A diagnostic system for determining whether a rotor shaft of a compressor is unbalanced. The compressor includes a displacement sensor that measures the displacement of the rotor shaft as it is rotating. The sensor dynamic frequency signal is sent to a bandpass filter that filters out an eigen-frequency frequency that is a function of shaft elasticity and rotor dynamics. The filtered frequency signal is then rectified by a rectifier to make the filtered frequency signal positive. The rectified signal is then passed through a low pass filter that converts the rectified signal to a dc signal. The dc signal is then sent to a controller that determines if the amplitude of the signal is above a predetermined threshold, which indicates a problem with the balance of the compressor.

Patent
   8771891
Priority
Aug 15 2006
Filed
Aug 15 2006
Issued
Jul 08 2014
Expiry
Jan 10 2031
Extension
1609 days
Assg.orig
Entity
Large
0
12
EXPIRED
1. A method for determining whether a rotor shaft of a compressor is unbalanced, said method comprising:
determining a distance between an end of a displacement sensor and the rotor shaft as it rotates;
providing a frequency signal representing the distance between the end of the displacement sensor and the rotor shaft wherein the frequency signal is indicative of the balance of the rotor shaft;
bandpass filtering the frequency signal to provide a single unbalance frequency signal;
rectifying the bandpass filter signal to provide a positive unbalance frequency signal;
low pass filtering the positive unbalance frequency signal to convert the unbalance frequency signal to a dc signal whose amplitude is indicative of the balance of the rotor shaft; and
comparing the amplitude of the dc signal to at least one threshold to determine whether the rotor shaft is unbalanced, wherein comparing the amplitude of the dc signal to at least one threshold includes comparing the amplitude of the dc signal to a low threshold and a high threshold, and wherein if the amplitude of the dc signal is greater than the low threshold and less than the high threshold, a warning signal is provided and if the amplitude of the dc signal is greater than the high threshold, the system is shut-down and/or its performance is reduced.
2. The method according to claim 1 wherein bandpass filtering the frequency signal includes filtering an eigen-frequency signal from the frequency signal that is a function of the rotor shaft elasticity and rotor dynamics.

1. Field of the Invention

This invention relates generally to a system for determining whether a compressor is unbalanced and, more particularly, to a system for determining whether a compressor for a fuel cell stack is unbalanced, where the system generates a DC analog signal indicative of the compressor balance from a sensor signal that includes an eigen-frequency signal and an unbalance frequency signal.

2. Discussion of the Related Art

Hydrogen is a very attractive fuel because it is clean and can be used to efficiently produce electricity in a fuel cell. A hydrogen fuel cell is an electrochemical device that includes an anode and a cathode with an electrolyte therebetween. The anode receives hydrogen gas and the cathode receives oxygen or air. The hydrogen gas is dissociated in the anode to generate free protons and electrons. The protons pass through the electrolyte to the cathode. The protons react with the oxygen and the electrons in the cathode to generate water. The electrons from the anode cannot pass through the electrolyte, and thus are directed through a load to perform work before being sent to the cathode.

Proton exchange membrane fuel cells (PEMFC) are a popular fuel cell for vehicles. The PEMFC generally includes a solid polymer electrolyte proton conducting membrane, such as a perfluorosulfonic acid membrane. The anode and cathode typically include finely divided catalytic particles, usually platinum (Pt), supported on carbon particles and mixed with an ionomer. The catalytic mixture is deposited on opposing sides of the membrane. The combination of the anode catalytic mixture, the cathode catalytic mixture and the membrane define a membrane electrode assembly (MEA). MEAs are relatively expensive to manufacture and require certain conditions for effective operation.

Several fuel cells are typically combined in a fuel cell stack to generate the desired power. For example, a typical fuel cell stack for a vehicle may have two hundred or more stacked fuel cells. The fuel cell stack receives a cathode input reactant gas, typically a flow of air forced through the stack by a compressor. Not all of the oxygen is consumed by the stack and some of the air is output as a cathode exhaust gas that may include water as a stack by-product. The fuel cell stack also receives an anode hydrogen reactant gas that flows into the anode side of the stack. The stack also includes flow channels through which a cooling fluid flows.

The compressor used to provide the cathode reactant gas flow is typically a high speed centrifugal air compressor that can operate up to about 80,000 RPMs. The compressor includes an electric motor that rotates a shaft coupled to a compressor wheel. If the compressor is unbalanced, i.e., the shaft has a slight oscillation, the high rotational speed of the shaft could cause damage to the compressor. Particularly, high speed compressors of this type typically use air bearings. If an unbalanced rotor shaft of the compressor contacts the air bearings, the compressor may be irreparably damaged. Therefore, it is desirable to detect small unbalances of the compressor rotor shaft for diagnostic purposes so that the compressor can be repaired before it is damaged.

In accordance with the teachings of the present invention, a diagnostic system for determining whether a rotor shaft of a compressor is unbalanced is disclosed. The compressor includes a displacement sensor that measures the displacement of the rotor shaft as it is rotating. The sensor dynamic frequency signal is sent to a bandpass filter that filters out an eigen-frequency that is a function of shaft elasticity and rotor dynamics. The filtered frequency signal is then rectified by a rectifier to make the filtered frequency signal positive. The rectified signal is then passed through a low pass filter that converts the rectified signal to a DC signal. The DC signal is then sent to a controller that determines if the amplitude of the signal is above a predetermined threshold, which indicates a problem with the balance of the compressor.

Additional features of the present invention will become apparent from the following description and appended claims, taken in conjunction with the accompanying drawings.

FIG. 1 is a block diagram of a fuel cell system including a compressor;

FIG. 2 is a graph with frequency on the horizontal axis and amplitude on the vertical axis showing an eigen-frequency related to shaft elasticity and rotor dynamics and an unbalance frequency related to the balance of the rotor shaft;

FIG. 3 is a block diagram of a system for converting a frequency signal from a displacement sensor on the compressor to an analog signal indicative of the balance of a compressor shaft, according to an embodiment of the present invention;

FIG. 4 is a graph with time on the horizontal axis and amplitude on the vertical axis showing a mixed eigen-frequency and unbalance frequency signal;

FIG. 5 is a graph with time on the horizontal axis and amplitude on the vertical axis showing a filtered unbalance frequency signal; and

FIG. 6 is a graph with time on the horizontal axis and amplitude on the vertical axis showing a rectified unbalance frequency signal.

The following discussion of the embodiments of the invention directed to a system for determining whether a compressor shaft is unbalanced is merely exemplary in nature, and is in no way intended to limit the invention or its applications or uses.

FIG. 1 is a plan view of a fuel cell system 10 including a fuel cell stack 12 and a compressor 14. As is well understood in the art, the compressor 14 provides cathode reactant air flow on line 20 to the cathode side of the fuel cell stack 12. The compressor 14 includes a stator 16 and a rotor shaft 18. The rotor shaft 18 is coupled to an impeller wheel (not shown) that rotates and provides the compressed airflow on the line 20. A displacement sensor 22 is positioned proximate the rotor shaft 18, and provides a signal of the distance between a sensing end of the sensor 22 and the rotor shaft 18 as it rotates. Therefore, the output of the displacement sensor 22 is a dynamic frequency signal indicative of the balance of the rotor shaft 18. The displacement sensor 22 can be any suitable sensor for the purposes described herein. It is beneficial that the sensor 22 be an inexpensive sensor, such as a Hall effect sensor.

The frequency signal from the displacement sensor 22 can be fast Fourier transformed (FFT) to identify signal spikes indicating the balance of the rotor shaft 18. The FFT signal will include a low frequency spike (eigen-frequency) that is related to the elasticity of the rotor shaft 18 and rotor dynamics. The FFT signal will also include a high frequency spike that provides an indication of the balance of the rotor shaft 18. Particularly, the unbalance frequency spike is a function of the speed of the rotor shaft 18, and its amplitude will increase as the rotor shaft 18 becomes more unbalanced. FIG. 2 is a graph with frequency on the horizontal axis and amplitude on the vertical axis showing the fast Fourier transformed sensor signal that includes an eigen-frequency spike 24 and an unbalance frequency spike 26.

It is possible to determine the balance of the rotor shaft 18 by evaluating the analog output signal of the displacement sensor 22 by detecting the unbalance frequency spike. However, because the unbalance frequency is relatively high, a very high sample rate of the analog sensor signal would be necessary, i.e., five times the frequency of the unbalance frequency. In addition, an evaluation algorithm, such as a FFT algorithm, has to run at that high of a sample rate during real time operation. This would require a very high controller load and consequently higher controller costs.

FIG. 3 is a block diagram of a system 30 for processing the analog frequency signal from the displacement sensor 22 to provide an indication of whether the rotor shaft 18 is unbalanced, according to an embodiment of the present invention. The analog sensor signal from the displacement sensor 22 is a combination of the eigen-frequency and the unbalance frequency, such as shown in FIG. 4. To determine whether the rotor shaft 18 is unbalanced, the eigen-frequency needs to be removed from the sensor signal so that only the unbalance frequency is left. Therefore, the sensor signal is sent to a bandpass filter 32 that removes all of the low frequencies and the high frequencies so that only a frequency signal that includes the unbalance frequency remains, such as shown in FIG. 5. The low cut-off frequency of the bandpass filter 32 is set to be a function of the lowest operational motor speed of the compressor 14 and is higher than the eigen-frequency. The high cut-off frequency of the bandpass filter 32 is set to be a function of the highest operation motor speed.

The filtered unbalance frequency signal is then sent to a rectifier 34 so that unbalance frequency signal is shifted to positive, i.e., the absolute value of the unbalance frequency, such as shown in FIG. 6. The rectifier 34 can be any suitable rectifier for the purposes described herein, such as an inexpensive four diode rectifier, well known to those skilled in the art. The rectified signal is then filtered by a low pass filter 36 that takes a mean or average of the absolute value of the unbalance frequency signal. The cut-off frequency signal of the low pass filter 36 is a function of the input sample rate and should be lower than the unbalance frequency at the lowest operation shaft speed. The output of the low pass filter 36 is a DC signal whose amplitude provides an indication of the balance of the rotor shaft 18. By using the system 30, the sample time for the unbalanced evaluation algorithm can be dramatically reduced.

The DC signal from the low pass filter 36 is compared to a threshold signal in a controller 38 to determine whether the rotor shaft 18 is unbalanced. Particularly, the controller 38 compares the amplitude of the DC signal from the low pass filter 36 to a threshold, and provides a signal indicating that the rotor shaft 18 is unbalanced if the amplitude of the DC signal exceeds the threshold. In one embodiment, the controller 38 uses a low threshold and a high threshold. If the amplitude of the DC signal from the low pass filter 36 is larger than the low threshold and less than the high threshold, then the controller 38 provides a warning signal of a potential compressor unbalance. If the amplitude of the DC signal is larger than the high threshold, then the controller 38 may provide system shut-down and/or system performance reduction. If the low threshold level is reached, the maximum allowable speed of the compressor 14 can be reduced.

The compressor diagnostics function of the present invention offers a number of advantages. For example, small unbalances in the rotor shaft 18 can be detected before the compressor 14 is completely damaged, providing lower cost and higher reliability. During a failure mode, a power reduction can be provided to also provide higher reliability, for example, a limp home mode. Because of the pre-evaluation with the analog electronic circuits, the unbalance signal is a DC signal. There are no high frequency inputs which lowers cost because special ECUs are not required. Further, there are no additional digital controller costs. Also, there is no complex evaluation of the signal, such as memory and calculation time required for FFT transformations. Further, there are not limits to real time operation. Also, there are no aliasing effects caused by the bandpass filter 32 and the low pass filter 36. Further, the diagnostics is not a function of the speed of the rotor shaft 18. The circuitry required in the system 30 are analog components and are low cost, and are simple.

The foregoing discussion discloses and describes merely exemplary embodiments of the present invention. One skilled in the art will readily recognize from such discussion and from the accompanying drawings and claims that various changes, modifications and variations can be made therein without departing from the spirit and scope of the invention as defined in the following claims.

Maier, Oliver, Willimowski, Peter, Dumke, Ulrich, Elgas, Bernd Peter

Patent Priority Assignee Title
Patent Priority Assignee Title
4976585, Apr 08 1988 Nuovopignone-Industrie Meccaniche E Fonderia S.p.A. System for the rapid balancing of revolving shafts, particularly suitable for gas turbines
5202824, Jun 21 1990 Mechanical Technology Incorporated Rotating force generator for magnetic bearings
5313399, Jan 21 1992 The Charles Stark Draper Laboratories, Inc. Adaptive synchronous vibration suppression apparatus
5659136, Oct 25 1995 Kendro Laboratory Products GmbH Method and device for determining an imbalance and application of the device
6296441, Aug 05 1997 CORAC ENERGY TECHNOLOGIES LIMITED Compressors
7396604, Oct 29 2003 GM Global Technology Operations LLC Centrifugal compressor surge detection using a bi-directional MFM in a fuel cell system
7539549, Sep 28 1999 ROCKWELL AUTOMATION TECHNOLOGIES, INC Motorized system integrated control and diagnostics using vibration, pressure, temperature, speed, and/or current analysis
20040169977,
20040244485,
20050196659,
DE261208,
JP200090448,
//////////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
May 31 2006DUMKE, ULRICHGM Global Technology Operations, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0181070303 pdf
May 31 2006ELGAS, BERND PETERGM Global Technology Operations, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0181070303 pdf
May 31 2006MAIER, OLIVERGM Global Technology Operations, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0181070303 pdf
Jun 02 2006WILLIMOWSKI, PETERGM Global Technology Operations, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0181070303 pdf
Aug 15 2006GM Global Technology Operations LLC(assignment on the face of the patent)
Dec 31 2008GM Global Technology Operations, IncUNITED STATES DEPARTMENT OF THE TREASURYSECURITY AGREEMENT0221950334 pdf
Apr 09 2009GM Global Technology Operations, IncCITICORP USA, INC AS AGENT FOR HEDGE PRIORITY SECURED PARTIESSECURITY AGREEMENT0225530493 pdf
Apr 09 2009GM Global Technology Operations, IncCITICORP USA, INC AS AGENT FOR BANK PRIORITY SECURED PARTIESSECURITY AGREEMENT0225530493 pdf
Jul 09 2009UNITED STATES DEPARTMENT OF THE TREASURYGM Global Technology Operations, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0231240519 pdf
Jul 10 2009GM Global Technology Operations, IncUNITED STATES DEPARTMENT OF THE TREASURYSECURITY AGREEMENT0231560142 pdf
Jul 10 2009GM Global Technology Operations, IncUAW RETIREE MEDICAL BENEFITS TRUSTSECURITY AGREEMENT0231620093 pdf
Aug 14 2009CITICORP USA, INC AS AGENT FOR BANK PRIORITY SECURED PARTIESGM Global Technology Operations, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0231270402 pdf
Aug 14 2009CITICORP USA, INC AS AGENT FOR HEDGE PRIORITY SECURED PARTIESGM Global Technology Operations, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0231270402 pdf
Apr 20 2010UNITED STATES DEPARTMENT OF THE TREASURYGM Global Technology Operations, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0252450587 pdf
Oct 26 2010UAW RETIREE MEDICAL BENEFITS TRUSTGM Global Technology Operations, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0253140901 pdf
Oct 27 2010GM Global Technology Operations, IncWilmington Trust CompanySECURITY AGREEMENT0253270041 pdf
Dec 02 2010GM Global Technology Operations, IncGM Global Technology Operations LLCCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0257810001 pdf
Oct 17 2014Wilmington Trust CompanyGM Global Technology Operations LLCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0341840001 pdf
Date Maintenance Fee Events
Jun 10 2014ASPN: Payor Number Assigned.
Dec 28 2017M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Feb 28 2022REM: Maintenance Fee Reminder Mailed.
Aug 15 2022EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Jul 08 20174 years fee payment window open
Jan 08 20186 months grace period start (w surcharge)
Jul 08 2018patent expiry (for year 4)
Jul 08 20202 years to revive unintentionally abandoned end. (for year 4)
Jul 08 20218 years fee payment window open
Jan 08 20226 months grace period start (w surcharge)
Jul 08 2022patent expiry (for year 8)
Jul 08 20242 years to revive unintentionally abandoned end. (for year 8)
Jul 08 202512 years fee payment window open
Jan 08 20266 months grace period start (w surcharge)
Jul 08 2026patent expiry (for year 12)
Jul 08 20282 years to revive unintentionally abandoned end. (for year 12)