A low maintenance reference electrode has a liquid junction body with a multiplicity of micron-sized capillary channels extending through the body for transporting electrolyte to a test solution. A viscosity-increasing agent thickens the electrolyte to limit its flow to a rate on the order of microliters/day so that a few milliliters of electrolyte suffice to provide an extended electrode life.
|
1. An electrochemical reference electrode comprising a multibore liquid junction body for controllably supplying an electrolyte to a test solution, said body including a multiplicity of micron-sized capillary channels extending therethrough along a length thereof for carrying said electrolyte therethrough, said body having a length measured along the channels which is greater than one times a width of the body as measured transverse to the channels.
2. An electrochemical reference electrode according to
3. An electrochemical reference electrode according to
4. An electrochemical reference electrode according to
5. An electrochemical reference electrode according to
6. An electrochemical reference electrode according to
7. An electrochemical reference electrode according to
8. An electrochemical reference electrode according to
9. An electrochemical reference electrode according to
11. An electrochemical reference electrode according to
12. An electrochemical reference electrode according to
|
The present application is a continuation of U.S. patent application Ser. No. 12/541,476, filed on Aug. 14, 2009, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/088,888, filed on Aug. 14, 2008, by Xiaowen Wen et al. for LOW MAINTENANCE ELECTRODE, which are hereby incorporated by reference.
1. Field of the Invention
The invention relates to electrodes for measurement of ion activity in solution and, more particularly, to low-maintenance reference electrodes for such purposes.
2. Background Information
The measurement of ion activity in solution has wide-ranging application in both science and industry. In medicine, the concentration of various ions in the blood and other body fluids can be an important indicator of a patient's health. In industry, knowledge of the presence or absence or various ion species, and their concentrations, may be critical to various processes. In examining water quality, ion concentration measurements are often critical to assessing the viability of water resources.
Electrode-based ion measurement systems typically comprise a measuring electrode (often referred to as a sensing or test electrode) which is responsive to the particular ion whose concentration in solution is to be measured and a reference electrode which provides a stable junction potential against which the measuring electrode potential is to be compared. The sensing electrode typically is connected to the solution being tested by an ion-selective material that is preferential for the ion to be measured; the reference electrode is typically connected to the solution by an electrically conductive “bridge” or “junction” through which electrically conductive material (“filling solution” or “reference solution”) travels to form a circuit for measuring current flow. These junctions take a variety of forms.
One common form of junction is a porous material such as a ceramic frit which allows an electrically conductive internal reference solution to seep out from the electrode and into the solution being tested to thereby establish an electrically conductive path between the electrode and the solution. An example of such a junction is shown in U.S. Pat. No. 4,495,052, issued Jan. 22, 1985 to Brezinski. Such junctions are susceptible fouling and thus must periodically be removed from service for cleaning or even replacement.
Another form of junction is shown in U.S. Pat. No. 3,915,829 issued Oct. 28, 1975 to Krebs which discloses a polycarbonate sheet having a multiplicity of sub-micron channels formed in it by ion bombardment. This type of electrode relies on a continuous flow of electrolyte reference solution through the junction and into the test solution to prevent fouling. This, of course, eventually depletes the reference solution. A similar form of junction is described in U.S. Pat. No. 7,344,627 issued Mar. 18, 2008 to
Broadley et al. (as well as earlier patents in this same patent family) which disclose a polycarbonate sheet having a multiplicity of nano-sized channels formed in it by ion bombardment. A positive pressure is applied to the electrolyte reference solution in order to establish a flow of sufficient intensity to prevent fouling.
Still another form of junction is the so-called “Hamilton pH sensor” which uses a single channel or pore to connect the internal reference solution to the test solution. To the same effect see also U.S. Pat. No. 4,959,138 to Brinkmann et al.
In accordance with the present invention, we provide an electrochemical reference electrode having an electrolyte junction that is resistant to fouling yet is long lasting without the need for intermediate maintenance. The junction comprises a multibore body, preferably of from 0.1 to 1 inch in length, and having a multiplicity of small-bore capillary tubes or channels (“capillaries”) extending through it along the length of the body generally parallel to each other. The capillaries may be from 10 to 1000 in number, with the inner diameter of each capillary being from 1 to 150 microns. The length-to-diameter ratio of the capillary body is thus much greaer than one, ranging from on the order of ten (for a body length of 0.1 inch and a capillary bore diameter of 150 microns) to on the order of 104 (for a body length of 1 inch and a capillary bore diameter of 1 micron).
The junction material is preferably glass, since this is a naturally wetting material and need not be treated to establish hydrophilicity. The body may be formed by fusing a multiplicity of glass tubes together into a composite bundle, or may be formed by drilling a solid glass body, or by other means. It will be understood, however, that other materials such as ceramics, metal, plastic, hydrophilic hollow fiber, and the like, may also be used. In a proposed commercial embodiment, .we have used a junction body of hexagonal shape, approximately 0.4 inches in length, having 37 glass capillary tubes aligned parallel to each other, and each capillary of approximately 100 microns in diameter.
The junction of the invention is used in connection with a reference solution that has been thickened by a viscosity-increasing agent or, as appropriate, gelled, to limit flow of reference solution out of the electrode and into the test solution. By this means, an electrode having from eight to ten milliliters of reference solution can last on the order of a year without maintenance. It is particularly suited for commercial applications such as water testing and the like, where the electrode is used in the field or other commercial setting and does not receive the more gentle handling characteristic of laboratory usage. It is especially suited for low ionic strength applications such as water quality testing.
The electrode of the present invention enables the maintenance of a relatively constant reference potential for test measurements. It provides a sufficient net dominant flow of reference solution to the test solution to maintain the desired junction potential, yet not so great as to deplete the reference solution and require its replenishment in a short period of time.
The reference solution may advantageously be composed of redox couples such as iodine/iodide to work with potentiometric redox electrodes, such as the Ross® electrode which uses an iodide/iodine filling solution and a platinum electrode to provide a highly temperature-stable reference voltage; or can be composed of halide salts such as potassium chloride to work with silver-silver halide electrodes. These all can be saturated or over saturated with an equally transferent salt such as potassium chloride and potassium nitrate; this enhances the conductivity of the electrode and extends its lifetime.
The reference solution is thickened by dissolving polymers such as polyacrylamide and cellulose, or by mixing in inert filler materials such as silica based Cab-o-sil. In the case of a double-junction reference electrode, the reference solution described above can also be used as the filling solution of the outer chamber of the reference electrode.
In the case of redox based reference system, such as the iodide/iodine Ross® system, cross-linking to form gel may be difficult due to quenching of the chain reaction by the redox species, therefore the electrolyte is instead thickened, e.g., with short chain cellulose, in order to create a low maintenance electrode. Among the polymer materials, polyacrylamides and celluloses are desirable for their inertness with the redox species and their ability to hold electrolyte solutions so as to thereby reduce water evaporation and salt creeping.
The invention description below refers to the accompanying drawings, of which:
In
Wen, Xiaowen, Yim, Hyoungsik, Hrdy, Lori, Bhaijee, Dawood
Patent | Priority | Assignee | Title |
9116099, | Dec 27 2012 | BL TECHNOLOGIES, INC | Wide dynamic range conductivity measurements in water |
Patent | Priority | Assignee | Title |
3915829, | |||
4406766, | Oct 13 1981 | The Ohio State University | Apparatus for measuring the pH of a liquid |
4495052, | Dec 22 1980 | CIBA CORNING DIAGNOSTICS CORP , A CORP OF DE | Replaceable junctions for reference electrodes |
4959138, | Sep 07 1983 | Mettler-Toledo GmbH | Measuring probe for the potentiometric determination of ion concentrations |
5264722, | Jun 12 1992 | UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE NAVY | Nanochannel glass matrix used in making mesoscopic structures |
6468408, | Feb 10 2000 | Hamilton Bonaduz AG | Polymeric electrolyte |
6616821, | Jun 08 1999 | Broadley Technologies Corporation | Reference electrode having a microfluidic flowing liquid junction |
7005049, | Jun 08 1999 | Broadley Technologies Corporation | Reference electrode having a microfluidic flowing liquid junction |
7025871, | Jun 08 1999 | Broadley Technologies Corporation | Reference electrode having a microfluidic flowing liquid junction |
7344627, | Jul 03 2002 | Broadley Technologies Corporation | Reference electrode having a flowing liquid junction and filter members |
7459066, | Jun 08 1999 | Broadley Technologies, Corporation | Reference electrode having a microfluidic flowing liquid junction |
8048278, | Jun 08 1999 | Broadley Technologies Corporation | Reference electrode having a flowing liquid junction and filter members |
8172999, | Aug 14 2008 | THERMO FISHER SCIENTIFIC, INC | Low maintenance reference electrode for electrochemical measurements |
20020065332, | |||
20040231984, | |||
20080099336, | |||
20080275653, | |||
WO2008090403, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 01 2009 | WEN, XIAOWEN | THERMO FISHER SCIENTIFIC, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028559 | /0139 | |
Sep 01 2009 | YIM, HYOUNGSIK | THERMO FISHER SCIENTIFIC, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028559 | /0139 | |
Sep 01 2009 | HRDY, LORI | THERMO FISHER SCIENTIFIC, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028559 | /0139 | |
Sep 01 2009 | BHAIJEE, DAWOOD | THERMO FISHER SCIENTIFIC, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028559 | /0139 | |
Apr 25 2012 | Thermo Fisher Scientific, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Nov 24 2014 | ASPN: Payor Number Assigned. |
Mar 08 2018 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Mar 09 2022 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Sep 23 2017 | 4 years fee payment window open |
Mar 23 2018 | 6 months grace period start (w surcharge) |
Sep 23 2018 | patent expiry (for year 4) |
Sep 23 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 23 2021 | 8 years fee payment window open |
Mar 23 2022 | 6 months grace period start (w surcharge) |
Sep 23 2022 | patent expiry (for year 8) |
Sep 23 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 23 2025 | 12 years fee payment window open |
Mar 23 2026 | 6 months grace period start (w surcharge) |
Sep 23 2026 | patent expiry (for year 12) |
Sep 23 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |