embodiment, in this embodiment, the individual conductive members 31 are directly formed in the through holes defined by the patterned mask 55, and then are used as an etch mask during etching of the epitaxial film layer 53, thereby dividing the epitaxial film layer 53 into a plurality of epitaxial units 32.
Referring to
To sum up, in the method for fabricating semiconductor devices of the present invention, by virtue of simply dividing a plurality of epitaxial structures 3 by the grooves 56, and cooperatively using the sacrificial film regions 521, the valley-and-peak areas 510, and the gaps 531 formed between the temporary substrate 51 and the epitaxial film layer 53, the removal speed of the temporary substrate 51 can be increased. Therefore, the semiconductor device can be fabricated in a timesaving and cost effective manner without encountering any residual stress problem.
While the present invention has been described in connection with what are considered the most practical and preferred embodiments, it is understood that this invention is not limited to the disclosed embodiments but is intended to cover various arrangements included within the spirit and scope of the broadest interpretations and equivalent arrangements.
Wuu, Dong-Sing, Horng, Ray-Hua
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
8383438, | Aug 19 2008 | LATTICE POWER JIANGXI CORPORATION | Method for fabricating InGaAIN light-emitting diodes with a metal substrate |
8435816, | Aug 22 2008 | LATTICE POWER JIANGXI CORPORATION | Method for fabricating InGaAlN light emitting device on a combined substrate |
20100219509, | |||
20110140080, | |||
20110143467, | |||
20110227213, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 23 2011 | NATIONAL CHUNG-HSING UNIVERSITY | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Jul 01 2017 | 4 years fee payment window open |
Jan 01 2018 | 6 months grace period start (w surcharge) |
Jul 01 2018 | patent expiry (for year 4) |
Jul 01 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 01 2021 | 8 years fee payment window open |
Jan 01 2022 | 6 months grace period start (w surcharge) |
Jul 01 2022 | patent expiry (for year 8) |
Jul 01 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 01 2025 | 12 years fee payment window open |
Jan 01 2026 | 6 months grace period start (w surcharge) |
Jul 01 2026 | patent expiry (for year 12) |
Jul 01 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |