A method includes forming a plurality of trenches in a pad film to form raised portions, and depositing a hard mask in the trenches and over the upper pad film. The method includes forming a plurality of fins including the raised portions and a second plurality of fins including the hard mask deposited in the trenches, each of which are separated by a deep trench. The method includes removing the hard mask on the plurality of fins including the raised portions and the second plurality of fins resulting in a dual height fin array. The method includes forming gate electrodes within each deep trench between each fin of the dual height fin array, burying the second plurality of fins and abutting sides of the plurality of fins including the raised portions. The plurality of fins including the raised portions electrically and physically isolate adjacent gate electrode of the gate electrodes.
|
8. A structure comprising:
a plurality of isolation fin structures of a first height;
a plurality of isolation fins structures of a second height, different than the first height;
a plurality of gate structures formed over the plurality of isolation fin structures of the first height and separated by the plurality of isolation fins structures of the second height, wherein the plurality of isolation fin structures of the first height comprise an upper silicon layer and a pad film of a first height, and the plurality of isolation fin structures of the second height comprise the upper silicon layer and the pad film of a second height.
1. A structure comprising:
an array of semiconductor fins comprising a plurality of first and second height fin structures;
a plurality of gate stack regions spanning over the plurality of first height fin structures and abutting the second height fin structure which separate the gate stacks; and further comprising:
a split gate finfet and a fin-isolated double gate finfet wherein the split gate finfet comprises a tall fin structure and the double gate finfet comprises a short fin structure, and
a gate electrode structure of height greater than the short fin structure and lesser than the tall fin structure;
wherein the plurality of first height fin structures comprise a silicon layer and a pad film of a first height, and the plurality of second height fin structures comprise the silicon layer and the pad film of a second height.
4. The structure of
5. The structure of
6. The structure of
7. The structure of
9. The structure of
11. The structure of
14. The structure of
16. The structure of
17. The structure of
18. The structure of
19. The structure of
20. The structure of
|
The present application is a divisional application of copending application Ser. No. 12/902,793, filed on Oct. 12, 2010, the contents of which are incorporated by reference herein in its entirety.
The invention relates to semiconductor structures and methods of manufacture and, more particularly, to devices having gate-to-gate isolation structures and methods of manufacture.
Photolithography (or “optical lithography”) is a complex process used in semiconductor processing to selectively remove parts of a thin film or the bulk of a substrate to build structures. This process uses light to transfer a geometric pattern from a photo mask to a light-sensitive chemical, e.g., photoresist or “resist,” on the substrate. A series of chemical treatments, e.g., etching processes, then engraves the exposure pattern into the material underneath the photoresist. In complex integrated circuits, for example a modern CMOS, a wafer may go through the photolithographic cycle up to 50 times. The patterning can be used to form gates, as well as isolation structures, wiring layers, contacts, etc.
As the imaging becomes ever so smaller in newer technologies, the photolithographic process must transfer smaller and smaller images (patterns) onto the photo mask. However, as conventional resolution limits of lithography continue to be exceeded, in particular at the 15 nm node, and beyond, new technology integration schemes may be needed to ease the burden on patterning. For example, in newer technologies it is becoming difficult to isolate transistors (gates) with critical spacing, while maintaining the minimum image of the gate electrodes, themselves. To ensure minimum image of the gate electrodes and that gates remain isolated (e.g., do not short circuit), large isolation regions are formed between gates. This can be accomplished with photolithographic process since such large isolation regions do not exceed conventional resolution limits of lithography. Although these large isolation regions allow the designer and engineer to maintain the minimum image of the gates, such isolation regions take up valuable chip real estate. This, in turn, limits the density of the chip.
Accordingly, there exists a need in the art to overcome the deficiencies and limitations described hereinabove.
In a first aspect of the invention, a method comprises forming a plurality of trenches in a pad film to form raised portions. The method further comprises depositing a hard mask in the trenches and over the upper pad film. The method further comprises forming a plurality of fins comprising the raised portions and a second plurality of fins comprising the hard mask deposited in the trenches, each of which are separated by a deep trench. The method further comprises removing the hard mask on the plurality of fins comprising the raised portions and the second plurality of fins resulting in a dual height fin array. The method further comprises forming gate electrodes within each deep trench between each fin of the dual height fin array, burying the second plurality of fins and abutting sides of the plurality of fins comprising the raised portions. The plurality of fins comprising the raised portions electrically and physically isolate adjacent gate electrode of the gate electrodes.
In another aspect of the invention, a method comprises forming a first pad film on a substrate. The method further comprises etching trenches in the first pad film, stopping before the substrate, to form raised portions of the first pad film. The method further comprises forming a hard mask in the trenches and over the raised portions. The method further comprises forming a plurality of trenches into the first pad film, the hard mask and the substrate, creating an array of fins comprising: first fins composed of the raised section, the hard mask and the substrate; and second fins composed of the first pad film, the hard mask in the trenches and the substrate. The method further comprises removing the hard mask on the first fins and the second fins, resulting in a dual height array of fins, wherein the first fins are higher than the second fins. The method further comprises forming gate electrodes within each trench of the plurality of trenches, between each fin of the dual height array of fins, which bury the second fins and abut sides of the first fins. The first fins comprising the raised portions electrically and physically isolate adjacent gate electrode of the gate electrodes.
In yet another aspect of the invention, a structure comprises an array of semiconductor fins comprising a plurality of first and second height fin structures. The structure further comprises The structure further comprises a plurality of gate stack regions spanning over the plurality of first height fin structures and abutting the second height fin structure which separate the gate stacks. The structure further comprises a split gate finFET and a fin-isolated double gate finFET wherein the split gate finFET comprises a tall fin structure and the double gate finFET comprises a short fin structure, and a gate electrode structure of height greater than the short fin structure and lesser than the tall fin structure.
In another aspect of the invention, a design structure tangibly embodied in a machine readable storage medium for designing, manufacturing, or testing an integrated circuit is provided. The design structure comprises the structures of the present invention. In further embodiments, a hardware description language (HDL) design structure encoded on a machine-readable data storage medium comprises elements that when processed in a computer-aided design system generates a machine-executable representation of the gate to gate isolation structure, which comprises the structures of the present invention. In still further embodiments, a method in a computer-aided design system is provided for generating a functional design model of the gate to gate isolation structure. The method comprises generating a functional representation of the structural elements of the gate to gate isolation structure.
The present invention is described in the detailed description which follows, in reference to the noted plurality of drawings by way of non-limiting examples of exemplary embodiments of the present invention.
The invention relates to semiconductor structures and methods of manufacture and, more particularly, to devices having gate-to-gate isolation structures and methods of manufacture. More specifically, the present invention includes selectively raised isolation regions at desired gate isolation points to provide isolation structures between adjacent gates (transistors), and methods of manufacture. Advantageously, the structures and methods of the present invention allow for increased device density on the chip, while maintaining minimal image spacing (uniformity) for the technology node. The present invention also advantageously allows the manufacture of gates that are uniform, with uniform pitch, and with repeating patterns. The present invention also allows for flexible circuit design, and can be used for finFETs as well as other devices. Thus, in embodiments, the present invention isolate gates form adjacent FETs without disruption of the regular gate patterns and without large density penalties.
A pad film 12 is formed on the wafer 10 using, for example, conventional deposition processes such as, for example, chemical vapor deposition (CVD), plasma enhanced CVD (PECVD) or other conventional deposition processes. In embodiments, the pad film 12 can be a stack such as, for example, SiO2 and Si3N4 or other known pad film materials. In embodiments, the pad film 12 can be about 50 nm to 600 nm in thickness, depending on the design criteria of the device. In embodiments using a stack, the SiO2 can be about 10 nm to about 50 nm and the Si3N4 can be about 50 nm to about 500 nm.
In
In embodiments, the trenches 14 can be formed using conventional lithographic processes. For example, a resist can be formed on the pad film 12 and exposed to light to form openings. A reactive ion etching (RIB) is then performed to form the trenches 14. The resist can then be stripped using conventional dry etching techniques, for example.
As shown in
Once the mask 17 is formed, the unprotected regions, e.g., unprotected portions of the pad film 12 and isolation structures 16a, undergo etching processes, which form a stepped region 18 (higher region) adjacent to the isolation structure 16b (and remaining portion of the structure). In this manner, the isolation structures 16a and 16b are at a dual height.
In embodiments, the etching process can remove portions of the pad film 12 and isolation structures 16a, with later etching processes removing the remaining portions of the pad film 12. In further embodiments, the etching process can remove all of the unprotected portions of the pad film 12 (see, e.g.,
In
In
In
A pad film 12 is formed on the wafer 10 using, for example, conventional deposition processes such as, for example, chemical vapor deposition (CVD), plasma enhanced CVD (PECVD) or other conventional deposition processes. In embodiments, the pad film 12 can be a stack such as, for example, SiO2 and Si3N4 or other known pad film materials, as describe above in detail.
In
As further shown in
In
In
In
A pad film 12 is formed on the wafer 10 using, for example, conventional deposition processes such as, for example, chemical vapor deposition (CVD), plasma enhanced CVD (PECVD) or other conventional deposition processes. In embodiments, the pad film 12 can be a stack such as, for example, SiO2 and Si3N4 or other known pad film materials, as describe above in detail.
In
In
In
In
In
In
Source and drain regions can then be formed on the sides of the gates 20a-20b (in active regions) using conventional doping/implantation processes. It should be understood by those of skill in the art that any number of gates can be formed on the wafer 20 using the processes described herein.
In
Design flow 900 may vary depending on the type of representation being designed. For example, a design flow 900 for building an application specific IC (ASIC) may differ from a design flow 900 for designing a standard component or from a design flow 900 for instantiating the design into a programmable array, for example a programmable gate array (PGA) or a field programmable gate array (FPGA) offered by Altera® Inc. or Xilinx® Inc.
Design process 910 preferably employs and incorporates hardware and/or software modules for synthesizing, translating, or otherwise processing a design/simulation functional equivalent of the components, circuits, devices, or logic structures shown in
Design process 910 may include hardware and software modules for processing a variety of input data structure types including netlist 980. Such data structure types may reside, for example, within library elements 930 and include a set of commonly used elements, circuits, and devices, including models, layouts, and symbolic representations, for a given manufacturing technology (e.g., different technology nodes, 32 nm, 45 nm, 90 nm, etc.). The data structure types may further include design specifications 940, characterization data 950, verification data 960, design rules 970, and test data files 985 which may include input test patterns, output test results, and other testing information. Design process 910 may further include, for example, standard mechanical design processes such as stress analysis, thermal analysis, mechanical event simulation, process simulation for operations such as casting, molding, and die press forming, etc. One of ordinary skill in the art of mechanical design can appreciate the extent of possible mechanical design tools and applications used in design process 910 without deviating from the scope and spirit of the invention. Design process 910 may also include modules for performing standard circuit design processes such as timing analysis, verification, design rule checking, place and route operations, etc.
Design process 910 employs and incorporates logic and physical design tools such as HDL compilers and simulation model build tools to process design structure 920 together with some or all of the depicted supporting data structures along with any additional mechanical design or data (if applicable), to generate a second design structure 990.
Design structure 990 resides on a storage medium or programmable gate array in a data format used for the exchange of data of mechanical devices and structures (e.g. information stored in a IGES, DXF, Parasolid XT, JT, DRG, or any other suitable format for storing or rendering such mechanical design structures). Similar to design structure 920, design structure 990 preferably comprises one or more files, data structures, or other computer-encoded data or instructions that reside on transmission or data storage media and that when processed by an ECAD system generate a logically or otherwise functionally equivalent form of one or more of the embodiments of the invention shown in
Design structure 990 may also employ a data format used for the exchange of layout data of integrated circuits and/or symbolic data format (e.g. information stored in a GDSII (GDS2), GL1, OASIS, map files, or any other suitable format for storing such design data structures). Design structure 990 may comprise information such as, for example, symbolic data, map files, test data files, design content files, manufacturing data, layout parameters, wires, levels of metal, vias, shapes, data for routing through the manufacturing line, and any other data required by a manufacturer or other designer/developer to produce a device or structure as described above and shown in
The method as described above is used in the fabrication of integrated circuit chips. The resulting integrated circuit chips can be distributed by the fabricator in raw wafer form (that is, as a single wafer that has multiple unpackaged chips), as a bare die, or in a packaged form. In the latter case the chip is mounted in a single chip package (such as a plastic carrier, with leads that are affixed to a motherboard or other higher level carrier) or in a multichip package (such as a ceramic carrier that has either or both surface interconnections or buried interconnections). In any case the chip is then integrated with other chips, discrete circuit elements, and/or other signal processing devices as part of either (a) an intermediate product, such as a motherboard, or (b) an end product. The end product can be any product that includes integrated circuit chips, ranging from toys and other low-end applications to advanced computer products having a display, a keyboard or other input device, and a central processor.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims, if applicable, are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principals of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated. Accordingly, while the invention has been described in terms of embodiments, those of skill in the art will recognize that the invention can be practiced with modifications and in the spirit and scope of the appended claims.
Nowak, Edward J., Anderson, Brent A., Rankin, Jed H.
Patent | Priority | Assignee | Title |
10186457, | Jan 13 2016 | Samsung Electronics Co., Ltd. | Methods of fabricating semiconductor devices |
10522401, | Jan 13 2016 | Samsung Electronics Co., Ltd. | Methods of fabricating semiconductor devices |
8963259, | May 31 2013 | GLOBALFOUNDRIES Inc.; International Business Machines Corporation; Renesas Electronics Corporation | Device isolation in finFET CMOS |
9299811, | Nov 27 2013 | Samsung Electronics Co., Ltd. | Methods of fabricating semiconductor devices |
9564369, | Oct 21 2015 | Samsung Electronics Co., Ltd. | Methods of manufacturing semiconductor devices including device isolation processes |
9806166, | Jan 13 2016 | Samsung Electronics Co., Ltd. | Semiconductor devices and methods of fabricating the same |
Patent | Priority | Assignee | Title |
6022781, | Dec 28 1994 | International Business Machines Corporation | Method for fabricating a MOSFET with raised STI isolation self-aligned to the gate stack |
6110787, | Sep 07 1999 | Chartered Semiconductor Manufacturing Ltd. | Method for fabricating a MOS device |
6787402, | Apr 27 2001 | Advanced Micro Devices, Inc. | Double-gate vertical MOSFET transistor and fabrication method |
6924178, | Dec 08 2003 | ELPIS TECHNOLOGIES INC | Oxide/nitride stacked in FinFET spacer process |
7453123, | Sep 15 2003 | GLOBALFOUNDRIES Inc | Self-aligned planar double-gate transistor structure |
7537985, | Feb 24 2005 | DAEDALUS ACQUISITIONS LLC | Double gate isolation |
7557401, | Apr 18 2005 | Kabushiki Kaisha Toshiba | Semiconductor device and method of manufacturing the same |
7666732, | Dec 28 2005 | GLOBALFOUNDRIES U S INC | Method of fabricating a metal gate CMOS with at least a single gate metal and dual gate dielectrics |
20070026617, | |||
20080050866, | |||
20090045449, | |||
20090309136, | |||
20100093167, | |||
20100118599, | |||
20100248454, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 20 2012 | International Business Machines Corporation | (assignment on the face of the patent) | / | |||
Jun 29 2015 | International Business Machines Corporation | GLOBALFOUNDRIES U S 2 LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036550 | /0001 | |
Sep 10 2015 | GLOBALFOUNDRIES U S 2 LLC | GLOBALFOUNDRIES Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036779 | /0001 | |
Sep 10 2015 | GLOBALFOUNDRIES U S INC | GLOBALFOUNDRIES Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036779 | /0001 | |
Nov 27 2018 | GLOBALFOUNDRIES Inc | WILMINGTON TRUST, NATIONAL ASSOCIATION | SECURITY AGREEMENT | 049490 | /0001 | |
Oct 22 2020 | GLOBALFOUNDRIES Inc | GLOBALFOUNDRIES U S INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 054633 | /0001 | |
Nov 17 2020 | WILMINGTON TRUST, NATIONAL ASSOCIATION | GLOBALFOUNDRIES U S INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 056987 | /0001 | |
Nov 17 2020 | WILMINGTON TRUST, NATIONAL ASSOCIATION | GLOBALFOUNDRIES Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 054636 | /0001 |
Date | Maintenance Fee Events |
Apr 19 2018 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 20 2022 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Nov 04 2017 | 4 years fee payment window open |
May 04 2018 | 6 months grace period start (w surcharge) |
Nov 04 2018 | patent expiry (for year 4) |
Nov 04 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 04 2021 | 8 years fee payment window open |
May 04 2022 | 6 months grace period start (w surcharge) |
Nov 04 2022 | patent expiry (for year 8) |
Nov 04 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 04 2025 | 12 years fee payment window open |
May 04 2026 | 6 months grace period start (w surcharge) |
Nov 04 2026 | patent expiry (for year 12) |
Nov 04 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |