A high peak intensity laser amplification system and the method therein implemented are provided. In a first aspect of the invention, the laser system includes at least one optical member (27) operably introducing a phase function into a high peak intensity laser pulse (25). A further aspect includes introducing destructive interference in an unchirped laser pulse prior to amplification and reconstructive interference in the output laser pulse after amplification. Dynamic pulse shaping is employed in another aspect of the present invention.
|
1. A method of using a laser, the method comprising:
(a) emitting a high peak intensity laser beam pulse;
(b) introducing at least one minimal correlation phase function into the high peak intensity pulse spanning a spectrum of the pulse without symmetry; and
(c) amplifying the pulse substantially without pre-chirping and without damage to an amplifier.
13. A method of using a laser, the method comprising:
(a) shaping a high peak intensity laser beam pulse, which is substantially unchirped, with a minimal correlation binary phase function without symmetry;
(b) amplifying the pulse after step (a); and
(c) shaping the amplified pulse with a substantially identical minimal correlation binary phase function.
31. A laser system comprising:
a substantially unchirped laser pulse having a duration of less than 10picoseconds;
at least one pulse shaper introducing a minimal correlation binary phase function into the pulse; and
an amplifier amplifying the unchirped pulse after the introduction of the phase function;
the at least one pulse shaper neutralizing the minimal correlation binary phase function of the unchirped pulse after the amplification.
22. A laser system comprising:
a laser oscillator emitting a high peak intensity laser pulse;
at least one optical member introducing a phase function into the high peak intensity laser pulse to suppress nonlinear optical processes in the pulse; and
an amplifier amplifying the high peak intensity laser pulse which is substantially unchirped prior to the amplification, the amplifier being located downstream of the optical member;
the at least one optical member introducing the same phase function to the high peak intensity laser pulse after amplification.
2. The method of
3. The method of
4. The method of
5. The method of
6. The method of
7. The method of
8. The method of
9. The method of
10. The method of
11. The method of
12. The method of
14. The method of
15. The method of
16. The method of
17. The method of
18. The method of
19. The method of
20. The method of
21. The method of
23. The laser system of
24. The laser system of
25. The laser system of
26. The laser system of
27. The laser system of
28. The laser system of
a reflective member located downstream of the amplifier;
the at least one optical member, the amplifier and the reflective member being arranged in a double pass manner wherein the pulse interacts with the same at least one optical member before and after it passes through the amplifier.
29. The laser system of
30. The laser system of
32. The laser system of
33. The laser system of
34. The laser system of
a reflective member located downstream of the amplifier;
the at least one pulse shaper, the amplifier and the reflective member being arranged in a double pass manner wherein the pulse interacts with the same at least one pulse shaper before and after it passes through the amplifier.
35. The laser system of
36. The laser system of
|
This is a U.S. National Phase entry application based on International Application No. PCT/US2010/025564, filed on Feb. 26, 2010, which claims the priority of U.S. Provisional Application Ser. No. 61/157,718, filled on Mar. 5, 2009, all of which are incorporated by reference herein.
The present invention generally relates to laser systems and more particularly to a laser amplification system.
It is known to employ chirp pulse amplification (“CPA”) for ultrashort lasers. Chirping overcomes concerns with intense ultrashort laser pulses inducing nonlinear optical processes in transparent media which would otherwise damage the amplification equipment. When chirp pulse amplification is used, the pulses are stretched by a factor greater than 1000 and therefore their intensity is significantly reduced. Examples of chirp pulse amplification can be observed in the following U.S. Pat. Nos. 5,862,287 entitled “Apparatus And Method For Delivery Of Dispersion Compensated Ultrashort Optical Pulses With High Peak Power” which issued to Stock et al. on Jan. 19, 1999; 5,633,885 entitled “Frequency Chirp Control And Compensation For Obtaining Broad Bandwidth Ultrashort Optical Pulses From Wavelength-Tunable Lasers” which issued to Galvanauskas et al. on May 27, 1997; and 5,572,355 entitled “Optical System For Stretching, Compressing And Amplifying Ultrashort Optical Pulses” which issued to Cotton et al. on Nov. 5, 1996; all of which are incorporated by reference herein. Chirp pulse amplification, however, requires an expensive set of optics.
An experiment has also been conducted which provides one SLM pulse shaper before a regenerative amplifier and another SLM pulse shaper after the amplifier. This experiment is disclosed in I. Pastirk, B. Resan, A. Fry, J. Mackay and M. Dantus, “No Loss Spectral Phase Correction and Arbitrary Phase Shaping of Regeneratively Amplified Femtosecond Pulses using MIIPS,” Optics Express, Vol. 14, No. 20, 9537 (2006). CPA amplifiers, having a large stretcher and compressor, were used in this experiment. Furthermore, symmetric and single binary phase step functions were used and only for multiphoton intrapulse interference phase scan purposes in the chirped pulse.
In accordance with the present invention, a laser amplification system is provided. In another aspect, a laser system and method include at least one optic member operably introducing a phase function into a high peak intensity laser pulse. A further aspect includes introducing destructive nonlinear optical interference in an unchirped laser pulse prior to amplification and reconstructive interference in the output laser pulse after amplification. Dynamic pulse shaping is employed in an aspect of the present system. In yet another aspect, a minimal correlation binary phase function is introduced into a laser pulse prior to amplification.
The present laser system is advantageously less expensive and more efficient than traditional chirped devices. The present laser system is also more compact and is less sensitive to air turbulence as compared to conventional chirped devices. Moreover, the present system maintains a more intense pulse but without harmful nonlinear optical processes therein. Additional advantages and features of the present invention will become apparent from the following description and appended claims, taken in conjunction with the accompanying drawings.
The first embodiment of a laser amplification system 21 is shown in
A computer controller 31 is electrically connected to control oscillator 23 and at least one of the pulse shapers 27 and 29. The computer controller has an input device such as a keyboard, an output device such as a display screen and wireless transmitter, a microprocessor and memory. Appropriate software is stored in the memory of the computer and includes programmed instructions which control the properties of the output pulse through pulse shaping. A spatial light modulator (“SLM”) in the pulse shaper can introduce different phase functions based on the computer software control of such, however, a fixed and preset pulse shaper or manually adjustable pulse shaper can be used without computer control in a different construction as will be further discussed hereinafter.
Referring to
It should be appreciated that “without chirping” includes substantially or essentially without intentional chirping since optical fibers and crystals may introduce some chirp. Furthermore, “without chirping” as used herein can also be expressed by stating that chirping requirements are preferably reduced by at least two orders of magnitude and more preferably less than a factor of 100. By way of comparison, in conventional CPA systems, the factor is typically more than 1000.
In traditional CPA, an ultrashort laser pulse is stretched out in time prior to introducing it to the gain medium using a pair of gratings that are arranged so that the low-frequency component of the laser pulse travels a shorter path than the high-frequency component does. After going through the grating pair, the laser pulse becomes positively chirped, that is, the high-frequency component lags behind the low-frequency component, and has longer pulse duration than the original by a factor of 103 to 105. Then the stretched pulse, whose intensity is sufficiently low compared with the intensity limit of gigawatts per square centimeter, is safely introduced to the gain medium and amplified by a factor 106 or more. Finally, the amplified laser pulse is recompressed back to the original pulse width through the reversal process of stretching, achieving orders of magnitude higher peak power than laser systems could generate before the invention of CPA. Stretching the pulses by factors of 103 to 105 requires extremely high quality gratings that are large, high grove density and can take very high powers. In addition, the grating spacing needs to be very large and this can cause instabilities in the presence of air drafts or temperature gradients. In contrast, the present system reduces and/or eliminates the need for introducing large quantities of linear chirp. The present system replaces the linear chirp by a different approach to pulse shaping that is more efficient at reducing the detrimental nonlinear optical processes the CPA was designed to mitigate. While chirp reduces the peak intensity of the pulses and therefore very large chirp values are required, destructive nonlinear optical intrapulse interference prevents the processes from occurring.
As an example of this difference, a laser system using an oscillator, such as the Coherent Micra titanium sapphire oscillator, is stretched so that its pulse duration is increased to 2000 times its TL pulse duration using a grating stretcher. Stretching is used to mitigate nonlinear optical processes such as self phase modulation and self focusing. The pulses are amplified by a factor of a million and then compressed using a grating compressor. The stretcher, amplification and compression portions are included in a single instrument—the amplifier, such as the Legend USP amplifier from Coherent. The burden on the stretcher and compressor are greatly reduced or eliminated by the use of a minimum correlation binary phase that breaks the pulse into hundreds of much less intense pulses that are not able to cause detrimental nonlinear optical processes. In principle, a 100 bit binary phase that is designed to have a minimum correlation series would reduce the need for linear chirp stretching from 2000 times pulse duration to only 20 times pulse duration. This requirement is much smaller and can be easily accomplished with the same pulse shaper that introduces the binary phase. If the binary phase has 1000 bits, then no linear chirp would be required at all. Binary phases can be designed to prevent nonlinear optical processes, therefore, are more efficient than linear chirp.
As a second example, a passively mode-locked Yb:KGW oscillator producing 250 fs at 1040 nm is stretched by using a step-index single-mode fiber that causes the pulses to stretch to 1.9 ps. The stretched pulses are then launched into a high gain amplifier fiber. A length of 2 m of air-guiding photonic bandgap fiber is used to recompress the amplified positively chirped pulses. The dispersion compensation is finely optimized by changing the length of the single-mode fiber in front of a fiber amplifier. The best compression is found at a stretcher fiber length of 1.9 m. With the present system, the step-fiber stretcher can be replaced by a binary phase pulse shaper, and the compressor fiber can be replaced by an identical binary phase pulse shaper. The advantages are that much higher mitigation of nonlinear optical processes can be achieved by binary phase shaping, and that the pulse shaper can be used to correct for high order dispersion and other variations in the performance of the laser caused by changes in temperature and humidity. A similar system, but having a 20 m long single mode fiber, can be used to achieve an order of magnitude greater chirp stretching, however, this introduces additional nonlinear optical distortions. In contrast, with binary phases, the only requirement is to introduce more binary phase bits and this does not add to the nonlinear optical distortions.
Multiphoton intrapulse interference phase scan, known as MIIPS®, software and phase functions can be optionally introduced into optimally bent mirror 69 so as to characterize and compensate for undesired distortions and to suppress and control nonlinear optical processes, also known as multi-wave mixing, and multiphoton intrapulse interference within the laser beam pulse. Such multiphoton intrapulse interference phase scan and the preferably associated binary phase shaping (“BPS”), are conducted in a calculated and/or predetermined manner, optionally based on sensed pulse characteristics from one to five prior pulses, and not based on time consuming genetic learning algorithms. MIIPS and BPS are disclosed in U.S. Patent Publication Nos. 2004/0233944 entitled “Laser System Using Ultrashort Laser Pulses” to Dantus et al.; 2006/0056468 entitled “Control System And Apparatus For Use With Ultra-Fast Laser” to Dantus et al.; and PCT/US2008/087707 entitled “Direct Ultrashort Laser System” to Dantus et al.; all of which are incorporated by reference herein.
With regard to the preferred version of binary phase mask 67, the smallest feature must be greater than the optical resolution of the system setup, otherwise some light will be undesirably lost by diffraction. Notwithstanding, it may alternately be desirable to intentionally cause diffraction losses by introducing small features in the phase mask, especially in the center of the spectrum. This reduces gain-narrowing and takes advantage of space-time coupling to cause amplitude modulation.
Referring now to
The binary phase mask 67 and mirror 69 portion of the pulse shaper is preferably manufactured as a single optical component as follows. First, a mirror substrate of BK7 glass or quartz is made. Second, binary steps, depressions or other formations are etched into a surface of the substrate. 213, 304 or even 1,000 bits or binary steps can be provided without increasing the size of the shaper. In one example, a 0 (zero) value has no depth and a π value has ¼ of the optical wavelength depth. The density or spacing of the binary steps is proportional to the pulse intensity to be shaped; in other words, the more intense areas have more density of binary steps (0 and π).
Third, a reflective metallic coating is applied to the stepped substrate surface. Silver or gold is used for visible or infrared pulses and aluminum is used for ultraviolet pulses, chromium or titanium is used for improved adhesion to the substrate. The reflective coating is about 10-100 nm thick if chromium or titanium, and 10μ if silver or gold. If a silver coating is employed then a 0.5μ thick protective MgO or SiO2 overcoating is applied. Fourth, the finished shaper or mask is then bent or curved to the desired final shape according to the laser output desired.
The present laser amplification system is ideally suited for use in telecommunications where the first pulse shaper between the fiber oscillator and fiber amplifier is controlled by the computer controller to introduce a coded communication signal into the pulse during shaping at the same time as the minimal correlation binary phase function is also introduced. This encoded communication signal is based on a voice, video or data signal from a communications transmitter such as a telephone, television, computer or the like. After amplification and reconstructive shaping of the pulse, the still encoded pulse is then transmitted through a fiber optic cable over great distances of many meters or kilometers to a communications receiver including a spectrometer, or other sensor, and connected computer controller. This receiver then decodes the communications signal and transmits it to a receiving station connected to telephones, televisions, computers or the like.
The present laser amplification system is advantageous for communications uses over prior constructions since the present system obtains synergistic and multi-functional benefits of using the same pulse shaping optics to achieve many functions in a simultaneous manner. The present system advantageously transmits intense laser pulses through optical fibers, whether for communication or even portable medical uses, without harmfully causing extreme pulse broadening and power reduction, and possible destruction of the optical fiber. In other words, the present system suppresses and removes harmful self-phase modulation and other nonlinear optical processes while also eliminating self-focusing but with minimal phase manipulation. It should be appreciated that some form of chirping may slightly occur with the present amplification system, but such is not due to an unnecessary stretcher or traditional compressor.
The present system is also well suited for all situations where an amplified ultrafast laser is used. For example, the present system can be used for laser machining, surgery, material processing, and sensing.
Although various embodiments of the present invention have been disclosed, it should be appreciated that other modifications can be made. For example, other types of oscillators, pulse shapers and amplifiers may be employed. An exemplary computer controlled alternative would be to employ an SLM from Boulder Nonlinear Systems having 12,288 pixels, although some of the advantages of the preferred systems may not be realized. A reflective SLM, with liquid crystal on silicone, or a two-dimensional SLM pulse shaper can alternately be used, although certain advantages may not be obtained. Moreover, a fiber oscillator and/or a fiber amplifier may be employed. It is envisioned that certain aspects of the present disclosure (e.g., pseudo-random minimal correlation binary phase functions) can be used in combination with CPA, however, this will not obtain many of the advantages discussed hereinabove. The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. It is intended by the following claims to cover these and any other departures from the disclosed embodiments which fall within the true spirit of the present invention.
Dantus, Marcos, Lozovoy, Vadim V.
Patent | Priority | Assignee | Title |
10073321, | Nov 28 2013 | FASTLITE | System for generating short optical pulses of a duration shorter than the period of the optical carrier using the principle of parametric amplification |
10267739, | Aug 02 2013 | BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY | Laser system for standoff detection |
10554961, | Nov 08 2016 | Three-dimensional volumetric display using photoluminescent materials | |
10772683, | May 18 2014 | EXIMO MEDICAL LTD. | System for tissue ablation using pulsed laser |
10792103, | May 18 2014 | EXIMO MEDICAL LTD. | System for tissue ablation using pulsed laser |
10830545, | Jul 12 2016 | Fractal Heatsink Technologies, LLC | System and method for maintaining efficiency of a heat sink |
10971881, | Oct 02 2015 | BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY | Laser pulse including a flat top |
11116573, | May 18 2014 | Eximo Medical LTD | System for tissue ablation using pulsed laser |
11346620, | Jul 12 2016 | Fractal Heatsink Technologies, LLC | System and method for maintaining efficiency of a heat sink |
11385098, | Jan 31 2020 | BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY | Method and system for characterizing power in a high-power laser |
11576724, | Feb 24 2011 | EXIMO MEDICAL LTD. | Hybrid catheter for vascular intervention |
11598593, | May 04 2010 | Fractal Heatsink Technologies LLC | Fractal heat transfer device |
11609053, | Jul 12 2016 | Fractal Heatsink Technologies LLC | System and method for maintaining efficiency of a heat sink |
11684420, | May 05 2016 | Eximo Medical LTD | Apparatus and methods for resecting and/or ablating an undesired tissue |
11808702, | Jan 31 2019 | The Rockefeller University | Hybrid multi-photon microscopy |
11913737, | Jul 12 2016 | Fractal Heatsink Technologies LLC | System and method for maintaining efficiency of a heat sink |
9341567, | Mar 18 2011 | Seiko Epson Corporation | Terahertz wave generation device, light source device, camera, imaging device, and measurement device |
ER4175, | |||
ER624, |
Patent | Priority | Assignee | Title |
3214563, | |||
3611182, | |||
3919881, | |||
3988704, | Apr 26 1974 | McDonnell Douglas Corporation | Broadband electrooptical modulator |
4167662, | Mar 27 1978 | National Research Development Corporation | Methods and apparatus for cutting and welding |
4288691, | Dec 19 1977 | Jersey Nuclear-Avco Isotopes, Inc. | Laser pulse shaping |
4394780, | Mar 02 1981 | The United States of America as represented by the Secretary of the Navy | Balloon collector/director sunsubsatcom concept |
4477905, | Oct 05 1982 | GTE Government Systems Corporation | Short pulse laser |
4512660, | Apr 14 1983 | The United States of America as represented by the Secretary of the Navy | Picosecond broadband cars probe using the picosecond continuum |
4621006, | Oct 22 1984 | Newport Corporation | Honeycomb table manufacture and clean-room compatible honeycomb tables |
4655547, | Apr 09 1985 | Bell Communications Research, Inc. | Shaping optical pulses by amplitude and phase masking |
4746193, | Nov 26 1986 | Telcordia Technologies, Inc | Apparatus for stabilization of high speed optical pulses |
4772854, | Dec 24 1986 | Telcordia Technologies, Inc | All optical repeater |
4812776, | Mar 04 1985 | Hitachi, Ltd. | System for amplifying and shaping optical pulses |
4819239, | May 06 1987 | The United States of America as represented by the Secretary of the Army | Laser Q-switch |
4834474, | May 01 1987 | The University of Rochester | Optical systems using volume holographic elements to provide arbitrary space-time characteristics, including frequency-and/or spatially-dependent delay lines, chirped pulse compressors, pulse hirpers, pulse shapers, and laser resonators |
4853065, | Oct 22 1984 | Newport Corporation | Method of manufacturing clean-room compatible honeycomb tables |
4856860, | May 26 1988 | Telcordia Technologies, Inc | Integrated all-optical switching devices |
4866699, | Jun 22 1987 | Telcordia Technologies, Inc | Optical telecommunications system using code division multiple access |
4896547, | Nov 18 1988 | THERMEDICS INC , A CORP OF MA | Air-sampling apparatus with easy walk-in access |
4913934, | May 06 1987 | The United States of America as represented by the Secretary of the Army | Process for making laser Q-switch |
4928316, | Feb 04 1988 | Telcordia Technologies, Inc | Optical systems and methods based upon temporal stretching, modulation and recompression of ultrashort pulses |
4999840, | Jul 18 1989 | Coherent, Inc | Stabilized synchronously pumped dye laser |
5021282, | Oct 22 1984 | Newport Corporation | Honeycomb table manufacture and clean-room compatible honeycomb tables |
5034613, | Nov 14 1989 | Cornell Research Foundation, Inc | Two-photon laser microscopy |
5048029, | Jul 24 1990 | The University of Rochester | System for obtaining smooth laser beams where intensity variations are reduced by spectral dispersion of the laser light (SSD) |
5054027, | Oct 10 1989 | Massachusetts Institute of Technology | Pulsed laser |
5077619, | Oct 25 1989 | Tacan Corporation | High linearity optical transmitter |
5095487, | Dec 14 1990 | The University of Rochester; UNIVERSITY OF ROCHESTER, THE, A NOT-FOR-PROFIT CORP | System for generating pluralities of optical pulses with predetermined frequencies in a temporally and spatially overlapped relationship |
5130994, | Aug 25 1989 | John M. J., Madey | Free-electron laser oscillator for simultaneous narrow spectral resolution and fast time resolution spectroscopy |
5132512, | Aug 17 1989 | BANK OF AMERICA, N A | Arc torch nozzle shield for plasma |
5132824, | Oct 16 1990 | TTI Inventions A LLC | Liquid-crystal modulator array |
5154963, | Oct 22 1984 | Newport Corporation | Honeycomb table manufacture and clean-room compatible honeycomb tables |
5166818, | Mar 11 1991 | STANFORD UNIVERSITY OTL, LLC | Optical pulse-shaping device and method, and optical communications station and method |
5235606, | Oct 29 1991 | LASER ENERGETICS | Amplification of ultrashort pulses with Nd:glass amplifiers pumped by alexandrite free running laser |
5239607, | Jun 23 1992 | Rembrandt Communications, LP | Optical fiber amplifier with flattened gain |
5341236, | Dec 03 1992 | Northrop Corporation | Nonlinear optical wavelength converters with feedback |
5349591, | Apr 26 1993 | Positive Light, Inc. | Laser pulse stretcher and compressor with single parameter wavelength tunability |
5359410, | Mar 10 1992 | UNIVERSITY OF NEW MEXICO, THE | Complete diagnostics of ultrashort pulses without nonlinear process |
5400350, | Mar 31 1994 | IMRA America, Inc. | Method and apparatus for generating high energy ultrashort pulses |
5406408, | Feb 26 1993 | Cornell Research Foundation, Inc. | Intracavity-doubled tunable optical parametric oscillator |
5414540, | Jun 01 1993 | Rembrandt Communications, LP | Frequency-selective optical switch employing a frequency dispersive element, polarization dispersive element and polarization modulating elements |
5414541, | Jun 01 1993 | Telcordia Technologies, Inc | Optical switch employing first and second ferroelectric cells with alignment layers having alignment directions offset by 45° |
5463200, | Feb 11 1993 | Electro Scientific Industries, Inc | Marking of a workpiece by light energy |
5526155, | Nov 12 1993 | THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT | High-density optical wavelength division multiplexing |
5526171, | Jan 18 1995 | Trustees of Princeton University | Laser pulse shaper |
5530544, | Oct 26 1992 | Sandia Corporation | Method and apparatus for measuring the intensity and phase of one or more ultrashort light pulses and for measuring optical properties of materials |
5541947, | May 10 1995 | The Regents of the University of Michigan | Selectively triggered, high contrast laser |
5572355, | May 01 1995 | CLARK MXR, INC | Optical system for stretching, compressing and amplifying ultrashort optical pulses |
5585913, | Apr 01 1994 | AISIN SEIKI CO , LTD | Ultrashort pulsewidth laser ranging system employing a time gate producing an autocorrelation and method therefore |
5589955, | May 21 1991 | Seiko Epson Corporation | Optical device and optical machining system using the optical device |
5615673, | Mar 27 1995 | Massachusetts Institute of Technology | Apparatus and methods of raman spectroscopy for analysis of blood gases and analytes |
5631758, | Oct 26 1995 | THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT | Chirped-pulse multiple wavelength telecommunications system |
5633885, | Sep 29 1994 | IMRA America, Inc. | Frequency chirp control and compensation for obtaining broad bandwidth ultrashort optical pulses from wavelength-tunable lasers |
5636050, | Feb 15 1994 | Research Foundation of City College of New York | Apparatus using optical deflection |
5637966, | Feb 06 1995 | MICHIGAN, UNIVERSITY OF, THE REGENTS OF | Method for generating a plasma wave to accelerate electrons |
5682262, | Dec 13 1995 | Massachusetts Institute of Technology | Method and device for generating spatially and temporally shaped optical waveforms |
5684595, | Dec 25 1990 | Nikon Corporation | Alignment apparatus and exposure apparatus equipped therewith |
5689361, | Jan 22 1996 | THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT | Apparatus and method for femtosecond pulse compression based on selective attenuation of a portion of an input power spectrum |
5704700, | Aug 18 1994 | Seiko Epson Corporation | Laser illuminated image projection system and method of using same |
5719650, | May 12 1995 | Massachusetts Institute of Technology | High-fidelity spatial light modulator |
5726855, | Aug 15 1995 | Science & Technology Corporation @ UNM | Apparatus and method for enabling the creation of multiple extended conduction paths in the atmosphere |
5734503, | Aug 23 1993 | Dispersive dielectric mirror | |
5754292, | Oct 26 1992 | The Regents of the University of California; Sandia National Laboratory | Method and apparatus for measuring the intensity and phase of an ultrashort light pulse |
5759767, | Oct 11 1996 | LAKOWICZ, JOSEPH R | Two-photon and multi-photon measurement of analytes in animal and human tissues and fluids |
5774213, | Apr 21 1995 | TREBINO, RICK P ; SAMPAS, NICHOLAS M ; GUSTAFSON, ERIC K | Techniques for measuring difference of an optical property at two wavelengths by modulating two sources to have opposite-phase components at a common frequency |
5793091, | Dec 13 1996 | International Business Machines Corporation | Parallel architecture for quantum computers using ion trap arrays |
5798867, | Feb 04 1997 | Miyachi Technos Corporation | Laser beam-splitting apparatus |
5822097, | Nov 19 1993 | Philips Electronics North America Corporation | Linear extension device for coherent optical wave pulses and extension and compression device used to obtain high power pulses |
5828459, | May 03 1996 | YEDA RESEARCH AND DEVELOPMENT CO LTD | Apparatus and method for scanning laser microscopy |
5832013, | Sep 25 1992 | BIOLASE, INC | Intracavity modulated pulsed laser and methods of using the same |
5854431, | Dec 10 1997 | National Technology & Engineering Solutions of Sandia, LLC | Particle preconcentrator |
5862287, | Dec 13 1996 | IMRA America, Inc | Apparatus and method for delivery of dispersion compensated ultrashort optical pulses with high peak power |
5867304, | Apr 25 1997 | IMRA America, Inc; Leland Stanford Junior University | Use of aperiodic quasi-phase-matched gratings in ultrashort pulse sources |
5883309, | Mar 15 1995 | Siemens Aktiengesellschaft | Adaptive optimization process for ultrasonic measurement signals |
5898373, | Mar 18 1998 | AIR FORCE, UNITED STATES | Method of monitoring a site for the future presence of toxic agents |
5915268, | Dec 22 1997 | National Technology & Engineering Solutions of Sandia, LLC | Vertical flow chemical detection portal |
5936732, | Jul 24 1997 | Apparatus and method for characterizing ultrafast polarization varying optical pulses | |
5956173, | May 07 1997 | Consiglio Nazionale delle Ricerche | Capillary compressor |
5956354, | Jun 06 1996 | MARYLAND BALTIMORE COUNTY, UNIVERSITY OF, THE | Dual media laser with mode locking |
5994687, | Sep 17 1996 | Thomson-CSF | System for correction the shape of a wave-front of a laser beam |
6002480, | Jun 02 1997 | Depth-resolved spectroscopic optical coherence tomography | |
6008899, | Jun 18 1997 | National Technology & Engineering Solutions of Sandia, LLC | Apparatus and method for optical pulse measurement |
6042603, | Oct 30 1996 | PROVECTUS DEVICETECH, INC | Method for improved selectivity in photo-activation of molecular agents |
6057919, | Jul 16 1996 | Japan Science and Technology Corporation | Apparatus and method for measuring characteristics of optical pulses |
6058132, | May 15 1997 | Sumitomo Heavy Industries, Ltd. | Laser beam machining apparatus using a plurality of galvanoscanners |
6072813, | Jul 09 1996 | Thomson-CSF | Device for controlling light pulses by a programmable acoustooptic device |
6080148, | Nov 18 1996 | Trimedyne, Inc. | Variable pulse width lasing device |
6081543, | May 14 1998 | AMO Development, LLC | Stretcher-compressor assembly having a single grating |
6111251, | Sep 19 1996 | BIOSCIENCES ACQUISITION COMPANY; AGENA BIOSCIENCE, INC | Method and apparatus for MALDI analysis |
6122419, | Feb 22 1979 | Nippon Telegraph and Telephone Corporation | Optical signal processing apparatus and optical signal processing method |
6130426, | Feb 27 1998 | BRUNKER DALTONICS, INC ; BRUKER DALTONICS, INC | Kinetic energy focusing for pulsed ion desorption mass spectrometry |
6156527, | Jan 23 1997 | ELECTROPHORETICS LIMITED | Characterizing polypeptides |
6166385, | Sep 19 1995 | Cornell Research Foundation, Inc | Multi-photon laser microscopy |
6178041, | Jun 04 1996 | Carl Zeiss Microscopy GmbH | Device for coupling the radiation of short-pulse lasers in an optical beam path of a microscope |
6181463, | Mar 21 1997 | IMRA America, Inc | Quasi-phase-matched parametric chirped pulse amplification systems |
6184490, | Apr 09 1996 | Carl-Zeiss-Stiftung | Material irradiation apparatus with a beam source that produces a processing beam for a workpiece, and a process for operation thereof |
6191386, | Apr 22 1999 | The Ohio State University | Method and apparatus for initiating, directing and constricting electrical discharge arcs |
6198568, | Apr 25 1997 | IMRA America, Inc | Use of Chirped Quasi-phase-matched materials in chirped pulse amplification systems |
6219142, | Oct 17 1997 | KANE, DANIEL J | Method and apparatus for determining wave characteristics from wave phenomena |
6259104, | Jul 15 1994 | Superresolution in optical microscopy and microlithography | |
6272156, | Jan 28 1998 | Coherent, Inc | Apparatus for ultrashort pulse transportation and delivery |
6288782, | Jun 17 1993 | Ultrapointe Corporation | Method for characterizing defects on semiconductor wafers |
6295860, | Jul 08 1998 | Hitachi, Ltd. | Explosive detection system and sample collecting device |
6296810, | Jan 23 1995 | Amersham Biosciences Corp | Apparatus for DNA sequencing |
6316153, | Apr 21 1998 | Univeristy of Connecticut | Free-form fabricaton using multi-photon excitation |
6327068, | May 27 1998 | YEDA RESEARCH AND DEVELOPMENT CO , LTD ; YEDA RESEARCH AND DEVELOPMENT CO LTD | Adaptive pulse compressor |
6337606, | Feb 02 1999 | Sicom, Inc. | Digital communications modulator having a modulation processor which supports high data rates |
6344653, | Sep 19 1995 | Multi-photon laser microscopy | |
6375697, | Jul 29 1999 | SMITHS DETECTION - TORONTO LTD | Apparatus and method for screening people and articles to detect and/or to decontaminate with respect to certain substances |
6391220, | Aug 18 1999 | Fujitsu Limited, Inc. | Methods for fabricating flexible circuit structures |
6391229, | Jan 07 1999 | Mitsubishi Materials Corporation | Borate crystal, growth method of the same and laser equipment using the same |
6396856, | Apr 01 1994 | Irma America, Inc. | Scanning temporal ultrafast delay methods and apparatuses therefor |
6402898, | Jul 28 1999 | YEDA RESEARCH AND DEVELOPMENT CO LTD AT THE WEIZMANN INSTITUTE OF SCIENCE | Coherently controlled laser distillation of chiral enantiomers |
6421154, | Dec 19 1997 | STC UNM | Apparatus and method for high bandwidth laser-based data communication |
6479822, | Jul 07 2000 | Massachusetts Institute of Technology | System and Method for terahertz frequency measurements |
6480656, | Feb 19 1999 | ARMY, UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY | Method and system for generating a broadband spectral continuum, method of making the system and pulse-generating system utilizing same |
6498801, | Aug 05 1999 | Solid state laser for microlithography | |
6504612, | Nov 14 2000 | Georgia Tech Research Corporation | Electromagnetic wave analyzer |
6515257, | Mar 26 2001 | Anvik Corporation | High-speed maskless via generation system |
6539156, | Nov 02 1999 | Georgia Tech Research Corporation | Apparatus and method of optical transfer and control in plasmon supporting metal nanostructures |
6566667, | May 12 1997 | Cymer, INC | Plasma focus light source with improved pulse power system |
6573493, | Oct 26 1999 | Mitsubishi Heavy Industries, Ltd. | Method and apparatus for laser analysis of dioxins |
6577782, | Sep 23 1999 | Purdue Research Foundation | Direct space-to-time pulse shaper and optical pulse train generator |
6603600, | Nov 21 2001 | Coherent, Inc | Chirped pulse amplification method and apparatus |
6610351, | Apr 12 2000 | QUANTAG SYSTEMS, INC | Raman-active taggants and their recognition |
6610977, | Oct 01 2001 | Lockheed Martin Corporation | Security system for NBC-safe building |
6621613, | May 27 1998 | Yeda Research and Development Co. Ltd. | Adaptive pulse compressor |
6625181, | Oct 23 2000 | U.C. Laser Ltd. | Method and apparatus for multi-beam laser machining |
6631333, | May 10 1999 | California Institute of Technology | Methods for remote characterization of an odor |
6642513, | Oct 06 1998 | MD US TRACE HOLDING, LLC; Rapiscan Systems, Inc | Materials and apparatus for the detection of contraband |
6678450, | Apr 24 1998 | Johns Hopkins University, The | Optical method for quantum computing |
6684682, | Dec 24 2001 | PITNEY BOWES, INC | Jogger system having a mail compression capability therein |
6697196, | Sep 29 2000 | Olympus Corporation | Laser microscope and laser pulse width control method |
6708572, | Dec 22 2000 | MD US TRACE HOLDING, LLC; Rapiscan Systems, Inc | Portal trace detection systems for detection of imbedded particles |
6723991, | Oct 20 2000 | IMRA America, Inc. | Single-shot differential spectroscopy and spectral-imaging at submillimeter wavelengths |
6753957, | Aug 17 2001 | Florida Institute of Phosphate Research | Mineral detection and content evaluation method |
6757463, | Sep 21 2000 | UT-Battelle, LLC | Narrowband resonant transmitter |
6795456, | Dec 20 1999 | Coherent GmbH | 157 nm laser system and method for multi-layer semiconductor failure analysis |
6795777, | Mar 04 2002 | TEXAS A&M UNIVERSITY SYSTEM, THE | Identifying molecules of a sample |
6801318, | May 04 2001 | CONTINUUM ELECTRO-OPTICS, INC | Apparatus and method for measuring intensity and phase of a light pulse with an interferometric asymmetric single-shot autocorrelator |
6801551, | May 15 1998 | Research Foundation of the University of Central Florida, Inc | Programmable multiwavelength modelocked laser |
6804000, | Dec 15 2000 | Sloan-Kettering Institute for Cancer Research | Beam-steering of multi-chromatic light using acousto-optical deflectors and dispersion-compensatory optics |
6804045, | May 24 2002 | Lawrence Livermore National Security LLC | Optical chirped beam amplification and propagation |
6842285, | Dec 22 2000 | DANMARKS TEKNISKE UNIVERSITET | Method and apparatus for generating a phase-modulated wave front of electromagnetic radiation |
6857744, | Aug 11 2003 | Menicon Co., Ltd. | Method of marking ophhalmic lens by using laser radiation of femtosecond pulse width |
6879426, | Jul 06 2001 | Purdue Research Foundation | System and method for programmable polarization-independent phase compensation of optical signals |
6885325, | May 24 2002 | VENTURE LENDING & LEASING VI, INC ; VENTURE LENDING & LEASING VII, INC | Sub-flux quantum generator |
6885683, | May 23 2000 | Imra America | Modular, high energy, widely-tunable ultrafast fiber source |
6914668, | May 14 2003 | LASER DETECT SYSTEMS 2010 LTD | Personal identification verification and controlled substance detection and identification system |
6915040, | Dec 15 1997 | University of Southern California | Devices and applications based on tunable wave-guiding bragg gratings with nonlinear group delays |
6917631, | Feb 18 2002 | UNIVERSITY OF SOUTHAMPTON | Pulsed light sources |
6930779, | Nov 06 2001 | Quantum resonance analytical instrument | |
6963591, | Nov 30 2001 | Coherent, Inc | Solid state system and method for generating ultraviolet light |
7033519, | May 08 2002 | National Research Council of Canada | Method of fabricating sub-micron structures in transparent dielectric materials |
7049543, | Nov 07 2003 | Lawrence Livermore National Security LLC | Method of defining features on materials with a femtosecond laser |
7057788, | Oct 31 2000 | HAMAMATSU PHOTONICS K K | Spatial light modulator and light pulse waveform controller |
7088435, | Sep 12 2002 | LASER DETECT SYSTEMS 2010 LTD | Controlled substance detection and identification system |
7096125, | Dec 17 2001 | Honeywell International Inc | Architectures of sensor networks for biological and chemical agent detection and identification |
7105811, | Jan 30 2001 | Board of Trustees Operating Michigan State University | Control system and apparatus for use with laser excitation of ionization |
7113327, | Jun 27 2003 | IMRA America, Inc | High power fiber chirped pulse amplification system utilizing telecom-type components |
7132223, | May 16 2002 | Corning Incorporated | Laser-written cladding for waveguide formations in glass |
7169709, | Nov 30 1999 | Canon Kabushiki Kaisha | Laser etching method and apparatus therefor |
7170030, | Sep 12 2003 | GLOBALFOUNDRIES Inc | Method and apparatus for repair of reflective photomasks |
7170598, | Oct 17 2002 | Bayer Schering Pharma Aktiengesellschaft | Multi-parameter fluorimetric analysis in a massively parallel multi-focal arrangement and the use thereof |
7224518, | Feb 25 2003 | Toptica Photonics AG | Fiber-optic amplification of light pulses |
7256885, | Jan 29 2003 | Yeda Research and Development Company Ltd | Coherently controlled nonlinear Raman spectroscopy and microscopy |
7276103, | Aug 01 2003 | LINDINGER, ALBRECHT | Method and device for separating molecules having different excitation spectra |
7289203, | Sep 30 2004 | Chromaplex, Inc.; Chromaplex, Inc | Method and system for spectral analysis of biological materials using stimulated cars |
7342223, | Jun 16 2004 | Shimadzu Corporation | Mass spectrometer for biological samples |
7348569, | Jun 18 2004 | Massachusetts Institute of Technology | Acceleration of charged particles using spatially and temporally shaped electromagnetic radiation |
7369773, | May 24 2000 | Purdue Research Foundation | Methods and systems for polarization control and polarization mode dispersion compensation for wideband optical signals |
7391557, | Mar 28 2003 | APPLIED PHOTONICS WORLDWIDE INC | Mobile terawatt femtosecond laser system (MTFLS) for long range spectral sensing and identification of bioaerosols and chemical agents in the atmosphere |
7403281, | May 07 2004 | SCIAPS, INC | Raman spectrometer |
7403282, | Jan 29 2003 | Yeda Research and Development Company Ltd. | Coherently controlled nonlinear Raman spectroscopy and microscopy |
7408601, | Jun 23 2003 | Research Foundation of the University of Central Florida, Inc. | Electronically tunable polarization-independent micro lens using polymer network twisted nematic liquid crystal |
7411166, | Aug 12 2004 | Carl Zeiss Microscopy GmbH | Arrangement for optimizing the pulse shape in a laser scanning microscope |
7439497, | Jan 30 2001 | BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY | Control system and apparatus for use with laser excitation and ionization |
7450618, | Jan 30 2001 | Board of Trustees Operating Michigan State University | Laser system using ultrashort laser pulses |
7474467, | Sep 24 2005 | WETLAND OPTICS, LLC | Ultrashort pulse compressor |
7567596, | Jan 30 2001 | BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY | Control system and apparatus for use with ultra-fast laser |
7576907, | May 12 2008 | Colorado State University Research Foundation | Phase and amplitude light pulse shaping using a one-dimensional phase mask |
7583710, | Jan 30 2001 | Board of Trustees Operating Michigan State University | Laser and environmental monitoring system |
7609731, | Jan 30 2001 | Board of Trustees Operating Michigan State University | Laser system using ultra-short laser pulses |
7813035, | May 18 2006 | PolarOnyx, Inc.; POLARONYX, INC | Nonlinearity and dispersion management for pulse reshaping in high energy fiber amplifier |
7826051, | May 27 2004 | Yeda Research and Development Company Ltd | Coherently controlled nonlinear raman spectroscopy |
7973936, | Jan 30 2001 | BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY | Control system and apparatus for use with ultra-fast laser |
7989731, | Jul 22 2003 | Carl Zeiss Meditec AG | Method for processing materials with laser pulses having a large spectral bandwidth |
8125704, | Aug 18 2008 | Coherent, Inc | Systems and methods for controlling a pulsed laser by combining laser signals |
8208504, | Jan 30 2001 | Board of Trustees Operation Michigan State University | Laser pulse shaping system |
8208505, | Jan 30 2001 | BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY | Laser system employing harmonic generation |
8265110, | Jan 30 2001 | Board of Trustees Operating Michigan State University | Laser and environmental monitoring method |
8300669, | Jan 30 2001 | BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY | Control system and apparatus for use with ultra-fast laser |
8311069, | Dec 21 2007 | BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY | Direct ultrashort laser system |
20010015411, | |||
20010015990, | |||
20010017727, | |||
20020025490, | |||
20020086245, | |||
20020093653, | |||
20020097761, | |||
20020176809, | |||
20030063884, | |||
20030099264, | |||
20030123051, | |||
20030144582, | |||
20030194165, | |||
20030210400, | |||
20040012837, | |||
20040031906, | |||
20040043443, | |||
20040058058, | |||
20040089804, | |||
20040128081, | |||
20040145735, | |||
20040155184, | |||
20040189990, | |||
20040233944, | |||
20040240037, | |||
20040259234, | |||
20040263950, | |||
20050017160, | |||
20050021243, | |||
20050036202, | |||
20050103759, | |||
20050155958, | |||
20050161669, | |||
20050185188, | |||
20050226287, | |||
20050230365, | |||
20050232313, | |||
20050248758, | |||
20060000988, | |||
20060006964, | |||
20060019171, | |||
20060028655, | |||
20060032841, | |||
20060039419, | |||
20060051025, | |||
20060056468, | |||
20060058683, | |||
20060066848, | |||
20060071803, | |||
20060096426, | |||
20060096962, | |||
20060119743, | |||
20060120412, | |||
20060134004, | |||
20060169677, | |||
20060187974, | |||
20060207975, | |||
20060207976, | |||
20060243712, | |||
20060274403, | |||
20060285071, | |||
20070034615, | |||
20070093970, | |||
20070103778, | |||
20080170218, | |||
20080309931, | |||
20090188901, | |||
20090207869, | |||
20090296744, | |||
20110005090, | |||
EP605110, | |||
EP842729, | |||
EP1625939, | |||
EP1742311, | |||
JP11095051, | |||
JP1113189, | |||
JP2000055781, | |||
JP2001337301, | |||
JP2002139716, | |||
JP2003155256, | |||
WO70647, | |||
WO154323, | |||
WO2061799, | |||
WO231799, | |||
WO2004023413, | |||
WO2005088783, | |||
WO2005111677, | |||
WO2006079083, | |||
WO2006111682, | |||
WO2006138442, | |||
WO2007001308, | |||
WO2007002231, | |||
WO2007028119, | |||
WO2007064703, | |||
WO2007145702, | |||
WO2008063602, | |||
WO2009086122, | |||
WO2009092901, | |||
WO9957318, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 26 2010 | BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY | (assignment on the face of the patent) | / | |||
Nov 23 2011 | DANTUS, MARCOS | BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027317 | /0781 | |
Nov 23 2011 | LOZOVOY, VADIM V | BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027317 | /0781 |
Date | Maintenance Fee Events |
Feb 10 2017 | STOL: Pat Hldr no Longer Claims Small Ent Stat |
Apr 16 2018 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 14 2022 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Oct 14 2017 | 4 years fee payment window open |
Apr 14 2018 | 6 months grace period start (w surcharge) |
Oct 14 2018 | patent expiry (for year 4) |
Oct 14 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 14 2021 | 8 years fee payment window open |
Apr 14 2022 | 6 months grace period start (w surcharge) |
Oct 14 2022 | patent expiry (for year 8) |
Oct 14 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 14 2025 | 12 years fee payment window open |
Apr 14 2026 | 6 months grace period start (w surcharge) |
Oct 14 2026 | patent expiry (for year 12) |
Oct 14 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |