A method for recovering exhaust heat for an engine is disclosed herein. The method includes during an engine operation, reducing a volume of a circulating heat transfer fluid and discharging a heat storage device to heat an engine component. The method further includes distributing the circulating heat transfer fluid to one or more heat exchangers each in thermal contact with one or more engine systems.
|
1. A method for an engine, comprising:
during an engine operation,
reducing a volume of a circulating heat transfer fluid within a heat recovery system;
discharging a heat storage device of the heat recovery system to heat an engine component; and
distributing the circulating heat transfer fluid to a heat exchanger in thermal contact with an engine coolant system, the engine coolant system separate from and different than the heat recovery system.
9. A heat recovery system for an engine, comprising:
a first heat exchanger in thermal contact with an exhaust system via a coupling to an exhaust passage that flows exhaust gas received from the engine;
a second heat exchanger in thermal contact with an engine coolant system, the engine coolant system separate from and different than the heat recovery system;
a pipe including a heat transfer fluid in fluidic communication with the first and second heat exchangers; and
a heat storage device fluidically coupled to the pipe downstream from the first heat exchanger and upstream from the second heat exchanger.
15. A heat transfer system for an engine, comprising:
a pump driving a circulation of a heat transfer fluid through a pipe system;
an exhaust heat exchanger in thermal contact with an exhaust pipe and fluidically coupled to the pipe system, the exhaust pipe flowing exhaust gas received from the engine;
a plurality of system heat exchangers, different from and in addition to the exhaust heat exchanger, each fluidically coupled to the pipe system and in thermal contact with an engine system separate from the heat transfer system, the plurality of system heat exchangers comprising an engine coolant heat exchanger in thermal contact with an engine coolant system separate from and different than the heat recovery system; and
a heat storage device fluidically coupled to the pipe system between the exhaust heat exchanger and the plurality of system heat exchangers and holding stored heat recovered from a previous engine operation.
2. The method of
3. The method of
4. The method of
reducing the volume of the circulating heat transfer fluid comprises reducing the volume of the circulating heat transfer fluid while pumping the heat transfer fluid via a pump;
discharging the heat storage device comprises discharging the heat storage device by pumping the heat transfer fluid via the pump; and
distributing the circulating heat transfer fluid to the heat exchanger comprises distributing the circulating heat transfer fluid to the heat exchanger by pumping the heat transfer fluid via the pump,
the heat transfer fluid pumped by the pump during the engine operation.
5. The method of
6. The method of
7. The method of
8. The method of
10. The system of
11. The system of
12. The system of
13. The system of
14. The system of
16. The heat transfer system of
17. The heat transfer system of
18. The heat transfer system of
19. The heat transfer system of
20. The heat transfer system of
|
Vehicles may recover exhaust heat for transfer to various other systems in an internal combustion engine.
The inventors herein have recognized that rapid heat at engine start is not available in most systems because the systems require the exhaust system to warm up first, before wasted engine heat can be used to heat up various components. Further, transferring heat away from the exhaust system during a cold start operation delays the catalytic converter ‘light-off.” As a result, the catalytic converter does not operate at an efficient temperature to burn trapped hydrocarbons, thereby increasing exhaust emissions.
As such, one example approach to address the above issues is claim 1.
According to one embodiment, a method for recovering exhaust heat includes reducing a volume of a circulating heat transfer fluid and discharging a heat storage device to heat an engine component. The method further includes, distributing the circulating heat transfer fluid to one or more engine systems. As such, heat may be discharged directly from a heat recovery system and provided to another engine system. Further, the heat storage device may be recharged by reducing the volume of the circulating heat transfer fluid. This configuration enables stored heat from a previous engine operation to be available at engine start to rapidly warm up various engine components.
It should be understood that the summary above is provided to introduce in simplified form a selection of concepts that are further described in the detailed description. It is not meant to identify key or essential features of the claimed subject matter, the scope of which is defined uniquely by the claims that follow the detailed description. Furthermore, the claimed subject matter is not limited to implementations that solve any disadvantages noted above or in any part of this disclosure.
The following description relates to a heat transfer system including phase changing materials, which are arranged in such a way that thermal energy from an exhaust system can be recovered. The example arrangements described herein allow thermal energy to be recovered and stored for later heating of a passenger compartment, for example. A heat transfer system may utilize a heat storage device to transfer heat even when the engine is not in operation. For example, the heat storage device may be in fluidic communication with an exhaust system component downstream from the catalytic converter, such as via heat exchanger. In this way, heat may transfer from the heat storage device even after the engine is no longer in operation. For example, the heat storage device may be insulated to store heat recovered from the exhaust system, which may be available for immediate use at engine start.
Additionally, the heat transfer system may include various heat transfer fluids to extract thermal energy from the exhaust system under a variety of different operating conditions. In this way, thermal energy may be recovered from the exhaust system to provide heat to various other systems such as a cabin heating system, lubrication systems, and/or other exhaust system components, if desired.
Further, the example systems allow for a simpler design as compared to traditional designs. For example, the heat storage device may provide heat to a cabin heating system at engine start, as introduced above. By coupling the heat storage device to a component of the exhaust system downstream from the catalytic converter, the cabin heating system may provide heat to the passenger cabin at engine start without relying upon a coolant system, and therefore, without waiting for the coolant system to warm up at engine start. Further, the system may provide the stored heat to the cabin heating system without delaying catalytic converter light-off, as described above.
Referring first to
As shown, heat storage device 100 includes an inlet passage 106 and an outlet passage 108. The inlet and outlet passages may carry a heat transfer fluid. Further, the heat storage device may house a phase changing material (PCM).
Inlet passage 106 may be coupled to heat storage device 100 at a central position. For example, inlet passage 106 may be coupled to a first end 110 of heat storage device 100 at the central position. In other words, inlet passage 106 may have a central axis 112 that is shared with a central axis of end 110, and further, shared with a central axis of heat storage device 100. Inlet passage 106 may be configured to supply heat storage device 100 with heat recovered from the exhaust system, for example. In some embodiments, the heat transfer fluid of inlet passage 106 may be coupled to a pump (not shown) to drive a movement of the heat transfer fluid. Further, a bypassable heat exchanger may be positioned upstream from inlet passage 106. Such a heat exchanger is discussed further with reference to
Outlet passage 108 may be coupled to heat storage device 100 at a top position. For example, outlet passage 108 may be coupled to a second end 116 of heat storage device 100 at the top position. In other words, outlet passage 108 may have a central axis 118 that is a distance 120 from shared central axis 112 in a vertical direction (e.g., along vertical axis 104). In this way, outlet passage 108 is positioned towards a periphery of end 116, rather than centrally located, to advantageously reduce bubble accumulation in the heat transfer fluid. However, in some embodiments, outlet passage 108 may be centrally located at end 116, if desired. Outlet passage 108 may be configured to transfer heat from heat storage device 100 to another system of the vehicle. For example, outlet passage 108 may transfer stored heat to the cabin heating system, the coolant system, the lubrication system, and/or another system of the vehicle. Further, outlet passage 108 may include a portion that extends into the interior 114 of heat storage device 100.
As shown, heat storage device 100 includes a vacuum passage 122. For example, vacuum passage 122 may be coupled to heat storage device 100 at end 116. Vacuum passage 122 may be coupled to both heat storage device 100 and a vacuum pump (not shown). For example, in some embodiments, heat storage device 100 may include a vacuum jacket, and vacuum passage 122 may be a conduit for evacuating an airspace within the vacuum jacket. In this way, a pressure within at least a portion of interior 114 may be reduced. In some embodiments, the pressure within interior 114 may be reduced to 1 microbar or less.
Vacuum jacket 132 may hold a reduced pressure around an exterior of inner vessel 126 when a vacuum is applied. By applying a vacuum, water vapor and other gaseous compounds can be evacuated from the surfaces of the insulating layers as hot fluid is pumped through the heat transfer fluid passages. Further, vacuum jacket 132 may include one or more anti-radiation foils 134 that reduce heat loss to the surrounding environment via radiation.
It will be appreciated that the perspective view of
Further, at least a portion of inlet passage 106 and outlet passage 108 may be double walled and include a vacuum space. For example, portions 136 exterior to heat storage device 100 may be double walled similar to the inner and outer vessels. Further, vacuum spaces 138 of the inlet and outlet passages may coalesce with vacuum jacket 132 of the heat storage device.
Heat storage device 100 may include one or more axial supports 140. Axial supports 140 may couple inner vessel 126 to outer vessel 124 such that the inner vessels is suspended and supported within the outer vessel. As shown, axial supports 140 may be coupled to outer walls 128 and inner walls 130, and thus, may be positioned within vacuum jacket 132. The axial supports may be composed of a material with low heat conducting properties. For example, axial supports 140 may be composed of titanium or a composite including titanium or another material with low heat conducting properties. Further, in some embodiments the axial supports may be perforated to further reduce heat loss to the surrounding environment.
Further, the inner vessel may be additionally and/or alternatively supported by radial supports 142. Such radial supports may be located circumferentially at various positions. As shown, radial supports 142 may be coupled to outer walls 128 and inner walls 130, and thus, may be positioned within vacuum jacket 132. Similar to the axial supports, the radial supports 142 may be composed of titanium or a composite including titanium or another material with low heat conducting properties. Further, in some embodiments the radial supports may be perforated to further reduce heat loss to the surrounding environment.
As shown, heat storage device 100 includes two axial supports at end 110, one axial support at end 116, and four radial supports 142. It will be appreciated that the number of axial and radial supports shown is non-limiting and another number of supports and/or another configuration of supports is possible without departing from the scope of this disclosure. The supports are provided to illustrate a general concept of a configuration enabling heat storage device 100 to withstand gravitational acceleration forces that may occur when the heat storage device 100 is rigidly coupled to the vehicle body.
Heat storage device 100 may further include a phase changing material (PCM) stack 144 supported between retention plates 146 via one or more springs 148. PCM stack 144 may include a plurality of PCM elements 150 arranged radially about a central feed passage 152. In some embodiments, the configuration of the PCM stack is such that the PCM stack retains 80% of stored heat for at least 16 hours, which may be used as a heat source at engine start to heat the passenger cabin, as described above. Further, heat stored in PCM stack 144 may be discharged to heat the passenger cabin or another engine system without starting the engine. For example, PCM stack discharge may be initiated remotely and does not necessarily have to coincide with engine-start. However, PCM stack discharge may be initiated remotely along with engine-start, for example, using a remote starter to start engine 12.
The plurality of PCM elements 150 include a phase changing material capable of storing a large quantity of heat in a form of a latent heat of fusion. Since the plurality of PCM elements 150 are surrounded by the double wall configuration, heat storing capabilities are enhanced. In other words, the double wall configuration acts like a thermos to retain heat stored within the plurality of PCM elements 150. In some embodiments, each PCM element may include the same phase changing material, and thus, the PCM stack may have one phase transfer temperature. In other embodiments, the PCM stack may include PCM elements with different phase changing materials, wherein each different phase changing material has a different phase transfer temperature. In such an example, a time to charge the PCM stack may be reduced. In other words, the time for the PCM stack to reach a maximum heat storing potential may be reduced.
As shown, heat transfer fluid may be delivered to PCM stack 144 via centrally located inlet passage 106, and further, via center feed passage 152. Thus, it will be appreciated that inlet passage 106 is in fluidic communication with center feed passage 152. Thus, heat transfer fluid flows radially from center feed passage 152 to the plurality of PCM elements 150. Heat transfer fluid exits the heat storage device via outlet passage 108 arranged in the top position, as described above.
As the heat transfer fluid flows through the PCM stack, a pressure drop occurs. To reduce the pressure drop, the inlet passage 106 and the outlet passage 108 are straight. In other words, the inlet passage 106 and the outlet passage 108 do not include bends. Further, the inlet passage 106 and the outlet passage 108 do not include corrugations. Due to the absence of corrugations, a rate of heat loss may potentially increase. However, since the inlet and outlet passages include a vacuum space around a circumference of these passages, such a potential for heat loss is reduced.
As shown, retention plates 146 may be positioned at either end of PCM stack 144. For example, one retention plate 146 may be positioned proximate to end 110, and another retention plate 146 may be positioned proximate to end 116. Retention plates 146 may be a circular shape and may have a diameter that is approximately equal to a diameter of PCM stack 144. As another example, retention plates 146 may have a larger diameter or a smaller diameter than PCM stack 144. The retention plates may be coupled to the inner vessel via one or more plate extensions with windows 154 to allow HTF to reach exit 108. Six axial rods (not shown) allow retention of the PCM stack in the radial and circumferential directions. The rods are welded to the retention plates. As such, the PCM stack is retained inside inner vessel 126 to reduce the potential for stack element sliding and/or rotation during vehicle operation.
Further, one or more springs 148 may further maintain the position of the PCM stack. As shown, one or more springs 148 may be positioned proximate to end 116 between retention plate 146 and inner walls 130. Springs 148 may be configured to ensure proper contact between the PCM elements during thermal expansion and thermal compression that results from the heat transfer fluid heating and cooling. In some embodiments, springs 148 may have a combined force of 100 Newtons or higher to maintain proper contact between the PCM elements. As shown in
In some embodiments, heat exchanger 156 is a liquid-to-liquid heat exchanger. In other embodiments, the heat exchanger 156 could be a gas-to-liquid or gas-to-thermosyphon heat exchanger.
Further, exhaust passage 14 may include a bypass valve 158 that directs exhaust gas flow through heat exchanger 156. Bypass valve 158 is shown in a bypass position (e.g., a closed position) in
It will be appreciated that the disclosed system may include more than one heat exchanger. For example, a heat exchanger may be positioned upstream from inlet passage 106, and one or more heat exchangers may be positioned downstream from outlet passage 108. For example, a heat exchanger may be positioned at an interface between the heat recovery system and another system of the vehicle. Such a configuration is described in further detail with respect to
It will be appreciated that
As shown, heat recovery system 200 includes heat exchanger 156 to recover heat from exhaust system 10, as described above. Heat recovery system 200 may further include one or more additional heat exchangers 202. Heat exchangers 202 may transfer heat between heat recovery system 200 and another engine system 203. For example, heat exchangers 202 may transfer heat to coolant system 204, cabin heating system 228, and/or transmission system 206. In other words, heat exchangers 202 may be thermally coupled (e.g., in thermal contact) with a fluid of the coolant system 204, the cabin heating system 228 and/or the transmission system 206 to transfer heat to each respective system.
It will be appreciated that each of the engine systems 203 are separate systems from heat recovery system 200 and exhaust system 10. As such, engine systems 203 include components that are separate from the components of heat recovery system 200 and exhaust system 10. Thus, engine systems 203 do not include heat exchanger 156, heat exchangers 202, heat storage device 100, or another component of heat recovery system 200 and exhaust system 10. For example, cabin heating system 228 may include a heater core and a fan, wherein the heater core and the fan are separate from the heat recovery system and the exhaust system. Thus it is to be understood that only a fluid conduit (e.g., a coolant passage) of each engine system 203 is in thermal contact with the heat recovery system 200 at a position coinciding with the heat exchanger 202, for example. In this way, heat transfer occurs at the heat exchanger.
It will be appreciated that one or more of the heat exchangers may be gas-to-liquid and/or gas-to-thermosyphon heat exchangers. As shown, heat exchangers 202 may be thermally coupled to an engine system in parallel. In some embodiments, heat exchangers 202 may be thermally coupled to each of the engine systems in series. For example, heat transfer fluid may flow through a series of heat exchangers 202 fluidically coupled to a common heat transfer fluid passage.
As shown, heat transfer fluid (HTF) may flow through a heat exchanger and may thermally transfer heat to a fluid of one or more of the aforementioned systems. Arrows 208 generally indicate a direction of HTF flow, and arrows 210 generally indicate a direction of fluid flow for each engine system. Pump 212 may drive HTF fluid flow through heat recovery system 200. As shown, pump 212 is positioned upstream from heat exchanger 156; however, another position is possible without departing from the scope of this disclosure. Further, it will be appreciated that coolant system 204, cabin heating system 228 and/or the transmission system 206 may have another driving mechanism to drive fluid flow through each respective system. For example, each engine system 203 may have a pump, similar to pump 212, fluidically coupled to the fluid flow.
Heat recovery system 200 may further include one or more control valves 214, one or more variable position valves 216, one or more manifolds such as manifold 218 and manifold 220, and expansion device 222.
Control valves 214 may be actuated by a controller (not shown) to regulate HTF flow through heat recovery system 200. As shown, a control valve may be positioned upstream from one of the heat exchangers 202, upstream from heat storage device 100, and/or at another position within heat recovery system 200 to regulate HTF flow. Depending on an operational state of the vehicle, one or more of the control valves may be actuated to regulate a temperature of the HTF. For example, when one or more control valves are closed, a volume of circulating HTF can be reduced such that the HTF can increase in temperature more rapidly.
Further, the HTF temperature may be regulated via actuation of variable control valve 216. Such a control valve may be actuated to open at varying degrees to change a fluid flux of the HTF passing through variable control valve 216. As shown, variable control valve 216 is positioned upstream from manifold 220, and is included within bypass loop 224. Bypass loop 224 may bypass heat storage device 100. Therefore, bypass loop 224 may allow HTF to circulate without passing through heat storage device 100. For example, to conserve heat stored in heat storage device 100, variable control valve 216 may be adjusted to allow HTF fluid flow to flow through bypass loop 224. In other words, bypass loop 224 may be a blending loop that blends cooler HTF fluid with warmer HTF fluid that circulates through heat exchanger 156, heat storage device 100, and/or one or more heat exchangers 202. By blending HTF circulating through bypass loop 224 with other circulating HTF flow, an overall temperature of the circulating HTF may be reduced.
Further still, the HTF temperature may be regulated by routing all circulating HTF flow through bypass loop 226. For example, bypass loop 226 may be an exhaust temperature boosting loop and bypass loop 226 may be a thermal recharging loop, depending on the operational state of engine 12 and/or the thermal capacity of heat storage device 100. For example, bypass loop 226 may function as the exhaust temperature boosting loop when heat storage device 100 holds a thermal charge and the exhaust temperature is below a threshold value. Further, heat exchanger 156 may be positioned upstream from one or more exhaust emissions control devices and heat storage device 100 may discharge heated HTF to be delivered to heat exchanger 156. In this way, heated HTF may only be circulated through bypass loop 226 to increase a temperature of the exhaust flow, such that a time to reach catalyst light-off is reduced.
Further, as the thermal recharging loop, bypass loop 226 may extract heat from the exhaust flow to recharge heat storage device 100. Thus, HTF may only flow through thermal charging loop 225 to increase the temperature of HTF via heat exchanger 156. In this way, HTF may be heated by the exhaust flow to recharge the thermal capacity of heat storage device 100. It may be advantageous to recharge heat storage device 100 in this way when a temperature of the heat storage device is below a threshold value. For example, after heat storage device has discharge its thermal capacity, and/or after the various engine systems are sufficiently warm.
In other words, one or more control valves 214 positioned upstream from heat exchangers 202 may be closed to reduce a volume of circulating HTF, and/or variable position control valve 216 may also be closed, such that circulating HTF only passes through bypass loop 226, heat exchanger 156, and heat storage device 100. A method for regulating HTF flow through heat recovery system 200 by actuating one or more control valves is described with respect to
As shown, manifolds 218 and 220 may be positioned in heat recovery system 200 where more than one pipe carrying HTF fluid merges. For example, manifold 218 may be configured to receive HTF fluid from one pipe and may include two HTF outlets. As another example, manifold 220 may be configured to receive HTF fluid from more than one pipe and may include more than one outlet. As shown, manifold 220 receives HTF flow from heat storage device 100 and from bypass loop 224. Further, manifold 220 may have an outlet directed towards each heat exchanger 202 and/or to thermal charging loop 225. It will be appreciated that manifolds 218 and 220 are provided as non-limiting examples, and thus, other configurations are possible without departing from the scope of this disclosure.
Expansion device 222 may be positioned downstream from the plurality of heat exchangers 202. As shown, expansion device 222 is configured to receive HTF from each of the heat exchangers 202, as well as thermal recharging loop 225. For example, expansion device 222 may be provided for degassing. In other words, expansion device 222 may be positioned downstream from heat exchangers 202 and thermal recharging loop 225 to regulate a pressure of the incoming HTF flow.
It will be appreciated that heat recovery system 200 is provided by way of example, and thus, is not meant to be limiting. Therefore, it is to be understood that heat recovery system 200 may include additional and/or alternative features than those illustrated in
At 302, method 300 includes determining if an engine has started. If the answer to 302 is NO, method 300 ends. If the answer to 302 is YES, method 300 continues to 304.
At 304, method 300 includes determining if an HTF temperature is below a threshold value. For example, the exhaust temperature may be an exhaust gas temperature upstream and/or downstream from an emissions control device. If the answer to 304 is YES, method 300 continues to 306. If the answer to 304 is NO, method 300 continues to 308.
At 306, method 300 includes reducing a volume of circulating heat transfer fluid (HTF) and discharging a heat storage device (e.g., heat storage device 100) to heat an exhaust system component, such as an exhaust system component. For example, reducing the volume may include closing one or more control valves to inhibit the circulating heat transfer fluid from being distributed to one or more engine systems. Further, discharging the heat storage device may include discharging stored thermal energy of the heat storage device, wherein the stored thermal energy is stored from a previous engine operation. Further still, the stored thermal energy may be transferred to the circulating heat transfer fluid and distributed to the exhaust system component. In some embodiments, the exhaust system component may be upstream from an emissions control device.
At 308, method 300 includes distributing circulating HTF to one or more engine systems. For example, one or more control valves may be actuated to distribute circulating HTF to one or more of a cabin heating system, an engine coolant system, a transmission system, etc.
At 310, method 300 includes determining if the one or more engine systems are sufficiently warm. If the answer to 310 is NO, method 300 returns to 306. If the answer to 310 is YES, method 300 continues to 312.
At 312, method 300 includes recharging the heat storage device. For example, the volume of circulating HTF may be reduced and/or a bypass loop may be opened such that HTF is circulated through a heat exchanger thermally coupled to the exhaust system and through the heat storage device. In this way, a thermal capacity of the heat storage device may be increased.
At 314, method 300 includes determining if a HTF temperature is above a threshold value. For example, the HTF may become too warm when the vehicle is in operation for an extended period of time. If the answer to 314 is NO, method 300 continues to 316. If the answer to 314 is YES, method 300 continues to 318.
At 316, method 300 includes closing a blending loop. As such, the volume of circulating HTF is not adjusted in response to the temperature of the HTF.
At 318, method 300 includes adjusting a variable position valve of the blending loop. As such, a dead volume of HTF is released from the blending loop to reduce the temperature of the circulating HTF. As described above, the temperature of the HTF may be regulated based on a position of the variable position valve. For example, the valve may be fully opened to rapidly cool the HTF. As another example, the valve may be partially opened to moderately cool the HTF.
It will be appreciated that method 300 is provided by way of example, and thus, is not meant to be limiting. Therefore, it is to be understood that method 300 may include additional and/or alternative steps than those illustrated in
Various conduits may be referred to as pipes, which can encompass various forms of conduits, passages, connections, etc., and are not limited to any specific cross-sectional geometry, material, length, etc.
It will be appreciated that the configurations and routines disclosed herein are exemplary in nature, and that these specific embodiments are not to be considered in a limiting sense, because numerous variations are possible. For example, the above technology can be applied to V-6, I-4, I-6, V-12, opposed 4, and other engine types. The subject matter of the present disclosure includes all novel and non-obvious combinations and sub-combinations of the various systems and configurations, and other features, functions, and/or properties disclosed herein.
The following claims particularly point out certain combinations and sub-combinations regarded as novel and non-obvious. These claims may refer to “an” element or “a first” element or the equivalent thereof. Such claims should be understood to include incorporation of one or more such elements, neither requiring nor excluding two or more such elements. Other combinations and sub-combinations of the disclosed features, functions, elements, and/or properties may be claimed through amendment of the present claims or through presentation of new claims in this or a related application. Such claims, whether broader, narrower, equal, or different in scope to the original claims, also are regarded as included within the subject matter of the present disclosure.
Levin, Michael, Shaikh, Furqan Zafar, Demitroff, Danrich Henry, Masch, Donald, O'Neill, James Patrick
Patent | Priority | Assignee | Title |
10388971, | Mar 09 2016 | Ford Global Technologies, LLC | Fuel cell stack thermal management |
10502117, | Jul 29 2014 | Denso Corporation | Heat storage system |
10626838, | Aug 15 2017 | DENSO International America, Inc.; Denso Corporation | Thermal storage expansion tank |
10731609, | Nov 16 2017 | Ford Global Technologies, LLC | Methods and systems for energy recovery via an EGR cooler |
Patent | Priority | Assignee | Title |
4217864, | Nov 08 1978 | Heating apparatus for internal combustion engines | |
5299630, | Nov 09 1991 | Schatz Thermo System GmbH | Method of rapidly heating a mass to an operative temperature, in particular a vehicle engine during cold starting |
5871041, | Sep 25 1996 | Mid-America Capital Resources, Inc.; MID-AMERICA CAPITAL RESOURCES | Thermal energy storage and delivery apparatus and vehicular systems incorporating same |
6059016, | Aug 11 1994 | MID-AMERICA CAPITAL RESOURCES | Thermal energy storage and delivery system |
6464027, | Feb 02 2000 | Visteon Global Technologies, Inc | Method of thermal management for a hybrid vehicle |
6769623, | Apr 30 1920 | Denso Corporation | Automotive internal combustion engine cooling system |
20030074891, | |||
20050229873, | |||
20060070589, | |||
20070137592, | |||
20090241863, | |||
20090250189, | |||
20100037415, | |||
20100043413, | |||
20100058999, | |||
20100186685, | |||
20110048388, | |||
20110178665, | |||
DE3990275, | |||
JP11264683, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 24 2012 | LEVIN, MICHAEL | Ford Global Technologies, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027648 | /0219 | |
Jan 24 2012 | SHAIKH, FURQAN ZAFAR | Ford Global Technologies, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027648 | /0219 | |
Jan 24 2012 | DEMITROFF, DANRICH HENRY | Ford Global Technologies, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027648 | /0219 | |
Jan 24 2012 | MASCH, DONALD | Ford Global Technologies, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027648 | /0219 | |
Jan 24 2012 | O NEILL, JAMES PATRICK | Ford Global Technologies, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027648 | /0219 | |
Feb 03 2012 | Ford Global Technologies, LLC | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jul 02 2014 | ASPN: Payor Number Assigned. |
Jan 17 2018 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Mar 28 2022 | REM: Maintenance Fee Reminder Mailed. |
Sep 12 2022 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Aug 05 2017 | 4 years fee payment window open |
Feb 05 2018 | 6 months grace period start (w surcharge) |
Aug 05 2018 | patent expiry (for year 4) |
Aug 05 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 05 2021 | 8 years fee payment window open |
Feb 05 2022 | 6 months grace period start (w surcharge) |
Aug 05 2022 | patent expiry (for year 8) |
Aug 05 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 05 2025 | 12 years fee payment window open |
Feb 05 2026 | 6 months grace period start (w surcharge) |
Aug 05 2026 | patent expiry (for year 12) |
Aug 05 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |