In a power feeding connector 7, a housing front side tubular part 81 of a power feeding side connector 8 to be engaged with an inner periphery of an outer tubular wall part 51 of a power receiving side connector 5 is provided, on an outer periphery at a lower end side thereof, with a raised part 86 which overrides an inner peripheral face of the outer tubular wall part 51, before an engaging length of the housing front side tubular part 81 with respect to the outer tubular wall part 51 reaches a prescribed length, and the raised part 86 corrects a backwardly inclined state of the power feeding side connector 8 due to its dead weight into a state where axes of the outer tubular wall part 51 and the housing front side tubular part 81 are aligned with each other.
|
1. A power feeding connector comprising:
a power feeding side connector connected to a power supply; and
a power receiving side connector mounted on a vehicle body of an electric automobile so that the power feeding side connector can be engaged with and connected to the power receiving side connector;
wherein the power feeding side connector includes a housing front side tubular part to be engaged with an inner periphery of an outer tubular wall part of the power receiving side connector, and a lock arm adapted to be locked to a locking step part formed on the inner periphery of the outer tubular wall part, when an engaging length of the housing front side tubular part with respect to the outer tubular wall part has reached a prescribed length, so as to keep the power feeding side connector and the power receiving side connector in a fastened state,
wherein the housing front side tubular part is provided with a raised part which overrides an inner peripheral face of the outer tubular wall part, before the engaging length of the housing front side tubular part with respect to the outer tubular wall part reaches the prescribed length, and the raised part corrects a backwardly inclined state of the power feeding side connector due to its dead weight into a state where axes of the outer tubular wall part and the housing front side tubular part are aligned with each other, and
wherein the raised part is provided at a base side of the housing front side tubular part and on an outer periphery of the housing front side tubular part at a lower end side thereof,
wherein the raised part has a continuous diameter about the housing front side tubular part that is disposed at a boundary between the housing front side tubular part and the power feeding side connector.
2. The power feeding connector as claimed in
|
This application is a continuation of PCT application No. PCT/JP2011/075887, which was filed on Nov. 2, 2011 based on Japanese Patent Application (No. 2010-246475) filed on Nov. 2, 2010, the contents of which are incorporated herein by reference. Also, all the references cited herein are incorporated as a whole.
1. Field of the Invention
The present invention relates to a power feeding connector which is used for charging a battery in an electric automobile, and more particularly, to an improvement for facilitating engagement and connection between a connector at a power receiving side and a connector at a power feeding side.
2. Description of the Related Art
This power feeding connector 1, which is disclosed in the below described PTL 1, includes a power feeding side connector 3 connected to a power supply, which is not shown, and a power receiving side connector 5 mounted on a vehicle body 4 of an electric automobile in such a manner the power feeding side connector 3 can be engaged and connected therewith.
The power feeding side connector 3 is provided with a housing front side tubular part 31 to be engaged with an inner periphery of an outer tubular wall part 51 in a substantially cylindrical shape of the power receiving side connector 5, and a lock arm 32 that is locked to a locking step part 52 formed on the inner periphery of the outer tubular wall part 51 so as to keep the power feeding side connector 3 and the power receiving side connector 5 in a fastened state, as shown in
As shown in
PTL 1: Japanese Patent No. 2752032
In the above described power feeding side connector 3, as compared with the housing front side tubular part 31, a part including a housing body 33 which is continued from a back part of the housing front side tubular part 31 and a cable 34 which is extended from the housing body 33 to be connected to the power supply is larger, as shown also in
For this reason, when the power feeding side connector 3 is engaged with the power receiving side connector 5, the power feeding side connector 3 tends to be in a backwardly inclined state in which the back part of the power feeding side connector 3 is lowered downward, as shown by an arrow mark R1 in
Moreover, when an operator forcibly pushes the power feeding side connector 3 into the power receiving side connector 5, in a state where the axis of the outer tubular wall part 51 and the axis of the housing front side tubular part 31 are misaligned, there is such anxiety that a region where they interfere may be damaged. Therefore, the operator has to be nervous about correction of the backwardly inclined state of the power feeding side connector 3 in order to solve the misalignment between the axes of the connectors. As the results, there has been a problem of bad operability.
In view of the above, an object of the present invention is to solve the above described problems, and to provide such a power feeding connector that on occasion of engaging and connecting a power feeding side connector with a power receiving side connector, an operator can correct a backwardly inclined state of the power feeding side connector without paying particular attention, and can smoothly complete engagement and connection between the connectors.
The above described object of the present invention can be achieved by the following structure.
(1) A power feeding connector comprising:
a power feeding side connector connected to a power supply; and
a power receiving side connector mounted on a vehicle body of an electric automobile so that the power feeding side connector can be engaged with and connected to the power receiving side connector;
wherein the power feeding side connector includes a housing front side tubular part to be engaged with an inner periphery of an outer tubular wall part of the power receiving side connector, and a lock arm adapted to be locked to a locking step part formed on the inner periphery of the outer tubular wall part, when an engaging length of the housing front side tubular part with respect to the outer tubular wall part has reached a prescribed length, so as to keep the power feeding side connector and the power receiving side connector in a fastened state,
wherein the housing front side tubular part is provided with a raised part which overrides an inner peripheral face of the outer tubular wall part, before the engaging length of the housing front side tubular part with respect to the outer tubular wall part reaches the prescribed length, and the raised part corrects a backwardly inclined state of the power feeding side connector due to its dead weight into a state where axes of the outer tubular wall part and the housing front side tubular part are aligned with each other.
(2) In a power feeding connector as described in the above item (1), the raised part is formed in a shape of a rib extending along a direction of engagement between the outer tubular wall part and the housing front side tubular part.
According to the structure as described in the above item (1), the power feeding side connector is inclined backward due to the dead weight thereof, and the axes of the outer tubular wall part and the housing front side tubular part become misaligned, in some cases, in an initial period when the power feeding side connector starts to be engaged with the power receiving side connector. However, as an operator further pushes the housing front side tubular part of the power feeding side connector into the outer tubular wall part of the power receiving side connector, the raised part which is provided on the outer periphery of the housing front side tubular part at the lower end side thereof overrides the inner peripheral face of the outer tubular wall part, before the engaging length of the housing front side tubular part with respect to the outer tubular wall part reaches the prescribed length.
When the raised part has overridden the inner peripheral face of the outer tubular wall part, a counter force of the override causes a rotation moment to be exerted on the power feeding side connector so as to eliminate the backwardly inclined state due to the dead weight. As the results, a direction of the power feeding side connector is automatically corrected so that the axes of the outer tubular wall part and the housing front side tubular part may come into alignment with each other.
Accordingly, when the power feeding side connector is engaged and connected with the power receiving side connector, the operator can correct the backwardly inclined state of the power feeding side connector without paying particular attention, thereby to smoothly complete the engagement and connection between the connectors.
According to the structure as described in the above item (2), because the raised part has a shape of a rib extending along the direction of engagement between the outer tubular wall part and the housing front side tubular part, a contact area between the outer tubular wall part and the raised part is increased, as the engagement between the outer tubular wall part and the housing front side tubular part proceeds, and an overriding length of the raised part with respect to the inner peripheral face of the outer tubular wall part becomes longer. As the results, it is possible to stably obtain the counter force for correcting the backwardly inclined state of the power feeding side connector.
According to the power receiving side connector of the present invention, as the engagement between the connectors proceeds, and the raised part formed on the outer periphery at the lower end side of the housing front side tubular part has overridden the inner peripheral face of the outer tubular wall part, the counter force of the override causes the rotation moment to be exerted on the power feeding side connector so as to eliminate the backwardly inclined state due to the dead weight. As the results, the direction of the power feeding side connector is automatically corrected so that the axes of the outer tubular wall part and the housing front side tubular part may come into alignment with each other.
Accordingly, when the power feeding side connector is engaged and connected with the power receiving side connector, the operator can correct the backwardly inclined state of the power feeding side connector without paying particular attention, thereby to smoothly complete the engagement and connection between the connectors.
Now, a preferred embodiment of the power feeding connector according to the present invention will be described, referring to the drawings.
A power feeding connector 7 in this embodiment includes a power feeding side connector 8 connected to a power supply, which is not shown, and a power receiving side connector 5 mounted on a vehicle body of an electric automobile so that the power feeding side connector 8 can be engaged with and connected to the power receiving side connector 5. The power receiving side connector 5 has the same structure as the power receiving side connector 5 which is shown in
The power feeding side connector 8 is provided with a housing front side tubular part 81 to be engaged with an inner periphery of an outer tubular wall part 51 of the power receiving side connector 5, a housing body 82, a cable 83, a lock arm 32, a lock releasing lever 85, and a raised part 86.
The housing body 82 is a case body which is continued from a back part of the housing front side tubular part 81.
The cable 83 is an electric wire which is extended from the housing body 82 and connected to the power supply.
The lock arm 32 has the same structure as the lock arm 32 of the power feeding side connector 3 which is shown in
By rotating the lock releasing lever 85 in a direction of an arrow mark X, as shown in
The raised part 86 is provided in a raised manner on an outer periphery at a lower end side of the housing front side tubular part 81, as shown in
More specifically describing, the raised part 86 is provided at a root side of the housing front side tubular part 81, so as not to override the inner peripheral face of the outer tubular wall part 51, in an initial period of the engagement between the housing front side tubular part 81 and the outer tubular wall part 51, as shown in
Moreover, in this embodiment, the raised part 86 is formed in a shape of a rib extending along a direction of the engagement between the housing front side tubular part 81 and the outer tubular wall part 51.
As the engagement between the housing front side tubular part 81 and the outer tubular wall part 51 proceeds as shown in
In the power feeding connector 7 in the embodiment as described herein above, in the initial period when the power feeding side connector 8 starts to be engaged with the power receiving side connector 5, as shown in
However, as an operator further pushes the housing front side tubular part 81 of the power feeding side connector 8 into the outer tubular wall part 51 of the power receiving side connector 5, the raised part 86 which is provided on the outer periphery of the housing front side tubular part 81 at the lower end side thereof overrides the inner peripheral face of the outer tubular wall part 51, as shown in
When the raised part 86 has overridden the inner peripheral face of the outer tubular wall part 51, the rotation moment M2 is exerted on the power feeding side connector 8 by a counter force F of the override so as to eliminate the backwardly inclined state due to the dead weight. As the results, a direction of the power feeding side connector 8 is automatically corrected so that the axes of the outer tubular wall part 51 and the housing front side tubular part 81 may come into alignment with each other.
Accordingly, when the power feeding side connector 8 is engaged and connected with the power receiving side connector 5, the operator can correct the backwardly inclined state of the power feeding side connector 8 without paying particular attention, thereby to smoothly complete the engagement and connection between the connectors.
As the results, it is possible to easily obtain the locked state in which the lock arm 32 of the power feeding side connector 8 is engaged with the locking step part 52 of the power receiving side connector 5.
Moreover, in the power feeding connector 7 in the embodiment as described above, because the raised part 86 has a shape of a rib extending along the direction of the engagement between the outer tubular wall part 51 and the housing front side tubular part 81, a contact area between the outer tubular wall part 51 and the raised part 86 is increased, as the engagement between the outer tubular wall part 51 and the housing front side tubular part 81 proceeds, and an overriding length of the raised part 86 with respect to the inner peripheral face of the outer tubular wall part 51 becomes larger. As the results, it is possible to stably obtain the counter force F for correcting the backwardly inclined state of the power feeding side connector 8.
It is to be noted that specific structures of the respective members of the power receiving side connector and the power feeding side connector which constitute the power feeding connector according to the present invention are not limited to those in the above described embodiment, but the members can be appropriately modified and improved.
According to the power receiving side connector of the present invention, as the engagement between the connectors proceeds, and the raised part formed on the outer periphery at the lower end side of the housing front side tubular part has overridden the inner peripheral face of the outer tubular wall part, the counter force of the override causes the rotation moment to be exerted on the power feeding side connector so as to eliminate the backwardly inclined state due to the dead weight. As the results, the direction of the power feeding side connector is automatically corrected so that the axes of the outer tubular wall part and the housing front side tubular part may come into alignment with each other.
Accordingly, when the power feeding side connector is engaged and connected with the power receiving side connector, the operator can correct the backwardly inclined state of the power feeding side connector without paying particular attention, thereby to smoothly complete the engagement and connection between the connectors.
Mori, Shigeo, Ohmura, Takenori
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5417579, | Sep 20 1993 | Yazaki Corporation | Feeding connector |
5556284, | Jul 12 1993 | Sumitomo Wiring Systems, Ltd. | Charge coupling for electric vehicle |
5584712, | Dec 28 1993 | Yazaki Corporation | Connector |
6283781, | Nov 08 1999 | Yazaki Corporation | Electricity-supplying connector |
6652306, | May 24 2001 | Yazaki Corporation | Power feeding connector apparatus |
8439699, | Jun 11 2009 | Yazaki Corporation | Lever type electrical connector |
20070049110, | |||
20130023145, | |||
DE19650099, | |||
DE4432194, | |||
JP2752032, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 12 2012 | Yazaki Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Sep 23 2017 | 4 years fee payment window open |
Mar 23 2018 | 6 months grace period start (w surcharge) |
Sep 23 2018 | patent expiry (for year 4) |
Sep 23 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 23 2021 | 8 years fee payment window open |
Mar 23 2022 | 6 months grace period start (w surcharge) |
Sep 23 2022 | patent expiry (for year 8) |
Sep 23 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 23 2025 | 12 years fee payment window open |
Mar 23 2026 | 6 months grace period start (w surcharge) |
Sep 23 2026 | patent expiry (for year 12) |
Sep 23 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |