This invention relates to a system and method of monitoring, by establishing end to end loopback testing across one or more networks with dissimilar transport technologies. The system allows for connection in loopback mode from a standard interface on a test device to a media adaptor located on an IP-based access network, such as a standard multimedia terminal adapter (“MTA”). end-to-end quality of service delivered over the transmit and receive path can thus be monitored. loopback tests are initiated from designated endpoints on the network and made operational by attaching a tag to a telephone number, to allow the gateway to signal connection mode to a call agent. The system and method overcome certain inherent limitations of the MGCP/NCS architecture.

Patent
   8767563
Priority
Apr 25 2006
Filed
Jan 12 2012
Issued
Jul 01 2014
Expiry
Oct 31 2027
Extension
189 days
Assg.orig
Entity
Large
1
26
currently ok
1. A system for remote loopback testing across two or more networks with dissimilar transport technologies, the system comprising:
an interface gateway providing an interface between a first network and a second network, wherein control of gateways at an edge of a first network is based upon Media gateway control protocol/network-based Call Signaling (MGCP/NCS) protocol, data is transported on the first network using the MGCP/NCS protocol, and data is transported on a second network using a second traffic protocol different from the MGCP/NCS protocol;
a test probe coupled to the interface gateway over the second network;
an adapter coupled to the interface gateway over the first network, the adapter operable to loop back data from the interface gateway and define a remote address of the adapter; and
a switch for controlling establishing a loopback connection mode between the test probe and the remote address of the adapter via the interface gateway and across the first and second networks using the MGCP/NCS protocol, wherein during loopback connection mode, the MGCP/NCS protocol is used in the second network by attaching a prefix or a suffix to the remote address.
15. A system for actively measuring end to end quality of services provided by a IP-based core network working with dissimilar transport technologies comprising:
an IP-based access network in communication with to the IP-based core network and including a plurality of reflecting points;
a probe in communication with the IP-based core network through a plurality of hybrid access networks and a plurality of associated hybrid gateways;
a switch in communication with the plurality of associated hybrid gateways through the IP-based core network; and
a multi-media terminal adaptor (MTA) in communication with the IP-based access network being pre-configured to communicate with the switch and support loopback modes, wherein the MTA is outside the IP-based core network,
wherein:
each of the plurality of associated hybrid gateways is operable to designate an endpoint on the multi-media terminal adaptor and provide an identifier of the endpoint to the probe;
the probe is operable to send a communication to the endpoint based on the identifier and include a loopback tag in the communication;
each of the plurality of associated hybrid gateways is operable to forward the communication to the switch;
the switch is operable to analyze the communication to recognize the loopback tag and, in turn, commands the at least one gateway and the MTA to create connections to the endpoint in loopback mode;
each of the plurality of associated hybrid gateways is further operative to notify the probe of the connections;
the probe is further operative to stream media to the MTA using the connections;
the MTA is further operative to loop the streamed media back to the respective associated hybrid gateway for passing along to the probe; and
the probe is further operative to analyze the looped back streamed media for quality of service.
2. The system of claim 1, wherein the test probe initiates the loopback connection by sending a message to the interface gateway comprising an address and a tag, the address identifying the adapter on the first network, and the tag corresponding to a network loopback mode.
3. The system of claim 1, wherein the test probe sends media messages to the adapter, which are looped back by the adapter for testing the end to end quality of services delivered over a media transmission path.
4. The system of claim 1, wherein the adapter is a Multimedia terminal adapter having a first digital side identifiable by an IP address and a second analog side identifiable by one or more telephone numbers.
5. The system of claim 1, wherein the adapter is an MGCP or NCS capable Multimedia terminal adapter.
6. The system of claim 1, wherein the second network is the Internet.
7. The system of claim 1, wherein the first network is a telephone network.
8. The system of claim 1, wherein the first network is from the group comprising TDM and analog based networks.
9. The system of claim 8, wherein the TDM based network is from the group comprising PSTN and ISDN.
10. The system of claim 1, wherein the loopback connection mode is network loopback mode (RTB LB) or network continuity mode(Audio LB).
11. The system of claim 1, wherein an IP-based access network is operative to disable any synchronized source (SSRC) collision detection during loopback mode.
12. The system of claim 1, wherein an IP-based access network is operative to disable any Echo Cancellers during loopback mode.
13. The system of claim 1, wherein the address is a phone number associated with an analog port on an adaptor.
14. The system of claim 13, wherein the phone number is correlated with an IP address of the adapter.
16. A system as recited in claim 15, wherein the IP-based access network is operative to disable any synchronized source (SSRC) collision detection during loopback mode.
17. A system as recited in claim 15, wherein the IP-based access network is operative to disable any Echo Cancellers during loopback mode.
18. A system as recited in claim 15, wherein the IP-based access network is located as close as possible to the subscriber.
19. A system as recited in claim 15, wherein the associated at least one gateway is operable to create the endpoint.

This application is a divisional of and claims the benefit of the filing date of pending U.S. patent application Ser. No. 12/298,293, titled “System and Method of Remote Testing in Loopback Mode Using MGCP/NCS” filed Oct. 23, 3008, which claims priority to Patent Cooperation Treaty (PCT) Application No. PCT/CA2007/000659, filed Apr. 25, 2007, which claims priority to U.S. Provisional Patent Application No. 60/794,594, filed Apr. 25, 2006, the disclosures of which are hereby incorporated by reference herein in their entireties.

This application claims the benefit U.S. provisional application No. 60/794,594, entitled MTA Loopback Testing via Network Gateway by Martin Reniere filed Apr. 25, 2006.

This invention relates to a system and method of monitoring, by establishing end to end loopback testing across one or more networks with dissimilar transport technologies. The system allows for connection in loopback mode from a standard interface on a test device to a media adaptor located on an IP-based access network, such as a standard multimedia terminal adapter (“MTA”). End-to-End Quality of service delivered over the transmit path and the receive path can thus be monitored. Loopback tests are initiated from designated endpoints on the network and made operational by attaching a tag to a telephone number, to allow the gateway to signal connection mode to a call agent. The system and method overcome certain inherent limitations of the MGCP/NCS architecture

As the number of subscribers for telephone, interne and video services continues to grow throughout the world, so does the need to support and maintain such services, as well as the devices forming part of a communications network. Many believe that to keep up with the accelerated demand for such services, current strategies for using and developing known protocols require further development.

A new paradigm of testing the quality of services delivered over a network is to conduct such testing by remotely accessing a subscriber site. Remote access has several advantages, including increasing availability, efficiency, and affordability. However, the application of the MGCP/NCS protocol to a test device acting as or behind a gateway, to initiate a connection in loopback mode with a remote endpoint device located on a subscriber's site, such as an MTA has not been disclosed in the prior art. Indeed, the IETF RFC 3435 MGCP and the PacketCable NCS specifications, which describes a master slave protocol, does not foresee such application.

Loopback-based testing is an obvious and classical way to test the quality of transmission on the path used to carry media over networks which use different technologies. Because of the complexity and time required to migrate media transport from various technology-based networks to a single technology transport packet-based network, hybrid networks proliferate. Accordingly, there is a pressing need for new techniques to test the quality of integrated services over hybrid networks, in an economically efficient manner.

As shown in the prior art, general network architecture consists of a packet-based core network interconnecting various access networks via appropriate gateways. Media Gateway Control Protocol (MGCP) and its variation Network-based Call Signalling (NCS) were developed in order to control the different gateways within the packet-based networks. MGCP/NCS is a signalling protocol based on the Internet Protocol (IP) controlling a master slave dialog, where the master is the Call Agent (CA) or Call Management Server (CMS), commonly integrated in a smart switch (sometimes referred to as a “soft switches”). The slaves are the gateways. The CA creates connections between endpoints which negotiate media session parameters via Session Description Protocol (SDP). MGCP/NCS describes different connection modes, depending on the connection purpose and the call placement progress. Besides standard call connection modes, there are two monitoring modes: Network Loopback and Network Continuity Test. As used herein, the following terms are accorded acronyms in common use: Network Loopback: RTP LB; Network Continuity Test: Audio LB.

The prior art discloses signalling limitations inherent in MGCP/NCS architecture. The invention enables use of the MGCP/NCS protocol: by attaching a tag, such as a prefix or suffix, to the remote address, e.g. a phone number, the dumb gateway can signal connection mode to an intelligent CA. Signalling limitations in the MGCP/NCS protocol with respect to establishing connection across a network using multiple technologies are addressed by using a numbering plan which is supported by analog, TDM and packet based signalling protocols, including PSTN (SS7), ISDN (Q.931) and Internet (MGCP, SIP).

The prior art teaches away from the use of MGCP outside the Internet. This invention profits from the fact MGCP supports the same numbering plan as other legacy signalling protocols to expand the architecture of the services.

The prior art discloses solutions which differ from the system and method of the invention. In the prior art, for example,

The second solution of the prior art has been described in a draft from the Internet Engineering Task Force (IETF). A special extension is required on the SDP standard in order to add loopback connection modes. This solution is generic and may be used for different IP-based signalling protocol using SDP for media description, e.g., MGCP, SIP.

A need has been felt, because of limitations inherent in the prior art, to adapt the MGCP/NCS protocols to hybrid networks in which an endpoint is outside the IP network.

The invention describes a system and method of establishing a connection in loopback mode in the MGCP/NCS protocol so as to enable communication between remote endpoints of a network comprising diverse protocols. A test device sends traffic through the network under test, towards an endpoint termination which loops the traffic back to the test device. The termination endpoint may incorporate specific test and measurement software or/and hardware installed permanently or temporarily by technicians in the peripherals of a network to test or troubleshoot some problems, or a customer-owned device such as a cable modem.

The test device or other management entity analyses data and determines the quality of the end-to-end two-way transmission. The technique widely used for legacy Public Switched Telephone Networks (PSTN) and Integrated Services Digital Networks (ISDN), namely for Trunk testing. However, it is still not yet implemented on hybrid networks implying at least one packet-based network, waiting for enabling technologies. This invention makes a contribution towards implementing loopback testing for IP-based services.

Advantages of the system and method of the invention include:

In one implementation of the invention, the system for establishing a remote test in loopback mode between an interface located on a test device having an endpoint within access of the network comprising a test probe , an MGCP or NCS multimedia terminal adapter (MTA), a trunk gateway operable for bridging at least two different networks, one of which network is a packet-based network; and a switch preconfigured with preferably two tags for controlling establishment of the loopback connections between the probe and the adapter. The test device attaches a tag to the phone number that it dials to join the remote endpoint. The CA removes the tag and translates it according to a preconfigured table, into a loopback mode. Two tags advertise the two loopback modes: one for the RTP LB and the other for the Audio LB. The system is operable for looping back the media transmitted from the probe to the adapter for testing the end to end quality of services delivered over the network.

In one implementation of the method of the invention, testing the quality of data, voice, video and multi-media-based services carried over a communication system comprising a probe, trunk gateway, switch and adapter, the probe, trunk gateway and switch being pre-configured for the protocol of the invention, a tag is attached to the phone number of an analog port on the adapter. The tags are preconfigured on the switch for connection between the probe and the adapter. SSRC collision detection and echo cancellation on the trunk gateway are disabled. A connection on the probe is established by dialing a number corresponding to a port on the adapter with one prefix of the loopback mode. Translation of the tagged loopback modes is effected by operation of the switch. The phone number is correlated with the operation of the IP address of the adapter. The exchange of signalling information between the adapter and the trunk gateway is controlled by means of the switch. The test device sends traffic, through the network under test, towards an endpoint termination which loops the traffic back to the test device. The termination may be a specific test and measurement software and/or hardware installed permanently or temporarily by technicians in the peripherals of a network to test or troubleshoot problems, or a customer-owned device such as a cable modem. Signalling information, obtained by means of the trunk gateway using one of the MGCP or NCS signalling protocols, is forwarded back to the probe in a packet-based format.

In a different embodiment of the system and method of the invention, the loopback test conducted on packet networks. The test device is the gateway.

As shown, the systems include a gateway but when the probe and the MTA are both connected to the packet network, the probe is acting as the media gateway. When the probe acts in a hybrid technology context, it acts behind a gateway.

Test device or other management entity analyses data and determines the quality of the end-to-end two-way transmission. The technique widely used for legacy Public Switched Telephone Networks (PSTN) and Integrated Services Digital Networks (ISDN), namely for Trunk testing.

In RTP LB, packets are looped back to the transmitter as they are.

FIG. 1 is a conceptual diagram of a hybrid telecommunications system.

FIG. 2 is a conceptual diagram of the two-level hierarchical structure established by MGCP/NCS in order to control a connection set up between two different endpoints.

FIG. 3 is a flow diagram that shows how a connection in loopback mode can be established between a Probe and a MTA in accordance with the principles of the present invention.

FIG. 1 shows a typical communication network where the access networks, are using different technologies, e.g., Ethernet/IP-based 31, TDM-based 32 or analog-based 33, to connect subscribers and are interconnected via a single technology core network which is typically IP-based 30 (the Internet). Active and/or passive techniques may be used to monitor the quality of transmission across this network. In active or intrusive techniques, test traffic is injected by an originating test device (20) in the network via a specific interface, e.g., Ethernet 21, PRI 22 or 2-wire 23, corresponding to the access network as shown in FIG. 1. This traffic is either received and analyzed by one or more terminating test devices (20), or looped back to the same originating test device (20). In passive or non-intrusive techniques, the real traffic is captured and analyzed by test devices (20) placed inside the network. Therefore, active tests are more suitable for measuring perceived end-to-end quality of services and passive tests are more useful for troubleshooting network problems.

In this invention, we are interested in active testing where a single test device (20) acting autonomously or controlled by a test manager (10) is used to measure the end to end quality by means of loopback connections where the reflecting points are located on an IP-based access network 34 as close as possible to the subscriber. This technique saves operating and capital expenditures since the quality assessment process does not require a technician to be present at the remote site to perform testing, nor does it require an additional test device (20). This invention can be operable on converged all-IP networks where the access and core networks are using the same IP technology, as well as hybrid networks where the access and core networks are using different transport technologies. In the latter case, the networks are interconnected via gateways which act as translators for signalling information and media formats.

MGCP and its variant in the cable-based access domain NCS are protocols that allow the control of different gateways at the edge of the IP-based network by means of a call processing device called the call agent (CA) or call manager server (CMS), typically integrated within a soft switches 50.

FIG. 2 shows the two-level hierarchical structure established by MGCP/NCS in order to control a connection set up between two different endpoints, where the CA is on the top level and the gateways (endpoints) are on the bottom level. The endpoints are basic constructs on the gateways, on which the CA is acting in order to establish connections. A gateway may have one or multiple endpoints. For example, an endpoint may be an analog port on a media terminal adapter and a connection may be established between two endpoints on two different gateways or between two different endpoints on the same gateway.

With respect to MGCP/NCS protocol, it is assumed that the terminating endpoint is on an MTA 60 located at the customer premises and acting as a residential gateway. The test device (20) is acting as the originating media gateway 43 if it is directly connected to an Ethernet/IP based 31 network and manages virtual endpoints. Otherwise, the originating gateway is a separate device and the test device (20) must use the signalling protocol used on the access network in order to communicate its signalling information to the gateway which has to translate it into MGCP/NCS signalling. As shown on FIG. 2, the origination and terminating gateways are communicating separately with the CA which controls the connection setup. Therefore, the originating gateway does not readily communicate any signalling information directly to the terminating gateway. Moreover, the connection modes are decided by the CA and communicated to the respective gateways. For example, when the CA sends a command to a gateway to create a connection in “receive only” mode, it is not allowed to transmit media. This raises the following problem when the gateway is acting as or on behalf of a test device (20) that needs to initiate connections in loopback mode.

FIG. 3 describes how a connection in loopback mode can be established between a Probe 20 and a MTA 60. The Probe 20 uses an ISDN Primary Rate Interface (PRI) to connect to a Trunk gateway 42. A signalling protocol related to the ISDN, such as ITU.Q.931 may be used between the Probe 20 and the Trunk gateway 42. The trunk gateway 42 is then considered as the initiating gateway with respect to MGCP/NCS. It communicates directly with the soft switches 50 using MGCP/NCS. The MTA 60 should be pre-configured to communicate with the soft switches 50 and to support MGCP/NCS loopback modes from both hardware and software perspectives.

It is important to note that this architecture and the call flow that will be described in the following paragraphs are only examples of how this invention may be applied. The two gateways may be connected to different soft switches 50 which use a specific protocol to communicate between them, but this would be completely transparent for the connection. Therefore, the soft switches 50 in this example represents the call control entity which may be split into different entities and locations. Moreover, we will not describe the formal call flow for the non-MGCP/NCS signalling part, the MGCP acknowledgment (ACK) responses will not be described as well.

The connection creation steps may be described as follows:

Special settings enable the testing. First, when the media is crossing internetworking devices that integrates Echo Cancellers (EC), such as trunk gateways 42, this may disrupt the test. Actually, when the media is looped back to this device within the echo path delay that the EC will cancel, the EC may consider the looped back media as an echo and consequently cancels it, which causes the loopback test to fail. Therefore, it is recommended to disable any EC on the media path.

In RTP loopback, the RTP packets are looped back without any modification of the RTP header, which may cause an SSRC collision. Actually, each RTP stream is identified by the identifier of the synchronized source (SSRC) of the traffic, e.g., the trunk gateway 42 in the example of FIG. 3. The flow upstream, from the MTA 60 to the trunk gateway 42, must be identified by the SSRC of the MTA 60. However, in RTP loopback, the flows upstream and downstream are both identified by the SSRC of the trunk gateway 42, which creates confusion known as SSRC collision in the trunk gateway 42, and it may drop the packets in this case. This typically occurs in the case of internetworking devices that need to look into the RTP header, such as transcoders on the media path. Therefore, the SSRC collision detection should be disabled for loopback tests

Since various modifications can be made in any invention as herein above described, and many apparently widely different embodiments may be made within the spirit and scope of the claims without departing from the spirit and scope, it is intended that all matter contained in the accompanying specification shall be interpreted as illustrative only and not in a limiting sense.

Reniere, Martin, Boujelben, Yassine

Patent Priority Assignee Title
9819807, Sep 13 2013 NETWORK KINETIX, LLC System and method for real-time analysis of network traffic
Patent Priority Assignee Title
5164960, Feb 15 1990 AMD TECHNOLOGIES HOLDINGS, INC ; GLOBALFOUNDRIES Inc Medium attachment unit for use with twisted pair local area network
5825755, Aug 10 1994 Nortel Networks Limited Method and apparatus for switching between full-duplex and half-duplex CSMA/CD systems
6335927, Nov 18 1996 Verizon Patent and Licensing Inc System and method for providing requested quality of service in a hybrid network
6636484, Dec 09 1998 Cisco Technology, Inc. Automatic generation of OAM cells for connection continuity detection
7173910, May 14 2001 Level 3 Communications, LLC Service level agreements based on objective voice quality testing for voice over IP (VOIP) networks
7248682, Dec 22 1998 Cisco Technology, Inc. Dial plan mapper
7327712, Jun 29 2001 NEC PLATFORMS, LTD Selection system, its selection method for voice channels, and switchboard for use therein
7535847, Dec 30 2004 T-MOBILE INNOVATIONS LLC Remote testing for service provider networks
7564840, Nov 20 1998 Level 3 Communications, LLC Voice over data telecommunications network architecture
7567520, Nov 17 2004 OPTIMUS ACQUISITION LLC; ALPHA TECHNOLOGIES SERVICES, INC Apparatus and method of remotely enabling a special mode of operation of an endpoint in a VoIP network
7706293, May 08 2005 HUAWEI TECHNOLOGIES CO , LTD Performance management system, apparatus and method between residential gateway and broadband remote access server
8578500, May 31 2005 FAIRWARNING IP, LLC System and method of fraud and misuse detection
20020010865,
20020044548,
20020064149,
20020167936,
20020176542,
20030115368,
20030185210,
20040057385,
20040208192,
20040258238,
20050251858,
20050261860,
20070248010,
20100182914,
//////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jan 16 2008RENIERE, MARTINTektronix, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0275250997 pdf
Jan 16 2008BOUJELBEN, YASSINETektronix, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0275250997 pdf
Jan 12 2012Tektronix, Inc.(assignment on the face of the patent)
Jul 14 2015NetScout Systems, IncJPMORGAN CHASE BANK, N A SECURITY INTEREST SEE DOCUMENT FOR DETAILS 0363550586 pdf
Aug 13 2015Tektronix, IncTektronix Texas, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0363550563 pdf
Jun 27 2016Tektronix Texas, LLCNetScout Systems Texas, LLCCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0450400184 pdf
Date Maintenance Fee Events
Jan 02 2018M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Jan 03 2022M1552: Payment of Maintenance Fee, 8th Year, Large Entity.


Date Maintenance Schedule
Jul 01 20174 years fee payment window open
Jan 01 20186 months grace period start (w surcharge)
Jul 01 2018patent expiry (for year 4)
Jul 01 20202 years to revive unintentionally abandoned end. (for year 4)
Jul 01 20218 years fee payment window open
Jan 01 20226 months grace period start (w surcharge)
Jul 01 2022patent expiry (for year 8)
Jul 01 20242 years to revive unintentionally abandoned end. (for year 8)
Jul 01 202512 years fee payment window open
Jan 01 20266 months grace period start (w surcharge)
Jul 01 2026patent expiry (for year 12)
Jul 01 20282 years to revive unintentionally abandoned end. (for year 12)