The invention relates to a method for removing solid matter, in particular impurities, by means of flotation from a fibrous material suspension (S), wherein the fibrous material suspension (S) is mixed with gas (L), and wherein in at least two flotation chambers (1, 2, 2′, 2″, 2′″, 2″″) flotation foam (3, 4) is formed that collects solid matter and removes it from the flotation chamber. The flotation foam (4) of at least one flotation chamber (1, 2, 2′, 2″, 2′″, 2″″) is at least partially conducted into at least one other flotation chamber (1), in particular in the flotation foam (3) formed therein. According to the method, the complexity can be reduced, even with high requirements regarding effect and yield.
|
1. A method for removing solid matter from a fibrous stock suspension by way of flotation, said method comprising the steps of:
mixing the fibrous stock suspension with a gas;
forming a flotation foam respectively in at least two flotation chambers, said flotation foam respectively collecting the solid matter and removing the solid matter from said at least two flotation chambers;
discharging the fibrous stock suspension, which has been freed of the solid matter, as a through-flow from respectively said at least two flotation chambers; and
introducing said flotation foam of at least one of said at least two flotation chambers at least partially into an other of said at least two flotation chambers, wherein the flotation foam to be introduced into the other flotation chamber is introduced in a region which is located between a suspension level and an upper limit of a combined flotation foam.
2. The method according to
3. The method according to
4. The method according to
5. The method according to
6. The method according to
7. The method according to
8. The method according to
9. The method according to
10. The method according to
11. The method according to
12. The method according to
13. The method according to
14. The method according to
|
This is a continuation of PCT application No. PCT/EP2010/060191, entitled “METHOD FOR REMOVING SOLID MATTER FROM A FIBROUS MATERIAL SUSPENSION BY MEANS OF FLOTATION”, filed Jul. 15, 2010, which is incorporated herein by reference.
1. Field of the Invention
The invention relates to a method for removing solid matter method for removing solid matter from a fibrous stock suspension by way of flotation, wherein fibrous stock suspension is mixed with gas and wherein flotation foam is formed in at least two flotation chambers and collects solid matter and removes it from flotation chamber and wherein moreover the fibrous stock suspension which has been ridded of the solid matter is discharged as through-flow from respective flotation chamber.
2. Description of the Related Art
A foam or floating sludge is formed through flotation which contains and removes matter to be eliminated. A typical application for such methods is the processing of a suspension obtained from recovered printed paper, wherein the printing ink particles are already detached from the fibers so that they can be removed through flotation. A fiber stock consistency (volume of fibers relative to the overall volume) of between 0.5% and 2%, preferably between 0.8% and 1.2%, is hereby often adjusted in the fibrous stock suspension. The flotation process described here exploits the differences between paper fiber stock and solids which are to be removed, in particular undesirable impurities in such a way that the fibrous material based on its rather hydrophilic character remains in the fibrous stock suspension, whereas the aforementioned impurity particles are hydrophobic and therefore migrate into the foam together with the air bubbles. Therefore, not all solid matters are removed through flotation; however, fibers are separated from contaminants. As a rule, the often used term “flotation deinking” is not only used to remove printing ink particles, but also more generally for the flotation of fines from the fibrous stock suspension. Besides the aforementioned printing inks, additional contaminants include in particular stickies, fine synthetic particles and possibly also resins. Controlled removal through flotation of mineral filler materials (“ash”) may also be one of the objectives of the method.
The current state of the art in regard to flotation methods for fibrous stock suspensions is already very advanced. Solutions are available which are definitely suitable for removal of solid particles through flotation in the desired method and volume. However, good flotation results are obtained with a relatively high expenditure, especially in regard to equipment, operating resources and energy. The problem is in meeting two requirements, namely on the one hand complete removal of all materials which are to be rejected, as a rule removal of the impurities, and on the other hand avoiding losses, namely the unintended removal of materials which are to be utilized for the product to be produced at a later stage. In the practice of flotation these two objectives can be met equally well only with complex procedures.
In order to achieve optimum separation of floatable materials as well as only a very small loss, multi-stage equipment can be used. The fibrous stock suspension hereby flows usually consecutively through several flotation chambers or flotation cells assigned to one flotation stage until the desired material removal is achieved in the through-flow, or in other words in the accepted stock. Since the overflow, namely the flotation foam, which is formed in this flotation stage still contains a considerable amount of for example paper fibers it is directed as inflow into a further stage. Normally one refers to a first and second flotation stage, or also to primary or secondary flotation. The through-flow, namely the accepted stock of the second flotation stage can again be added to the incoming flow of the first flotation stage. There are also cases in which the through-flow of the second stage is mixed to the through-flow, namely the accepted stock of the first stage. The flotation foam produced in the second stage can then be disposed of or if it still contains too many fibers can be directed to a third stage. Flotation chambers or cells for the second flotation stage are usually designed similar or identical to those for the first stage, however there are substantially fewer in number. Typical installations have five or six flotation cells in the primary stage and one or two in the secondary stage.
DE 101 25 978 C1 describes a two-stage flotation unit whereby partial flows are drawn off and re-added at another stage in the unit. In particular, flotation foam is returned into the fibrous stock suspension of flotation cells located upstream.
It is the objective of the current invention, and what is needed in the art is, to reduce the expenditure associated with implementation of the method without occurrence of losses in regard to the separation efficiency.
This objective is met by, and the present invention provides, a method for removing solid matter from a fibrous stock suspension by way of flotation, wherein fibrous stock suspension is mixed with gas and wherein flotation foam is formed in at least two flotation chambers and collects solid matter and removes it from flotation chamber and wherein moreover the fibrous stock suspension which has been ridded of the solid matter is discharged as through-flow from respective flotation chamber, characterized in that flotation foam of at least one flotation chamber is fed at least partially into another flotation chamber.
With the new method a foam layer having considerably enlarged foam volume is formed in at least one selected flotation chamber. Hereby it can be accepted that due to the process, the additionally supplied flotation foam still contains residual fibers. These can drain off between the gas bubbles into the fibrous stock suspension below (foam drainage) together with the sinking water.
Moreover, the stability of the foam layer is improved through the method, since additional liquid is added to it which in turn permits a higher foam layer. The foam drainage is facilitated by a relatively moist high foam layer and thereby the fiber loss is decisively reduced.
The new method essentially has the advantage that there can be fewer flotation cells, in particular if the fibrous stock suspension to be floated is first directed into the foam receiving flotation chamber. The flotation foam formed therein normally has the highest level of contamination. It is supplemented with the less contaminated added flotation foam, whereby said flotation foam does not encumber the actual flotation process in this flotation chamber. The flotation process is basically only a statistical process (flotation-probability). Other than would be the case in a fresh flotation in an additional stage, it is advantageous in the inventive method that the recirculated foam is directed into the strongly gaseous foam layer interspersed with globoidal bubbles of the first flotation chamber.
The flotation foam to be recirculated can advantageously be deaerated so that it can be transported with a foam pump. This de-airing can however be less (partial de-airing) than when the flotation foam is to be pumped together with a fibrous stock suspension.
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate embodiments of the invention, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
Since the task of first flotation chamber 1 (
Normally more than two flotation chambers will be used (in this context see
It can be advantageous to not completely intermix flotation foam 3 formed in flotation chamber 1 with fed in flotation foam 4. The non-intermixed part can then for example be directed into reject 1 via an adjustable foam valve 20 (see
Equipment related solutions are already available which serve to feed the suspension to be floated into the already developed flotation foam, as known for example from EP 1 029 975 A1 and DE 198 23 053 C1. Such or similar equipment may also be suitable for the new method.
The inventive flotation line can, as illustrated in
Even if flotation is to occur in several stages, the invention may be used advantageously. To this end
An additional arrangement of the method is illustrated in
While this invention has been described with respect to at least one embodiment, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
Britz, Herbert, Delmas, Delphine
Patent | Priority | Assignee | Title |
11896926, | Nov 08 2017 | BTU INTERNATIONAL, INC | Devices, systems and methods for flux removal from furnace process gas |
Patent | Priority | Assignee | Title |
2005742, | |||
4331534, | Aug 21 1978 | Stora Feldmuhle Aktiengesellschaft | Method of and arrangement for the de-inking of pulp suspensions |
5069751, | Aug 09 1990 | KAMYR, INC | Hydrocyclone deinking of paper during recycling |
5804061, | Apr 14 1997 | Beloit Technologies, Inc. | Multiflow pressurized deinking apparatus |
6082549, | Jul 31 1997 | Voith Sulzer Papiertechnik Patent GmbH | Process and facility to remove solid matter from an aqueous fibrous material suspension |
6413366, | May 22 1998 | Voith Sulzer Papiertechnik Patent GmbH | Method and device for flotation of pollutants from an aqueous fibrous material suspension |
20060021916, | |||
20080296206, | |||
DE10125978, | |||
DE10329883, | |||
DE19823053, | |||
EP1029975, | |||
EP1262593, | |||
EP1416086, | |||
WO2009077035, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 23 2012 | Voith Patent GmbH | (assignment on the face of the patent) | / | |||
Apr 25 2012 | DELMAS, DELPHINE | Voith Patent GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028484 | /0581 | |
May 07 2012 | BRITZ, HERBERT | Voith Patent GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028484 | /0581 |
Date | Maintenance Fee Events |
Apr 03 2015 | ASPN: Payor Number Assigned. |
Jun 28 2018 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Aug 29 2022 | REM: Maintenance Fee Reminder Mailed. |
Feb 13 2023 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jan 06 2018 | 4 years fee payment window open |
Jul 06 2018 | 6 months grace period start (w surcharge) |
Jan 06 2019 | patent expiry (for year 4) |
Jan 06 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 06 2022 | 8 years fee payment window open |
Jul 06 2022 | 6 months grace period start (w surcharge) |
Jan 06 2023 | patent expiry (for year 8) |
Jan 06 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 06 2026 | 12 years fee payment window open |
Jul 06 2026 | 6 months grace period start (w surcharge) |
Jan 06 2027 | patent expiry (for year 12) |
Jan 06 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |