Methods for inhibition of hairless protein mRNA using RNA interference is described, in particular methods for hair removal. Also described are nucleic acid constructs for RNAi-mediated inhibition of hairless protein mRNA and compositions including such constructs.
|
1. A kit comprising a pharmaceutical composition comprising a double stranded nucleic acid molecule comprising a sense sequence corresponding to 19-29 contiguous nucleotides of SEQ ID NO: 11329, and an antisense sequence complementary thereto; a component adapted for hair removal; and a package label or insert indicating that said pharmaceutical composition can be used for hair removal.
5. The kit of
7. The kit of
8. The kit of
9. The kit of
10. The kit of
11. The kit of
12. The kit of
13. The kit of
14. The kit of
15. The kit of
16. The kit of
17. The kit of
18. The kit of
|
This application is a continuation of U.S. application Ser. No. 11/333,748, filed Jan. 17, 2006, which is a continuation of U.S. application Ser. No. 11/113,423 filed Apr. 22, 2005, now abandoned, which is based on U.S. Provisional Application Ser. No. 60/565,127 filed Apr. 23, 2004, the contents of each of which are incorporated by reference herein, and to each of which priority is claimed.
The specification further incorporates by reference the Sequence Listing submitted herewith via EFS on Aug. 9, 2013. Pursuant to 37 C.F.R. §1.52(e)(5), the Sequence Listing text file, identified as 0700504762Seq.txt, is 2,821,545 bytes and was created on Aug. 9, 2013. The Sequence Listing, electronically filed herewith, does not extend beyond the scope of the specification and thus does not contain new matter.
The following is a discussion of some relevant art relating to hairless protein, and to RNAi. This discussion is provided only to assist the understanding of the reader, and does not constitute an admission that any of the information provided or references cited constitutes prior art to the present invention.
As described in Christiano et al., PCT/US99/02128, WO 99/38965, The human hair follicle is a dynamic structure which generates hair through a complex and highly regulated cycle of growth and remodeling. Hardy, 1992, Trends Genet. 8:159; Rosenquist and Martin, 1996, Dev. Dynamics 205:379. Hair growth is typically described as having three distinct phases. In the first phase, knows as anagen, the follicle is generated and new hair grows.
During the second phase, known as catagen, the follicle enters the stage to where elongation ceases and the follicle regresses because the matrix cells stop proliferating. At this stage, the lower, transient half of the follicle is eliminated due to terminal differentiation and keratinization, and programmed cell death. Rosenquist and Martin, 1996, Dev. Dynamics 205:379. Also during catagen, although the dermal papilla remains intact, it undergoes several remodeling events, including degradation of the extracellular matrix that is deposited during anagen. At the close of catagen, the hair is only loosely anchored in a matrix of keratin, with the dermal papilla located just below. The catagen stage occurs at a genetically predetermined time, which is specific for each hair type in a species.
The third phase, known as telogen, is characterized by the follicle entering a quiescent phase, during which the hair is usually shed. When a new hair cycle is initiated, it is thought that a signal from the dermal papilla stimulates the stem cells, which are thought to reside in the permanent portion of the follicle, to undergo a phase of downward proliferation and genesis of a new bulbous base containing matrix cells which then surround the dermal papilla. As the new anagen state progresses, these hair matrix cells produce a new hair, the cycle begins again. Each follicle appears to be under completely asynchronous control, resulting in a continuum of follicles in anagen, catagen, and telegen phases, leading to a relatively homogeneous hair distribution. Hardy, 1992, Trends Genet. 8:159; Rosenquist and Martin, 1996, Dev. Dynamics 205:379.
Christiano et al., PCT/US99/02128, WO 99/38965 describes isolated nucleic acid encoding human hairless protein, the isolated protein, and methods for identifying a compound that is capable of enhancing or inhibiting expression of a human hairless protein, and states that “A therapeutic approach using antisense to human hairless can be used to directly interfere with the translation of Human hairless protein messenger RNA into protein.” It further states that “antisense nucleic acid or ribozymes could be used to bind to the Human hairless protein mRNA or to cleave it.”
Thompson, U.S. Pat. No. 6,348,348, issued Feb. 19, 2002, describes human hairless gene and protein, and screening methods to identify agents that affect expression of the human hairless gene.
Christiano, U.S. patent application Ser. No. 10/122,013, publication 20030077614 (and corresponding International Application PCT/US02/11683, WO 02/083891), indicates that “The present invention provides DNAzymes and ribozymes that specifically cleave Hairless Protein mRNA.” The present invention also provides antisense oligonucleotides that specifically inhibit translation of Hairless Protein mRNA. (Abstract.) Also, it states that “This invention provides a nucleic acid molecule that specifically hybridizes to Hairless Protein mRNA so as to inhibit the translation thereof in a cell”; (Specification ¶0099) and that “Antisense oligodeoxynucleotides were synthesized as directed to the inhibition of Hairless expression based on the Hairless mRNA sequence.”
The present invention concerns the use of RNA interference (RNAi) to inhibit mRNA's involved in hair growth, resulting in inhibition of hair growth. For many applications, short interfering RNA (siRNA) are used. Thus, inhibition of hairless protein mRNA, particularly during catagen phase, can result in permanent or at least long term inhibition of hair growth, and thus provides a method for hair removal. Consequently, inhibition of hairless protein mRNA can be used for hair removal and/or hair growth inhibition in cosmetic, therapeutic, and industrial applications.
Thus, in a first aspect, the invention provides a method for hair removal from a mammal, e.g., a human. The method involves applying to a human in an area comprising hair follicles a double stranded nucleic acid molecule that includes a sequence of at least a portion of human hairless protein mRNA and a sequence complementary thereto.
In particular embodiments, the inhibition of hair growth in the treated area persists at least 1, 2, 4, 6, 8, 10, 12, or 24 months, or longer, or permanently.
In certain embodiments, the method also involves synchronizing hair growth cycles for hair follicles in the treated area, e.g., by extracting hairs such as by waxing. Such extraction causes follicles in anagen to transition into catagen thereby making those follicles susceptible to inhibition using this invention, and triggers new hair growth of follicles in telogen and thus makes those follicles suitable for transitioning into catagen. Thus, these methods synchronize hair follicles in the hair cycle.
As used in connection with this invention, the term “hair removal” refers to physical removal and continuing inhibition of hair growth from one or more hair follicles. Typically the hair removal applies to a plurality of hair follicles in a skin area on a subject. For example, the area can be up to 2, 5, 10, 20, 50, 100, 200, 400, or more cm2. For hair removal in an area, the hair removal may apply to all or a fraction of the hair follicles in the area.
The term “hair follicle” is used conventionally to refer to a biological hair producing structure.
As used in connection with the present methods, the term “applying” indicates that a substance is placed such that the substance is physically present on or in an area.
The term “nucleic acid molecule” refers to a polymer that includes a plurality of linked nucleotides or nucleotide analogs, and may include one or more modified internucleotidic linkages.
The term “hairless gene” refers to a mammalian gene that corresponds to reference human cDNA GenBank reference number NM—005144,
The phrase “inhibition of hair growth” is used to refer to a reduction or stoppage of hair growth caused at least in part by an agent not normally present in cells in a hair follicle.
As used herein, the phrase “synchronizing hair growth cycles” means that at least 10% of hair follicles in catagen or telogen phase in a particular area are caused to enter anagen phase essentially simultaneously (i.e., within 2 weeks). Such synchronizing can be accomplished, for example, with a physical action such as hair extraction or with one or more chemical or biomolecular agents.
As used herein, the term “hair extraction” refers to pulling of individual hair shafts out of their follicles.
A related aspect concerns a method for hair removal from an area of a mammal comprising hair follicles, where the method involves applying to the area a composition that includes at least one double stranded nucleic acid molecule able to inhibit hairless mRNA translation in vitro.
In certain embodiments, the method also includes synchronizing hair growth cycles for hair follicles in the treated area, such as by hair extraction, e.g., using waxing; the mammal is a human; the mammal is a mouse; the mammal is a rat; the mammal is a bovine.
In another aspect, the invention provides a method of inhibiting expression of hairless protein in a mammal. The method involves administering a double stranded nucleic acid molecule to the mammal, where the double stranded nucleic acid molecule includes a sequence selected from the group consisting of oligonucleotides 1-5664 and their respective antisense sequences, or the species homology of such sequences, and a sequence complementary thereto.
As used in the context of this invention, the term “inhibiting expression” indicates that the level of mRNA and/or corresponding protein or rate of production of the corresponding protein in a cell that would otherwise produce the mRNA and/or protein is reduced as compared to a non-inhibited but otherwise equivalent cell. Reduction in the rate of production can be at various levels, including stopping such production.
The term “species homolog” refers to a form of a gene, or corresponding nucleic acid molecule, or polypeptide from a particular species that is sufficiently similar in sequence to the gene, corresponding nucleic acid, or polypeptide from a reference species that one skilled in the art recognizes a common evolutionary origin.
Thus, as used in connection with a molecule or composition, the phrase “able to inhibit hairless mRNA translation” indicates that the molecule or composition has the property that when present in a cell that would translate hairless mRNA to produce protein in the absence of an inhibitor, the molecule or composition reduces the rate of biosynthesis of hairless protein (or even eliminate such biosynthesis). Such reduction can occur in various ways, for example, by reducing the amount of mRNA available for translation or by at least partially blocking translation of mRNA that is present.
Reference to Oligonucleotides by number utilizes the oligonucleotide numbering in Table 1, and therefore, specifies a nucleotide sequence.
In particular embodiments, the mammal is a human, a mouse, a rat, a bovine (such as a cow), an ovine (such as a sheep), a monkey, a porcine (such as domestic pig).
The term “bovine” is used conventionally to refer to cattle, oxen, and closely related ruminants.
Another aspect concerns a method for treating a human desirous of losing hair. The method involves administering to the human a composition that includes a double stranded nucleic acid molecule that includes a sequence of at least a portion of human hairless protein mRNA and a sequence complementary thereto.
As used herein, the phrase “desirous of losing hair” refers to an objective indication of consent or request for a process to remove hair from a body area in a manner reducing or eliminating future hair growth in that area for a period of time, e.g., at least 1 week, 2 weeks, 1 month, 2 months, or longer.
A further aspect concerns a method for marketing a composition for hair removal, which includes providing for sale to medical practitioners (e.g., doctors, nurse practitioners, doctor's assistants, and nurses) or to the public (e.g., spas and other body care businesses, and individuals) a packaged pharmaceutical composition that includes a double stranded nucleic acid molecule containing a sequence of at least a portion of human hairless protein mRNA and a sequence complementary thereto; and a package label or insert indicating that the pharmaceutical composition can be used for hair removal.
In particular embodiments, the pharmaceutical composition is approved by the U.S. Food and Drug Administration, and/or by an equivalent regulatory agency in Europe or Japan, for hair removal in humans; the pharmaceutical composition is packaged with a hair removal wax or other component adapted for hair removal.
The term “pharmaceutical composition” refers to a substance that contains at least one biologically active component. The composition typically also contains at least one pharmaceutically acceptable carrier or excipient.
As used herein, the term “packaged” means that the referenced material or composition is enclosed in a container or containers in a manner suitable for storage or transportation. For example, a pharmaceutical composition may be sealed in a vial, bottle, tube, or the like, which may itself be inside a box. Typically, a label on the container identifies the contents and may also provide instructions for use and/or cautions to prevent misuse.
The term “hair removal wax” refers to refer to a substance that is adapted for removal of hair by embedding hair in the substance and then pulling the material away, thereby pulling embedded hairs out of the hair follicles. The substance may be used with a backing material such as paper or cloth. Both hot and cold waxes are commonly available. Unless clearly indicated, the term is not limited to substances that are chemically waxes; for example, the term will generally include substances such as caramel-based substances that are used for “sugaring”.
The term “other component adapted for hair removal” refers to a material or device that can be used for physically removing hairs and is either generally recognized as suitable for such use, of instructions are provided indicating that the component can be used for physical hair removal or providing instructions on performing such removal.
Another aspect concerns an isolated double stranded nucleic acid molecule that includes a nucleotide sequence corresponding to 19-25 contiguous nucleotides from human hairless mRNA, where the nucleotide sequence contains a nucleotide sequence selected from the group consisting of oligonucleotides 1-5664; and a nucleotide sequence complementary thereto, where the double stranded nucleic acid molecule induces RNA interference in a human cell in vitro.
Indication that a molecule or material of interest “induces RNA interference in a human cell in vitro” means that when present in cultured cells that are capable of RNA interference and under conditions such that a molecule or molecules that will normally induce RNA interference do induce RNAi in the cell, the molecule or material of interest will induce such RNA interference.
Likewise, in another aspect the invention provides a pharmaceutical composition that includes a double stranded nucleic acid molecule that contains a nucleotide sequence corresponding to 14-50, 17-40, 17-30, 17-25, 19-30, 19-29, 19-28, 19-26, 19-25, 19-24, 19-23, 20-23, 20-22, or 21-22 contiguous nucleotides from human hairless mRNA including a nucleotide sequence selected from the group consisting of oligonucleotides 1-5664, and a sequence complementary thereto, wherein said double stranded nucleic acid molecule induces RNA interference in a human cell in vitro.
In yet another aspect, the invention provides a kit that includes a pharmaceutical composition that contains a double stranded nucleic acid molecule that includes a sequence of at least a portion of human hairless protein mRNA and a sequence complementary thereto; and a package label or insert indicating that said pharmaceutical composition can be used for hair removal.
In certain embodiments, the kit is approved by the U.S. Food and Drug Administration or equivalent regulatory agency in Europe or Japan, for human hair removal.
In certain embodiments of the above aspects or other aspects described herein, the double stranded nucleic acid includes at least one (i.e., one or two) 3′-overhang, e.g., a 1, 2, or 3 nucleotide overhang. In certain embodiments, such overhang includes one or more non-ribonucleotides; includes 1, 2, or 3 deoxynucleotide; includes a modified linkage; each strand has a 1, 2, or 3 nucleotide overhang.
In certain embodiments of the above aspects, at least one strand of the double stranded nucleic acid includes at least one nucleotide analog or internucleotidic linkage different from unmodified RNA; each strand includes at least one nucleotide analog or internucleotidic linkage different from unmodified RNA; at least one strand includes at least one modified nucleotide; each strand includes at least one modified nucleotide.
In certain embodiments of the above aspects, the double stranded nucleic acid molecule induces RNA interference in a cell in vitro and includes the RNA sense sequence of Oligonucleotide 131, namely 5′-CUCUCCAGACAUUUGGCAA-3′ (SEQ ID NO: 11329), and its complementary RNA sequence 5′-TTGCCAAATGTCTGGAGAG-3′ (SEQ ID NO: 262); includes the RNA sense sequence of Oligonucleotide 1194, namely 5′-GUGCGGCCGAUCCGCGCCG-3′ (SEQ ID NO: 11330), and its complementary RNA sequence 5′-CGGCGCGGAUCGGCCGCAC-3′ SEQ ID NO: 11331); includes the RNA sense sequence of Oligonucleotide 1521, namely 5′-TGGGAGAAGACGGCCCCAG-3′ (SEQ ID NO: 3041) its complementary RNA sequence 5′-CTGGGGCCGTCTTCTCCCA-3′ (SEQ ID NO: 3042); includes an RNA sense sequence and a complementary RNA antisense sequence selected from the group consisting of oligonucleotides 1-5664; is targeted to hairless mRNA corresponding to a site in the coding sequence (CDS) covering nucleotides 1482 to 5051; includes a nucleotide sequence corresponding to an oligonucleotide selected from Oligonucleotides 1482 to 5032; includes a nucleotide sequence corresponding to an oligonucleotide selected from Oligonucleotides 1482 to 4032; includes a nucleotide sequence corresponding to an oligonucleotide selected from Oligonucleotides 1482 to 3032; includes a nucleotide sequence corresponding to an oligonucleotide selected from Oligonucleotides 1482 to 2032; includes a nucleotide sequence corresponding to an oligonucleotide selected from Oligonucleotides 1582 to 1732.
In certain embodiments of the above aspects, in the double stranded nucleic acid molecule, the sense sequence and the antisense sequence each include 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, or 29 complementary nucleotides and 1 to 3 non-complementary 3′-nucleotides.
In certain embodiments of the above aspects, chemically modified nucleic acids are used, e.g., chemically modified siRNAs (siNAs) as described in McSwiggen et al., PCT/US03/05346, WO 03/070918, which is incorporated herein by reference.
As used herein, the terms “siRNA” and “siNA” both refer to double stranded nucleic acid that induces RNAi, and includes unmodified RNA oligonucleotides and chemically modified oligonucleotides. When unmodified RNA is intended, the term “unmodified RNA” is expressly used.
The term “RNAi inducing oligonucleotide” or “RNA interference inducing oligonucleotide” refers to an oligonucleotide, generally a double stranded molecule (usually an siRNA molecule), that is able to induce RNA interference in a suitable cell.
In certain embodiments of the above aspects involving application of the present oligonucleotides to a mammal, the oligonucleotides are applied at 0.01 to 0.1 microgram/cm2, 0.1 to 0.2 microgram/cm2, 0.2 to 0.5 microgram/cm2, 0.5 to 1.0 microgram/cm2, 1.0 to 2.0 microgram/cm2, 2.0 to 5.0 microgram/cm2, or 5.0 to 10.0 microgram/cm2; a combination of different RNAi inducing oligonucleotides is applied, which application can be as a mixture or mixtures or separately, e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, or more different oligonucleotides; one or more different RNAi inducing oligonucleotides (e.g., all targeted to hairless, e.g., siRNA) is applied in combination (as a mixture or separately) with one or more different agents that inhibit hairless translation or hairless activity; one or more different RNAi inducing oligonucleotides is applied in combination with one or more other hair removal agents, such as chemical depilatories and/or enzymatic hair removal agents. In accordance with the preceding description of embodiments, certain of the present pharmaceutical compositions also include at least one hairless inhibiting agent different from an RNAi inducing agent, at least one chemical depilatory; at least one enzymatic hair removal agent.
In certain embodiments, the present RNAi inducing oligonucleotides are applied once; applied daily for at least 7 days; applied daily for at least 14 days; applied on at least 4 days within a one month period; applied on at least 7 days within a one month period; applied at least 4 days per week for at least a four week period.
In particular embodiments, the RNAi inducing oligonucleotide does not include the sequence of a siRNA as shown in the Examples; the RNAi oligonucleotide includes the sequence of an siRNA shown in the Examples and the method of use includes synchronizing hair cycles, e.g., as described herein.
In particular embodiments involving mammalian mRNAs, the RNAi inducing oligonucleotide (e.g., siRNA) includes a sequence 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleotides in length (or at least one of those lengths) of one of the sequences shown in Table 3, or a sequence complementary thereto; the RNAi inducing oligonucleotide targets a mammalian hairless mRNA sequence corresponding to a sequence shown in Table 3.
In particular embodiments, the RNAi inducing oligonucleotide (e.g., siRNA) targets a human hairless mRNA sequence as identified in Table 4; the RNAi inducing oligonucleotide contains a sequence of 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length (or at least one of those lengths).
In particular embodiments, the RNAi inducing oligonucleotide (e.g., siRNA) targets a mouse hairless mRNA sequence as identified in Table 5; the RNAi inducing oligonucleotide contains a sequence of 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length (or at least one of those lengths).
Additional embodiments will be apparent from the Detailed Description and from the claims.
The present invention concerns methods for inhibiting hair growth, by inhibiting particular mRNAs using RNAi, e.g., using siRNA. In particular non-limiting embodiments, the present invention provides for siRNA molecules, e.g., double stranded RNA oligonucleotides (which optionally may be chemically modified and/or comprise at least one 3′ overhang, as set forth below), comprising a nucleotide sequence that is complementary to a target nucleotide sequence which may be 17, 18, 19, 20, 21, 22, 23, 24 or 25 nucleotides in length, where the siRNA contains a sequence 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 base pairs in length. Preferably, the hairless mRNA target nucleotide sequence comprises a 17, 18, 19, 20, 21, 22, 23, 24 or 25 nucleotide portion of the human hairless mRNA sequence set forth in
A. RNAi and siRNA
RNA interference (RNAi) refers to the process of sequence-specific post-transcriptional gene silencing in animals mediated by short interfering RNAs (siRNAs) (Fire et al., 1998, Nature, 391, 806). The corresponding process in plants is commonly referred to as post-transcriptional gene silencing or RNA silencing and is also referred to as quelling in fungi. The process of post-transcriptional gene silencing is thought to be an evolutionarily-conserved cellular defense mechanism used to prevent the expression of foreign genes and is commonly shared by diverse flora and phyla (Fire et al., 1999, Trends Genet., 15, 358). The presence of dsRNA in cells triggers the RNAi response though a mechanism that appears to be different from the interferon response that results from dsRNA-mediated activation of protein kinase PKR and 2′,5′-oligoadenylate synthetase resulting in non-specific cleavage of mRNA by ribonuclease L.
The presence of long dsRNAs in cells stimulates the activity of the enzyme, dicer, a ribonuclease III. Dicer is involved in the processing of the dsRNA into short pieces of dsRNA known as short interfering RNAs (siRNAs) (Berstein et al., 2001, Nature, 409, 363). The resulting RNAs are typically about 21 to about 23 nucleotides in length, with complementary sequences of about 19 base pairs. Dicer has also been implicated in the excision of 21- and 22-nucleotide small temporal RNAs (stRNAs) from precursor RNA of conserved structure that are implicated in translational control (Hutvagner et al., 2001, Science, 293, 834). The RNAi response also involves an endonuclease complex, commonly referred to as an RNA-induced silencing complex (RISC), which mediates cleavage of single-stranded RNA having sequence complementary to the antisense strand of the siRNA duplex. Cleavage of the target RNA takes place in the middle of the region complementary to the antisense strand of the siRNA duplex (Elbashir et al., 2001, Genes Dev., 15, 188).
RNAi has been studied in a variety of systems. Fire et al., 1998, Nature, 391, 806, described RNAi in C. elegans. Wianny and Goetz, 1999, Nature Cell Biol., 2, 70, describe RNAi mediated by dsRNA in mouse embryos. Hammond et al., 2000, Nature, 404, 293, describe RNAi in Drosophila cells transfected with dsRNA. Elbashir et al., 2001, Nature, 411, 494, describe RNA1 induced by introduction of duplexes of synthetic 21-nucleotide RNAs in cultured mammalian cells including human embryonic kidney and HeLa cells.
Work in Drosophila embryonic lysates (Elbashir et al., 2001, EMBO J., 20, 6877) has revealed certain factors of siRNA length, structure, chemical composition, and sequence that are significantly affect efficient RNAi activity. These studies have shown that 21-nucleotide siRNA duplexes are most active when containing 3′-terminal nucleotide overhangs. Furthermore, complete substitution of one or both siRNA strands with 2′-deoxy (2′-H) or 2′-O-methyl nucleotides abolishes RNAi activity, whereas substitution of the 3′-terminal siRNA overhang nucleotides with 2′-deoxy nucleotides (2′-H) was shown to be tolerated. Single mismatch sequences in the center of the siRNA duplex were also shown to abolish RNAi activity. In addition, these studies also indicate that the position of the cleavage site in the target RNA is defined by the 5′-end of the siRNA guide sequence rather than the 3′-end of the guide sequence (Elbashir et al., 2001, EMBO J., 20, 6877). Other studies have suggested that a 5′-phosphate on the target-complementary strand of a siRNA duplex is important for siRNA activity and that ATP is utilized to maintain the 5′-phosphate moiety on the siRNA (Nykanen et al., 2001, Cell, 107, 309).
Studies have shown that replacing the 3′-terminal nucleotide overhanging segments of a 21-mer siRNA duplex having two 2-nucleotide 3′-overhangs with deoxyribonucleotides does not have an adverse effect on RNAi activity. Replacing up to 4 nucleotides on each end of the siRNA with deoxyribonucleotides has been reported to be well-tolerated whereas complete substitution with deoxyribonucleotides results in no RNAi activity, but that substitution of siRNA with 2′-O-methyl nucleotides completely abolishes RNAi activity. (Elbashir et al., 2001, EMBO J., 20, 6877.)
Li et al., International PCT Publication No. WO 00/44914, and Beach et al., International PCT Publication No. WO 01/68836 both suggest that siRNA “may include modifications to either the phosphate-sugar backbone or the nucleoside . . . to include at least one of a nitrogen or sulfur heteroatom.”
Kreutzer and Limmer, Canadian Patent Application No. 2,359,180, also describe certain chemical modifications for use in dsRNA constructs in order to counteract activation of double-stranded RNA-dependent protein kinase PKR, specifically 2′-amino or 2′-O-methyl nucleotides, and nucleotides containing a 2′-O or 4′-C methylene bridge
Parrish et al., 2000, Molecular Cell, 6, 1977-1087, tested certain chemical is modifications targeting the unc-22 gene in C. elegans using long (>25 nt) siRNA transcripts. The authors describe the introduction of thiophosphate residues into these siRNA transcripts by incorporating thiophosphate nucleotide analogs with T7 and T3 RNA polymerase and observed that “RNAs with two [phosphorothioate] modified bases also had substantial decreases in effectiveness as RNAi triggers (data not shown); [phosphorothioate] modification of more than two residues greatly destabilized the RNAs in vitro and we were not able to assay interference activities.” Id. at 1081. The authors also tested certain modifications at the 2′-position of the nucleotide sugar in the long siRNA transcripts and observed that substituting deoxynucleotides for ribonucleotides “produced a substantial decrease in interference activity,” especially in the case of Uridine to Thymidine and/or Cytidine to deoxy-Cytidine substitutions. Id. In addition, the authors tested certain base modifications, including substituting, in sense and antisense strands of the siRNA, 4-thiouracil, 5-bromouracil, 5-iodouracil, and 3-(aminoallyl)uracil for uracil, and inosine for guanosine. They found that whereas 4-thiouracil and 5-bromouracil were all well-tolerated, inosine “produced a substantial decrease in interference activity” when incorporated in either strand. Incorporation of 5-iodouracil and 3-(aminoallyl)uracil in the antisense strand resulted in substantial decrease in RNAi activity as well.
Beach et al., International PCT Publication No. WO 01/68836, describes specific methods for attenuating gene expression using endogenously-derived dsRNA.
Tuschl et al., International PCT Publication No. WO 01/75164, describe a Drosophila in vitro RNAi system and the use of specific siRNA molecules for certain functional genomic and certain therapeutic applications; although Tuschl, 2001, Chem. Biochem., 2, 239-245, doubts that RNAi can be used to cure genetic diseases or viral infection due “to the danger of activating interferon response.”
Li et al., International PCT Publication No. WO 00/44914, describe the use of specific dsRNAs for use in attenuating the expression of certain target genes.
Zernicka-Goetz et al., International PCT Publication No. WO 01/36646, describe certain methods for inhibiting the expression of particular genes in mammalian cells using certain dsRNA molecules.
Fire et al., International PCT Publication No. WO 99/32619, describe particular methods for introducing certain dsRNA molecules into cells for use in inhibiting gene expression.
Plaetinck et al., International PCT Publication No. WO 00/01846, describe certain methods for identifying specific genes responsible for conferring a particular phenotype in a cell using specific dsRNA molecules.
Mello et al., International PCT Publication No. WO 01/29058, describe the identification of specific genes involved in dsRNA-mediated RNAi.
Deschamps Depaillette et al., International PCT Publication No. WO 99/07409, describe specific compositions consisting of particular dsRNA molecules combined with certain anti-viral agents.
Waterhouse et al., International PCT Publication No. 99/53050, describe certain methods for decreasing the phenotypic expression of a nucleic acid in plant cells.
Driscoll et al., International PCT Publication No. WO 01/49844, describe specific DNA constructs for use in facilitating gene silencing in targeted organisms.
Parrish et al., 2000, Molecular Cell, 6, 1977-1087, describe specific chemically-modified siRNA constructs targeting the unc-22 gene of C. elegans.
Grossniklaus, International PCT Publication No. WO 01/38551, describes certain methods for regulating polycomb gene expression in plants.
Churikov et al., International PCT Publication No. WO 01/42443, describe certain methods for modifying genetic characteristics of an organism.
Cogoni et al., International PCT Publication No. WO 01/53475, describe certain methods for isolating a Neurospora silencing gene and uses thereof.
Reed et al., International PCT Publication No. WO 01/68836, describe certain methods for gene silencing in plants.
Honer et al., International PCT Publication No. WO 01/70944, describe certain methods of drug screening using transgenic nematodes as Parkinson's Disease models.
Deak et al., International PCT Publication No. WO 01/72774, describe certain Drosophila-derived gene products.
Arndt et al., International PCT Publication No. WO 01/92513, describe certain methods for mediating gene suppression by using factors that enhance RNAi.
Tuschl et al., International PCT Publication No. WO 02/44321, describe certain synthetic siRNA constructs.
Pachuk et al., International PCT Publication No. WO 00/63364, and Satishchandran et al., International PCT Publication No. WO 01/04313, describe certain methods and compositions for inhibiting the function of certain oligonucleotide sequences.
Echeverri et al., International PCT Publication No. WO 02/38805, describe certain C. elegans genes identified via RNAi.
Kreutzer et al., International PCT Publications Nos. WO 02/055692, WO 02/055693, and EP 1144623 B1 describes certain methods for inhibiting gene expression using RNAi.
Graham et al., International PCT Publications Nos. WO 99/49029 and WO 01/70949, and AU 4037501 describe certain vector expressed long double stranded RNA molecules.
McSwiggen et al., PCT/US03/05028, WO 03/074654 describes RNA interference mediated inhibition of gene expression using short interfering nucleic acid (siNA), and provides a table listing thousands of mRNAs, which is believed to include hairless protein mRNA, as potential targets for such siNA.
McSwiggen et al., PCT/US03/05346, WO 03/070918 describes synthetic chemically modified small nucleic acid molecules capable of mediating RNA interference against target nucleic acid sequences. The reference reports that up to all of the nucleotides in the RNA strands can be replaced with moieties that are not ribonucleotides.
B. Hairless Protein mRNA
Applicant's have found that RNAi can be used to inhibit translation from hairless protein mRNA, resulting in hair removal. This hair removal is long term, or even permanent, thus providing cosmetic and therapeutic methods, as well as methods useful for laboratory experimental mammals, and for de-hairing in the leather industry.
The Hairless Protein gene is expressed during a narrow window during the hair cycle, just at the transition to catagen (the regression phase). (Panteleyev et al. 1998, Exp Dermatol. 7:249-67; Panteleyev et al. 2000, Am J Pathol. 157:1071-9). In both humans and mice with mutations in the hairless gene, the cardinal finding is a wave of hair shedding shortly after birth, and no subsequent hair growth throughout life. The phenotype results from permanent structural damage to the hair follicle, after which no further hair cycling can occur. In addition, humans and mice which are genetically deficient in hairless gene expression exhibit no other phenotypic manifestations or abnormalities that might be associated with a deleterious effect (Zlotogorski et al., 2002, J Invest Dermatol. 118:887-90), suggesting that hairless is specifically involved and indispensable in regulating the hair cycle, and that its functions elsewhere in the body (if any) are compensated by other factors.
As a result, hair removal using RNAi targeted to hairless mRNA provides an advantageous approach, as any inadvertent, non-localized inhibition of hairless mRNA will not adversely affect the subject.
C. Applications and Conditions to be Treated
As indicated above, the present invention concerns inhibition of hair growth, and consequent hair removal, and is applicable to a number of different therapeutic, cosmetic, and industrial applications. The methods can be readily adapted to any of the various mammals having hairless protein analogs, for example, human, mouse, rat, cattle (and other bovines), equines.
1. Long Term (Permanent) Hair Removal
Permanent, or at least long term, hair removal can involve inhibition of hairless protein. Such hair removal is useful for both cosmetic and therapeutic applications. Exemplary cosmetic applications can include, for example, back and chest hair for men and upper lip, eyebrow, leg, arm, underarm, and pubic hair for women.
In addition to cosmetic applications, permanent or long term hair removal is also useful in certain conditions, e.g., trachoma, the various forms of hypertrichosis, and hirsutism.
Hypertrichosis
Hypertrichosis describes all forms of hair growth that are excessive for the bodily location and age of an individual, and which do not result from androgen stimulation. The present invention can be used for the various forms and causes of hypertrichosis, e.g., those described herein.
Hypertrichosis is usually categorized on the basis of the age of onset (at birth or during later years), the extent of distribution (universal or localized), the site of involvement (elbows, anterior or posterior neck), and the cause (genetic or acquired).
Acquired hypertrichosis may result from the use of particular drugs, for example, oral minoxidil, phenyloin, and cyclosporin. Acquired hypertrichosis lanuginosa may also be a manifestation of an underlying malignancy. In the dermatological literature, this is known as “malignant down”. Additional causes of acquired hypertrichosis include hormonal imbalances, malnutrition, HIV and local inflammation.
In addition, some forms of hypertrichosis are clearly hereditary but the genes involved generally remain unknown. Genetic forms of hypertrichosis are very rare human disorders.
There are only a small number of human disorders that have generalized congenital hypertrichosis as the leading phenotypic feature. These include:
Hypertrichosis universalis (MIM145700)
Hypertrichosis universalis congenita, Ambras type (MIM145701)
Gingival fibromatosis with hypertrichosis (MIM135400)
Barber-Say syndrome (MIM209885)
Amaurosis congenita, cone-rod type, with hypertrichosis (MIM204110),
CAHMR syndrome (MIM21770)
Cantu syndrome (MIM239850)
Gingival fibromatosis with hypertrichosis and mental retardation MIM605400)
X-linked hypertrichosis (MIM307150)
Acromegaly and hypertrichosis (Irvine et al, 1996).
Of these, only Hypertrichosis universalis, Ambras type hypertrichosis, and X-linked hypertrichosis have excessive hair as the predominant feature. In all the other listed syndromes hypertrichosis is associated with additional more prominent abnormalities. The present invention can be used to treat hypertrichosis, e.g., in any of the conditions listed above, as well as in other conditions in which trichosis occurs.
Trachoma
Trachoma is the leading cause of blindness worldwide. The World Health Organization estimates that there are 146 million people with trachoma and that the disease has caused blindness in 5.9 million people, 15% of the world's blindness. Trachoma is caused by the gram-negative bacterium Clamydia trachomatis, an intracellular parasite transmitted by fly infestation. In trachoma, the conjunctival lining of the eyelids becomes infected with the bacterium, which over the long term, causes an inflammatory response. The inflammation can lead to scarring, shortening of the lid and in-turning of the eyelashes. Trichiasis, the condition when eyelashes rub on the cornea, can lead to blindness. An estimated 10.6 million adults have inturned eyelashes that require surgery.
While it is advantageous of the Chlamydia infection is prevented, or treated before in-turning of the eyelashes, there is a need for non-surgical approaches to treatment that can at least reduce the corneal scarring. Thus, removal of the eyelash hairs (without leaving stubble) using the present invention can substantially slow, or even prevent such corneal damage, thereby preserving the individual's vision.
Trichiasis
In addition to trachoma, in-turned eyelashes (trichiasis) can have other causes, and are a common source of recurrent ocular irritation for some patients. The in-turned lash (or lashes) in contact with the conjunctiva and/or cornea may lead to a foreign body sensation, localized conjunctival injection, pain and photophobia.
Trichiasis is the term used for misdirection or aberrant placement of eyelashes along the eyelid margin resulting in lash growth toward the cornea. Trichiasis is an acquired condition that may be caused by the following inflammatory or traumatic processes involving the eyelids. The present invention can be used in all cases of trichiasis, including those in the following causal situations:
Chronic blepharitis with meibomianitis—chronic inflammatory changes within the tarsal plate and posterior eyelid margin may cause destruction and misdirection of lash follicles, resulting in chronic trichiasis.
Lid lacerations and thermal burns to the lid margin—may cause redirection of the lash roots with resultant trichiasis.
Previous surgery on eyelids—For example, lid adhesions (tarsorrhaphys) done to prevent exposure in some patients with seventh nerve palsies may cause misdirection of lashes. Similarly, in many reconstructive eyelid procedures, the new eyelid margin may contain fine skin hairs (lanugo-type) that rub on the cornea.
Mucocutaneous diseases—Stevens-Johnson syndrome and Ocular Cicatricial Pemphigoid result not only in the destruction of the eyelid margins and trichiasis but also in the formation of new lashes from the meibomian gland orifices (a condition referred to as distichiasis).
Other cicatricial conjunctival diseases—Herpes Simplex conjunctivitis and Herpes Zoster may cause a cicatrizing conjunctivitis with destruction of the lid margin and lash follicles. Trachoma may also cause a chronic tarsitis with cicatrizing conjunctivitis in the upper or lower eyelid and resultant trichiasis (as well as a cicatricial entropion).
Irradiation and chemical burns—Therapeutic irradiation for eyelid cancers or alkali burns may lead to a disruption of the normal eyelid margin anatomy and resultant misdirection of eyelashes. Both of these processes may also lead to metaplasia of squamous epithelium of the mucocutaneous margin of the eyelid with resultant keratinization, a source of ocular irritation. In addition, destruction of the goblet cells, accessory lacrimal glands, and lacrimal gland will disrupt the normal tear flow, compounding the above problems.
Other conditions in which eyelashes contact the cornea also exist, and the present invention can be used in those cases also. For example:
A condition similar to trichiasis is Eyelid entropion—True entropion (e.g. involutional type seen in the aging population) is characterized by a normal eyelid margin architecture: the eyelid inverts as a result of eyelid laxity, allowing the eyelashes to rub on the cornea. Several of the entities mentioned above (Ocular Pemphigoid, Stevens-Johnson Syndrome) may cause a cicatrization of the conjunctiva as well as the lid margin and create a cicatricial entropion with trichiasis (i.e. the eyelid is inverted due to a cicatricial process). In addition, eyelashes may be misdirected not only due to the lid position, but also due to the inflammatory process involving the actual lash follicles. Therefore, sometimes there may be two problems present (entropion and trichiasis) both of which may require treatment.
Epiblepharon—Epiblepharon is a congenital condition commonly seen in the lower Asian eyelid. A fold of skin and muscle roll upwards and presses the lashes toward the cornea. This does not represent true trichiasis.
Distichiasis—is an abnormality in which an aberrant second row of lashes, (usually from the meibomian gland orifices) grows behind the normal lash line. It may be congenital or acquired. Any process causing chronic inflammation of the lid margin and meibomian glands may transform the meibomian glands into pilosebaceous units capable of producing hair (e.g. chronic blepharitis).
Combined eyelid margin process—Several of the eyelid processes mentioned (Stevens-Johnson syndrome, Ocular Pemphigoid, irradiation, chemical burns) not only may cause entropion and trichiasis, but in addition may lead to squamous metaplasia and keratinization of the non-keratinizing squamous epithelium of the eyelid margin. Keratinized tissue is very irritating to the eye. Therefore, several factors may contribute to the ocular irritation, and as a result, several types of treatment could be required.
Marginal entropion—Is a subtle form of entropion that is seen only at the lid margin. Usually there is chronic inflammation at the eyelid margin with a mild cicatricial process that is starting to roll the lid margin inward. The eyelashes appear more vertical with some truly trichiatic lashes. The clinical clue is the meibomian gland orifices. Normally they should be vertical and not covered by conjunctival epithelium. If the openings are rolled inward and conjunctiva is growing over the opening, then marginal entropion is present in addition to trichiasis. It is important to distinguish this condition when considering treatment.
Hirsutism
Hirsutism is excessive hair growth on a female in a male growth pattern, typically excessive facial hair. Hirsutism is usually caused by an increased sensitivity of the skin to a group of hormones called androgens (testosterone and androstenedione) or increased production of these hormones. Androgen disorders (hyperandrogenism) affects between 5% to 10% of all women. Hair from this condition can be removed in full or part using the present invention.
Pseudofolliculitis Barbae
Pseudofolliculitis barbae (razor bumps) is a common condition of the beard area occurring in African American men and other people with curly hair. The problem results when highly curved hairs grow back into the skin causing inflammation and a foreign body reaction. Over time, this can cause keloidal scarring which looks like hard bumps of the beard area and neck. Currently this is usually addressed by attempting to prevent the hair from curving back and growing into the skin with altered shaving practices and the like. The present invention can be used to eliminate hairs causing such difficulties.
Experimental Animals
Permanent hair removal as described herein can also be used with experimental animals to remove hair from all or a portion of the body of an experimental animal. Thus, for example, a hairless spot can be created on a mouse, rat, sheep, monkey, chimpanzee, rabbit or other animal for application over an extended period of time of topically applied pharmaceutical compounds or other materials. Thus, the present invention can be used for this purpose, either with or without shaving, waxing, or depilation, or other such treatment. In some cases, the hairless spot or area on the animal is initially created with shaving, waxing, or other hair removal method, and the present invention allows the bare area to be maintained (which may be after a sustained period of application of the present compositions, e.g., at least 2, 4, 7, or 10 days, or 2, 3, 4, 5, 6, 8, 10, 12, weeks or even longer).
Industrial Applications
In addition, permanent hair removal as described herein can also be useful to remove hair from mammals whose hides will be used for leather. Dehairing is one of the main initial steps in leather production. Five methods of dehairing are commonly used: i.e., (i) clipping process, (ii) scalding process, (iii) chemical process, (iv) sweating process, and (v) enzymatic process. Of these, the most commonly practiced method of dehairing of hides and skins is the chemical process using lime and sodium sulphide. However, the use of high concentrations of lime and sodium sulphide creates an extremely alkaline environment resulting in the pulping of hair and its subsequent removal, and presents substantial pollution problems. Thus, removal of hairs using the present invention allows hides to be prepared for leather production while eliminating or at least reducing the use of the pollution-causing methods.
D. Use of RNAi and Oligo Sequences
The use of RNAi to reduce or eliminate translation from a targeted mRNA has been described in a number of patents and published patent applications, e.g., as mentioned in the Background of the Invention. In the present invention, particular target sites in hairless protein mRNA can be identified experimentally and/or using software programs to identify accessible sites. For example, procedures such as those described below can be used to identify sites, and to select an optimal site and active oligonucleotide.
Identification of Potential RNAi (e.g., siRNA) Target Sites in any RNA Sequence
The sequence of an RNA target of interest, such as a viral or human mRNA transcript, is screened for target sites, for example by using a computer folding algorithm. In a non-limiting example, the sequence of a gene or RNA gene transcript derived from a database, such as Genbank, is used to generate siNA targets having complementarity to the target. Such sequences can be obtained from a database, or can be determined experimentally as known in the art. Target sites that are known, for example, those target sites determined to be effective target sites based on studies with other nucleic acid molecules, for example ribozymes or antisense, or those targets known to be associated with a disease or condition such as those sites containing mutations or deletions, can be used to design siNA molecules targeting those sites as well. Various parameters can be used to determine which sites are the most suitable target sites within the target RNA sequence. These parameters include but are not limited to secondary or tertiary RNA structure, the nucleotide base composition of the target sequence, the degree of homology between various regions of the target sequence, or the relative position of the target sequence within the RNA transcript. Based on these determinations, any number of target sites within the RNA transcript can be chosen to screen siNA molecules for efficacy, for example by using in vitro RNA cleavage assays, cell culture, or animal models. In a non-limiting example, anywhere from 1 to 1000 target sites are chosen within the transcript based on the size of the siNA construct to be used. High throughput screening assays can be developed for screening siNA molecules using methods known in the art, such as with multi-well or multi-plate assays or combinatorial/siNA library screening assays to determine efficient reduction in target gene expression.
Selection of siNA Molecule Target Sites in a RNA
The following non-limiting steps can be used to carry out the selection of siNAs targeting a given gene sequence or transcript.
In an alternate approach, a pool of siNA constructs specific to a target sequence is used to screen for target sites in cells expressing target RNA, such as human lung HeLa cells. A non-limiting example of such as pool is a pool comprising sequences having antisense sequences complementary to the target RNA sequence and sense sequences complementary to the antisense sequences. Cells (e.g., HeLa cells) expressing the target gene are transfected with the pool of siNA constructs and cells that demonstrate a phenotype associated with gene silencing are sorted. The pool of siNA constructs can be chemically modified as described herein and synthesized, for example, in a high throughput manner. The siNA from cells demonstrating a positive phenotypic change (e.g., decreased target mRNA levels or target protein expression), are identified, for example by positional analysis within the assay, and are used to determine the most suitable target site(s) within the target RNA sequence based upon the complementary sequence to the corresponding siNA antisense strand identified in the assay.
Exemplary siNA Design
siNA target sites are chosen by analyzing sequences of the target RNA target and optionally prioritizing the target sites on the basis of folding (structure of any given sequence analyzed to determine siNA accessibility to the target), by using a library of siNA molecules as described, or alternately by using an in vitro siNA system as described herein. siNA molecules were designed that could bind each target and are optionally individually analyzed by computer folding to assess whether the siNA molecule can interact with the target sequence. Varying the length of the siNA molecules can be chosen to optimize activity. Generally, a sufficient number of complementary nucleotide bases are chosen to bind to, or otherwise interact with, the target RNA, but the degree of complementarity can be modulated to accommodate siNA duplexes or varying length or base composition. By using such methodologies, siNA molecules can be designed to target sites within any known RNA sequence, for example those RNA sequences corresponding to the any gene transcript.
Chemically modified siNA constructs are designed to provide nuclease stability for systemic administration in vivo and/or improved pharmacokinetic, localization, and delivery properties while preserving the ability to mediate RNAi activity. Chemical modifications as described herein are introduced synthetically using synthetic methods described herein and those generally known in the art. The synthetic siNA constructs are then assayed for nuclease stability in serum and/or cellular/tissue extracts (e.g. liver extracts). The synthetic siNA constructs are also tested in parallel for RNAi activity using an appropriate assay, such as a luciferase reporter assay as described herein or another suitable assay that can quantity RNAi activity. Synthetic siNA constructs that possess both nuclease stability and RNAi activity can be further modified and re-evaluated in stability and activity assays. The chemical modifications of the stabilized active siNA constructs can then be applied to any siNA sequence targeting any chosen RNA and used, for example, in target screening assays to pick lead siNA compounds for therapeutic development.
RNAi In Vitro Assay to Assess siNA Activity
An in vitro assay that recapitulates RNAi in a cell free system is used to evaluate siNA constructs specific to target RNA. The assay comprises the system described by Tuschl et al., 1999, Genes and Development, 13, 3191-3197 and Zamore et al., 2000, Cell, 101, 25-33 adapted for use with a specific target RNA. A Drosophila extract derived from syncytial blastoderm is used to reconstitute RNAi activity in vitro. Target RNA is generated via in vitro transcription from an appropriate plasmid using T7 RNA polymerase or via chemical synthesis as described herein. Sense and antisense siNA strands (for example 20 uM each) are annealed by incubation in buffer (such as 100 mM potassium acetate, 30 mM HEPES-KOH, pH 7.4, 2 mM magnesium acetate) for 1 min. at 90° C. followed by 1 hour at 37° C., then diluted in lysis buffer (for example 100 mM potassium acetate, 30 mM HEPES-KOH at pH 7.4, 2 mM magnesium acetate). Annealing can be monitored by gel electrophoresis on an agarose gel in TBE buffer and stained with ethidium bromide. The Drosophila lysate is prepared using zero to two hour old embryos from Oregon R flies collected on yeasted molasses agar that are dechorionated and lysed. The lysate is centrifuged and the supernatant isolated. The assay comprises a reaction mixture containing 50% lysate [vol/vol], RNA (10-50 pM final concentration), and 10% [vol/vol] lysis buffer containing siNA (10 nM final concentration). The reaction mixture also contains 10 mM creatine phosphate, 10 ug·ml creatine phosphokinase, 100 um GTP, 100 uM UTP, 100 uM CTP, 500 uM ATP, 5 mM DTT, 0.1 U/uL RNasin (Promega), and 100 uM of each amino acid. The final concentration of potassium acetate is adjusted to 100 mM. The reactions are pre-assembled on ice and preincubated at 25° C. for 10 minutes before adding RNA, then incubated at 25° C. for an additional 60 minutes. Reactions are quenched with 4 volumes of 1.25×Passive Lysis Buffer (Promega). Target RNA cleavage is assayed by RT-PCR analysis or other methods known in the art and are compared to control reactions in which siNA is omitted from the reaction.
Alternately, internally-labeled target RNA for the assay is prepared by in vitro transcription in the presence of [a-32P] CTP, passed over a G 50 Sephadex column by spin chromatography and used as target RNA without further purification. Optionally, target RNA is 5′-32P-end labeled using T4 oligonucleotide kinase enzyme. Assays are performed as described above and target RNA and the specific RNA cleavage products generated by RNAi are visualized on an autoradiograph of a gel. The percentage of cleavage is determined by Phosphor Imager® quantitation of bands representing intact control RNA or RNA from control reactions without siNA and the cleavage products generated by the assay.
In one embodiment, this assay is used to determine target sites in the RNA target for siNA mediated RNAi cleavage, wherein a plurality of siNA constructs are screened for RNAi mediated cleavage of the RNA target, for example by analyzing the assay reaction by electrophoresis of labeled target RNA, or by northern blotting, as well as by other methodology well known in the art.
Specific hairless protein target sequences and the complementary sequences are provided as 19-mers in Table 1 following the Examples. In the table, the oligo number (first column on the left), e.g., 1, 2, 3, etc. matches the 1st (5′) nucleotide in the reference sense cDNA sequence. Thus, Oligonucleotide 1 begins at nucleotide 1 in the reference hairless cDNA sequence, Oligonucleotide 2, begins at nucleotide 2 in the reference sequence, and so on. Thus, one skilled in the art recognizes that the nucleotide position of each nucleotide in each oligonucleotide in Table 1 is specified as if each nucleotide were marked with the respective number.
The sequences shown in Table 1 are provided as DNA sequences, but one skilled in the art understands that Table 1 also describes the matching RNA sequence. One skilled in the art understands that the RNA sequence has a U replacing each T shown in the DNA sequence. For example, for Oligonucleotide 1 in Table 1, the DNA sequence is 5′-TCTCCCGGGAGCCACTCCC-3′ (SEQ ID NO:1), and the matching RNA sequence is 5′-UCUCCCGGGAGCCACUCCC-3′ (SEQ ID NO: 11332).
While oligonucleotides are shown in Table 1 as 19-mers, this description expressly includes the additional 20-mer, 2′-mer, 22-mer, 23-mer, 24-mer, 25-mer, 26-mer, 27-mer, 28-mer, and 29-mer oligonucleotides as if they were included in the table. The sequence descriptions of those 20-29-mers is provided by taking a starting 19-mer that has the same 5′-nucleotide as the respective 20-29-mer, and adding the next 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 3′-nucleotides from the subsequent 19-mer oligonucleotides from the table. Thus, for example, the 19-mer sense RNA Oligonucleotide 4 has the sequence:
5′-CCCGGGAGCCACUCCCAUG-3′ (SEQ ID NO:11333)
and the complementary 19-mer RNA described has the sequence 5′-CAUGGGAGUGGCUCCCGGG-3′ (SEQ ID NO:11334).
Further, a 20-mer RNA that includes the Oligonucleotide 4 sequence is described by the Oligo 4 sequence with the next nucleotide 3′, i.e., the 3′-terminal G from Oligo 5. Thus, the 20-mer RNA described has the sequence 5′-CCCGGGAGCCACUCCCAUGG-3′ (SEQ ID NO:11335)
and the complementary 20-mer RNA described has the sequence 5′-CCAUGGGAGUGGCUCCCGGG-3′ (SEQ ID NO:11336).
Similarly, a 21-mer RNA that includes the Oligonucleotide 4 sequence is described by the Oligo 4 sequence with the next two nucleotides 3′, i.e., the 3′-terminal GG from Oligo 6. Thus, the 21-mer RNA described has the sequence 5′-CCCGGGAGCCACUCCCAUGGG-3′ (SEQ ID NO:11337)
and the complementary 21-mer RNA described has the sequence 5′-CCCAUGGGAGUGGCUCCCGGG-3′ (SEQ ID NO: 11338)
As the next oligonucleotide described, a 22-mer RNA that includes the Oligonucleotide 4 sequence is described by the Oligo 4 sequence with the next three nucleotides 3′, i.e., the 3′-terminal GGC from Oligo 7. Thus, the 22-mer RNA described has the sequence 5′-CCCGGGAGCCACUCCCAUGGGC-3′ ((SEQ ID NO:11339)
and the complementary 22-mer RNA described has the sequence 5′-GCCCAUGGGAGUGGCUCCCGGG-3′ (SEQ ID NO:11340).
A 23-mer RNA that includes the Oligonucleotide 4 sequence is described by the Oligo 4 sequence with the next four nucleotides 3′, i.e., the 3′-terminal GGCG from Oligo 8. Thus, the 23-mer RNA described has the sequence 5′-CCCGGGAGCCACUCCCAUGGGCG-3′ (SEQ ID NO:11341)
and the complementary 23-mer RNA described has the sequence 5′-CGCCCAUGGGAGUGGCUCCCGGG-3′ (SEQ ID NO: 11342).
A 24-mer RNA that includes the Oligonucleotide 4 sequence is described by the Oligo 4 sequence with the next five nucleotides 3′, i.e., the 3′-terminal GGCGC from Oligo 9. Thus, the 24-mer RNA described has the sequence 5′-CCCGGGAGCCACUCCCAUGGGCGC-3′ (SEQ ID NO:11343)
and the complementary 24-mer RNA described has the sequence 5′-GCGCCCAUGGGAGUGGCUCCCGGG-3′ (SEQ ID NO:11344).
In similar fashion, a 25-mer that includes the Oligonucleotide 4 sequence is described as 5′-CCCGGGAGCCACUCCCAUGGGCGCC-3′ (SEQ ID NO:11345)
and the complementary 25-mer RNA described has the sequence 5′-GGCGCCCAUGGGAGUGGCUCCCGGG-3′ (SEQ ID NO:11346).
A 26-mer that includes the Oligonucleotide 4 sequence is described as 5′-CCCGGGAGCCACUCCCAUGGGCGCCU-3′ (SEQ ID NO:11347)
and the complementary 26-mer RNA described has the sequence 5′-AGGCGCCCAUGGGAGUGGCUCCCGGG-3′ (SEQ ID NO:11348).
A 27-mer that includes the Oligonucleotide 4 sequence is described as 5′-CCCGGGAGCCACUCCCAUGGGCGCCUC-3′ (SEQ ID NO:11349)
and the complementary 27-mer RNA described has the sequence 5′-GAGGCGCCCAUGGGAGUGGCUCCCGGG-3′ (SEQ ID NO:11350).
A 28-mer that includes the Oligonucleotide 4 sequence is described as 5′-CCCGGGAGCCACUCCCAUGGGCGCCUCU-3′ (SEQ ID NO:11351)
and the complementary 28-mer RNA described has the sequence 5′-AGAGGCGCCCAUGGGAGUGGCUCCCGGG-3′ (SEQ ID NO:11352).
A 29-mer that includes the Oligonucleotide 4 sequence is described as 5′ CCCGGGAGCCACUCCCAUGGGCGCCUCUC-3′ (SEQ ID NO:11353)
and the complementary 29-mer RNA described has the sequence 5′-GAGAGGCGCCCAUGGGAGUGGCUCCCGGG-3′ (SEQ ID NO: 11354).
Thus, Table 1 describes each of the 19-mers shown in Table 1 as DNA and RNA, and the corresponding 20-mers and longer.
In addition, the Table describes double stranded oligonucleotides with the sense and antisense oligonucleotide strands hybridized, as well as such double stranded oligonucleotides with one or both strands having a 3′-overhang. Such an overhang consists of one or more 3′-terminal nucleotides of an oligonucleotide strand in a double stranded molecule that are not hybridized with the complementary strand. In the present case, such overhang nucleotides often match the corresponding nucleotides from the target mRNA sequence, but can be different.
Table 1 also describes oligonucleotides that contain known polymorphisms. Those polymorphic sites are described in Table 2 along with the replacement nucleotide. Thus, Table 1 with Table 2 describes the oligonucleotides with the alternate nucleotides at a polymorphic site.
Chemical Modifications
As indicated above, for many applications it is advantageous to use chemically modified oligonucleotides rather than unmodified RNA for RNAi (e.g., siRNA). Such modification can dramatically increase the cellular and/or serum lifetime of the modified oligonucleotide compared to the unmodified form.
Description of such chemical modification is provided in McSwiggen et al., PCT/US03/05346, WO 03/070918. Thus, the introduction of chemically modified nucleotides into nucleic acid molecules assists in overcoming potential limitations of in vivo stability and bioavailability inherent to native RNA molecules that are delivered exogenously. For example, the use of chemically modified nucleic acid molecules can enable a lower dose of a particular nucleic acid molecule for a given therapeutic effect since chemically modified nucleic acid molecules tend to have a longer half-life in serum. Furthermore, certain chemical modifications can improve the bioavailability of nucleic acid molecules by targeting particular cells or tissues and/or improving cellular uptake of the nucleic acid molecule. Therefore, even if the activity of a chemically modified nucleic acid molecule is reduced as compared to a native nucleic acid molecule, for example when compared to an all RNA nucleic acid molecule, the overall activity of the modified nucleic acid molecule can be greater than the native molecule due to improved stability and/or delivery of the molecule. Unlike native unmodified siRNA, chemically modified siNA can also minimize the possibility of activating interferon activity in humans.
Thus, in some embodiments of the present invention, the nucleic acid molecules that act as mediators of the RNA interference gene silencing response are chemically modified double stranded nucleic acid molecules, generally about 19-29 nucleotides in length. The most active siRNA molecules are thought to have such duplexes with overhanging ends of 1-3 nucleotides, for example 21 nucleotide duplexes with 19 base pairs and 2 nucleotide 3′-overhangs. These overhanging segments are readily hydrolyzed by endonucleases in vivo. Studies have shown that replacing the 3′-overhanging segments of a 21-mer siRNA duplex having 2 nucleotide 3′ overhangs with deoxyribonucleotides does not have an adverse effect on RNAi activity. Replacing up to 4 nucleotides on each end of the siRNA with deoxyribonucleotides has been reported to be well tolerated whereas complete substitution with deoxyribonucleotides results in no RNAi activity (Elbashir et al., 2001, EMBO J., 20, 6877). In addition, Elbashir et al. also report that full substitution of siRNA with 2′-O-methyl nucleotides completely abolishes RNAi activity.
In some embodiments, the chemically modified siNA constructs having specificity for target nucleic acid molecules in a cell. Non-limiting examples of such chemical modifications include without limitation phosphorothioate internucleotide linkages, 2′-O-methyl ribonucleotides, 2′-deoxy-2′-fluoro ribonucleotides, “universal base” nucleotides, 5-C-methyl nucleotides, and inverted deoxyabasic residue incorporation. These chemical modifications, when used in various siNA constructs, are shown to preserve RNAi activity in cells while at the same time, dramatically increasing the serum stability of these compounds. Furthermore, contrary to the data published by Parrish et al., supra, applicant demonstrates that multiple (greater than one) phosphorothioate substitutions are well-tolerated and confer substantial increases in serum stability for modified siNA constructs.
In one embodiment, a siNA molecule of the invention comprises modified nucleotides while maintaining the ability to mediate RNAi. The modified nucleotides can be used to improve in vitro or in vivo characteristics such as stability, activity, and/or bioavailability. For example, a siNA molecule of the invention can comprise modified nucleotides as a percentage of the total number of nucleotides present in the siNA molecule. As such, a siNA molecule of the invention can generally comprise modified nucleotides at between 5 and 100% of the nucleotide positions (e.g., 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% or 100% of the nucleotide positions). The actual percentage of modified nucleotides present in a given siNA molecule will depend on the total number of nucleotides present in the siNA. If the siNA molecule is single stranded, the percent modification can be based upon the total number of nucleotides present in the single stranded siNA molecules. Likewise, if the siNA molecule is double stranded, the percent modification can be based upon the total number of nucleotides present in the sense strand, antisense strand, or both the sense and antisense strands. In addition, the actual percentage of modified nucleotides present in a given siNA molecule can also depend on the total number of purine and pyrimidine nucleotides present in the siNA, for example wherein all pyrimidine nucleotides and/or all purine nucleotides present in the siNA molecule are modified.
In a non-limiting example, the introduction of chemically-modified nucleotides into nucleic acid molecules will provide a powerful tool in overcoming potential limitations of in vivo stability and bioavailability inherent to native RNA molecules that are delivered exogenously. For example, the use of chemically-modified nucleic acid molecules can enable a lower dose of a particular nucleic acid molecule for a given therapeutic effect since chemically-modified nucleic acid molecules tend to have a longer half-life in serum. Furthermore, certain chemical modifications can improve the bioavailability of nucleic acid molecules by targeting particular cells or tissues and/or improving cellular uptake of the nucleic acid molecule. Therefore, even if the activity of a chemically-modified nucleic acid molecule is reduced as compared to a native nucleic acid molecule, for example when compared to an all-RNA nucleic acid molecule, the overall activity of the modified nucleic acid molecule can be greater than that of the native molecule due to improved stability and/or delivery of the molecule. Unlike native unmodified siNA, chemically-modified siNA can also minimize the possibility of activating interferon activity in humans.
The antisense region of a siNA molecule of the invention can comprise a phosphorothioate internucleotide linkage at the 3′-end of said antisense region. The antisense region can comprise between about one and about five phosphorothioate internucleotide linkages at the 5′-end of said antisense region. The 3′-terminal nucleotide overhangs of a siNA molecule of the invention can comprise ribonucleotides or deoxyribonucleotides that are chemically-modified at a nucleic acid sugar, base, or backbone. The 3′-terminal nucleotide overhangs can comprise one or more universal base ribonucleotides. The 3′-terminal nucleotide overhangs can comprise one or more acyclic nucleotides.
In certain embodiments, the chemically-modified short interfering nucleic acid (siNA) molecule capable of mediating RNA interference (RNAi) inside a cell or reconstituted in vitro system, includes one or more chemically modified nucleotides (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) comprising a backbone modified internucleotide linkage having Formula I:
##STR00001##
wherein each R1 and R2 is independently any nucleotide, non-nucleotide, or oligonucleotide which can be naturally-occurring or chemically-modified, each X and Y is independently O, S, N, alkyl, or substituted alkyl, each Z and W is independently O, S, N, alkyl, substituted alkyl, O-alkyl, S-alkyl, alkaryl, or aralkyl, and wherein W, X, Y, and Z are optionally not all O.
The chemically-modified internucleotide linkages having Formula I, for example wherein any Z, W, X, and/or Y independently comprises a sulphur atom, can be present in one or both oligonucleotide strands of the siNA duplex, for example in the sense strand, the antisense strand, or both strands. The siNA molecules of the invention can comprise one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) chemically-modified internucleotide linkages having Formula I at the 3′-end, the 5′-end, or both of the 3′ and 5′-ends of the sense strand, the antisense strand, or both strands. For example, an exemplary siNA molecule of the invention can comprise between about 1 and about 5 or more (e.g., about 1, 2, 3, 4, 5, or more) chemically-modified internucleotide linkages having Formula I at the 5′-end of the sense strand, the antisense strand, or both strands. In another non-limiting example, an exemplary siNA molecule of the invention can comprise one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) pyrimidine nucleotides with chemically-modified internucleotide linkages having Formula I in the sense strand, the antisense strand, or both strands. In yet another non-limiting example, an exemplary siNA molecule of the invention can comprise one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) purine nucleotides with chemically-modified internucleotide linkages having Formula I in the sense strand, the antisense strand, or both strands. In another embodiment, a siNA molecule of the invention having internucleotide linkage(s) of Formula I also comprises a chemically-modified nucleotide or non-nucleotide having any of Formulae I-VII.
In one embodiment, the invention features a chemically-modified short interfering nucleic acid (siNA) molecule capable of mediating RNA interference (RNAi) inside a cell or reconstituted in vitro system, wherein the chemical modification comprises one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) nucleotides or non-nucleotides having Formula II:
##STR00002##
wherein each R3, R4, R5, R6, R7, R8, R10, R11 and R12 is independently H, OH, alkyl, substituted alkyl, alkaryl or aralkyl, F, CI, Br, CN, CF3, OCF3, OCN, O-alkyl, S-alkyl, N-alkyl, O-alkenyl, S-alkenyl, N-alkenyl, SO-alkyl, alkyl-OSH, alkyl-OH, O-alkyl-OH, O-alkyl-SH, S-alkyl-OH, S-alkyl-SH, alkyl-S-alkyl, alkyl-O-alkyl, ONO2, NO2, N3, NH2, aminoalkyl, aminoacid, aminoacyl, ONH2, O-aminoalkyl, O-aminoacid, O-aminoacyl, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalklylamino, substituted silyl, or group having Formula I; R9 is O, S, CH2, S═O, CHF, or CF2, and B is a nucleosidic base such as adenine, guanine, uracil, cytosine, thymine, 2-aminoadenosine, 5-methylcytosine, 2,6-diaminopurinc, or any other non-naturally occurring base that can be complementary or non-complementary to target RNA or a non-nucleosidic base such as phenyl, naphthyl, 3-nitropyrrole, 5-nitroindole, nebularine, pyridone, pyridinone, or any other non-naturally occurring universal base that can be complementary or non-complementary to target RNA.
The chemically-modified nucleotide or non-nucleotide of Formula II can be present in one or both oligonucleotide strands of the siNA duplex, for example in the sense strand, the antisense strand, or both strands. The siNA molecules of the invention can comprise one or more chemically-modified nucleotide or non-nucleotide of Formula II at the 3′-end, the 5′-end, or both of the 3′ and 5′-ends of the sense strand, the antisense strand, or both strands. For example, an exemplary siNA molecule of the invention can comprise between about 1 and about 5 or more (e.g., about 1, 2, 3, 4, 5, or more) chemically-modified nucleotides or non-nucleotides of Formula II at the 5′-end of the sense strand, the antisense strand, or both strands. In anther non-limiting example, an exemplary siNA molecule of the invention can comprise between about 1 and about 5 or more (e.g., about 1, 2, 3, 4, 5, or more) chemically-modified nucleotides or non-nucleotides of Formula II at the 3′-end of the sense strand, the antisense strand, or both strands.
In one embodiment, the invention features a chemically-modified short interfering nucleic acid (siNA) molecule capable of mediating RNA interference (RNAi) inside a cell or reconstituted in vitro system, wherein the chemical modification comprises one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) nucleotides or is non-nucleotides having Formula III:
##STR00003##
wherein each R3, R4, R5, R6, R7, R8, R10, R11 and R12 is independently H, OH, alkyl, substituted alkyl, alkaryl or aralkyl, F, Cl, Br, CN, CF3, OCF3, OCN, O-alkyl, S-alkyl, N-alkyl, O-alkenyl, S-alkenyl, N-alkenyl, SO-alkyl, alkyl-OSH, alkyl-OH, O-alkyl-OH, O-alkyl-SH, S-alkyl-OH, S-alkyl-SH, alkyl-5-alkyl, alkyl-O-alkyl, ONO2, NO2, N3, NH2, aminoalkyl, aminoacid, aminoacyl, ONH2, O-aminoalkyl, O-aminoacid, O-aminoacyl, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalklylamino, substituted silyl, or group having Formula I; R9 is O, S, CH2, S═O, CHF, or CF2, and B is a nucleosidic base such as adenine, guanine, uracil, cytosine, thymine, 2-aminoadenosine, 5-methylcytosine, 2,6-diaminopurine, or any other non-naturally occurring base that can be employed to be complementary or non-complementary to target RNA or a non-nucleosidic base such as phenyl, naphthyl, 3-nitropyrrole, 5-nitroindole, nebularine, pyridone, pyridinone, or any other non-naturally occurring universal base that can be complementary or non-complementary to target RNA.
The chemically-modified nucleotide or non-nucleotide of Formula III can be present in one or both oligonucleotide strands of the siNA duplex, for example in the sense strand, the antisense strand, or both strands. The siNA molecules of the invention can comprise one or more chemically-modified nucleotide or non-nucleotide of Formula III at the 3′-end, the 5′-end, or both of the 3′ and 5′-ends of the sense strand, the antisense strand, or both strands. For example, an exemplary siNA molecule of the invention can comprise between about 1 and about 5 or more (e.g., about 1, 2, 3, 4, 5, or more) chemically-modified nucleotide(s) or non-nucleotide(s) of Formula III at the 5′-end of the sense strand, the antisense strand, or both strands. In anther non-limiting example, an exemplary siNA molecule of the invention can comprise between about 1 and about 5 or more (e.g., about 1, 2, 3, 4, 5, or more) chemically-modified nucleotide or non-nucleotide of Formula III at the 3′-end of the sense strand, the antisense strand, or both strands.
In another embodiment, a siNA molecule of the invention comprises a nucleotide having Formula II or III, wherein the nucleotide having Formula II or III is in an inverted configuration. For example, the nucleotide having Formula II or III is connected to the siNA construct in a 3′-3′,3′-2′,2′-3′, or 5′-5′ configuration, such as at the 3′-end, the 5′-end, or both of the 3′ and 5′-ends of one or both siNA strands.
In one embodiment, the invention features a chemically-modified short interfering nucleic acid (siNA) molecule capable of mediating RNA interference (RNAi) inside a cell or reconstituted in vitro system, wherein the chemical modification comprises a 5′-terminal phosphate group having Formula IV:
##STR00004##
wherein each X and Y is independently O, S, N, alkyl, substituted alkyl, or alkylhalo; wherein each Z and W is independently O, S, N, alkyl, substituted alkyl, O-alkyl, S-alkyl, alkaryl, aralkyl, or alkylhalo; and wherein W, X, Y and Z are not all O.
In one embodiment, the invention features a siNA molecule having a 5′-terminal phosphate group having Formula IV on the target-complementary strand, for example a strand complementary to a target RNA, wherein the siNA molecule comprises an all RNA siNA molecule. In another embodiment, the invention features a siNA molecule having a 5′-terminal phosphate group having Formula IV on the target-complementary strand wherein the siNA molecule also comprises about 1-3 (e.g., about 1, 2, or 3) nucleotide 3′-terminal nucleotide overhangs having between about 1 and about 4 (e.g., about 1, 2, 3, or 4) deoxyribonucleotides on the 3′-end of one or both strands. In another embodiment, a 5′-terminal phosphate group having Formula IV is present on the target-complementary strand of a siNA molecule of the invention, for example a siNA molecule having chemical modifications having any of Formulae I-VII.
In one embodiment, the invention features a chemically-modified short interfering nucleic acid (siNA) molecule capable of mediating RNA interference (RNAi) inside a cell or reconstituted in vitro system, wherein the chemical modification comprises one or more phosphorothioate internucleotide linkages. For example, in a non-limiting example, the invention features a chemically-modified short interfering nucleic acid (siNA) having about 1, 2, 3, 4, 5, 6, 7, 8 or more phosphorothioate internucleotide linkages in one siNA strand. In yet another embodiment, the invention features a chemically-modified short interfering nucleic acid (siNA) individually having about 1, 2, 3, 4, 5, 6, 7, 8 or more phosphorothioate internucleotide linkages in both siNA strands. The phosphorothioate internucleotide linkages can be present in one or both oligonucleotide strands of the siNA duplex, for example in the sense strand, the antisense strand, or both strands. The siNA molecules of the invention can comprise one or more phosphorothioate internucleotide linkages at the 3′-end, the 5′-end, or both of the 3′- and 5′-ends of the sense strand, the antisense strand, or both strands. For example, an exemplary siNA molecule of the invention can comprise between about 1 and about 5 or more (e.g., about 1, 2, 3, 4, 5, or more) consecutive phosphorothioate internucleotide linkages at the 5′-end of the sense strand, the antisense strand, or both strands. In another non-limiting example, an exemplary siNA molecule of the invention can comprise one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) pyrimidine phosphorothioate internucleotide linkages in the sense strand, the antisense strand, or both strands. In yet another non-limiting example, an exemplary siNA molecule of the invention can comprise one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) purine phosphorothioate internucleotide linkages in the sense strand, the antisense strand, or both strands.
In one embodiment, the invention features a siNA molecule, wherein the sense strand comprises one or more, for example about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more phosphorothioate internucleotide linkages, and/or one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) 2′-deoxy, 2′-O-methyl, 2′-deoxy-2′-fluoro, and/or one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) universal base modified nucleotides, and optionally a terminal cap molecule at the 3′ end, the 5′-end, or both of the 3′- and 5′-ends of the sense strand; and wherein the antisense strand comprises any of between 1 and 10 is or more, specifically about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more phosphorothioate internucleotide linkages, and/or one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) 2′-deoxy, T-O-methyl, 2′-deoxy-2′-fluoro, and/or one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) universal base modified nucleotides, and optionally a terminal cap molecule at the 3′-end, the 5′-end, or both of the 3′- and 5′-ends of the antisense strand. In another embodiment, one or more, for example about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more, pyrimidine nucleotides of the sense and/or antisense siNA strand are chemically-modified with 2′-deoxy, 2′-O-methyl and/or 2′-deoxy-2′-fluoro nucleotides, with or without one or more, for example about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more, phosphorothioate internucleotide linkages and/or a terminal cap molecule at the 3′-end, the 5′-end, or both of the 3′- and 5′-ends, being present in the same or different strand.
In another embodiment, the invention features a siNA molecule, wherein the sense strand comprises between about 1 and about 5, specifically about 1, 2, 3, 4, or 5 phosphorothioate internucleotide linkages, and/or one or more (e.g., about 1, 2, 3, 4, 5, or more) 2′-deoxy, T-O-methyl, 2′-deoxy-2′-fluoro, and/or one or more (e.g., about 1, 2, 3, 4, 5, or more) universal base modified nucleotides, and optionally a terminal cap molecule at the 3-end, the 5′-end, or both of the 3′- and 5′-ends of the sense strand; and wherein the antisense strand comprises any of between about 1 and about 5 or more, specifically about 1, 2, 3, 4, 5, or more phosphorothioate internucleotide linkages, and/or one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) 2′-deoxy, 2′-O-methyl, 2′-deoxy-2′-fluoro, and/or one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) universal base modified nucleotides, and optionally a terminal cap molecule at the 3′-end, the 5′-end, or both of the 3′- and 5′-ends of the antisense strand. In another embodiment, one or more, for example about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more, pyrimidine nucleotides of the sense and/or antisense siNA strand are chemically-modified with 2′-deoxy, 2′-O-methyl and/or 2′-deoxy-2′-fluoro nucleotides, with or without between about 1 and about 5 or more, for example about 1, 2, 3, 4, 5, or more phosphorothioate internucleotide linkages and/or a terminal cap molecule at the 3′-end, the 5′-end, or both of the 3′- and 5′-ends, being present in the same or different strand.
In one embodiment, the invention features a siNA molecule, wherein the antisense strand comprises one or more, for example about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more phosphorothioate internucleotide linkages, and/or between one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) 2′-deoxy, 2′-O-methyl, 2′-deoxy-2′-fluoro, and/or one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) universal base modified nucleotides, and optionally a terminal cap molecule at the 3′-end, the 5′-end, or both of the 3′- and 5′-ends of the sense strand; and wherein the antisense strand comprises any of between about 1 and about 10, specifically about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more phosphorothioate internucleotide linkages, and/or one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) 2′-deoxy, 2′-O-methyl, 2′-deoxy-2′-fluoro, and/or one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) universal base modified nucleotides, and optionally a terminal cap molecule at the 3′-end, the 5′-end, or both of the 3′- and 5′-ends of the antisense strand. In another embodiment, one or more, for example about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more pyrimidine nucleotides of the sense and/or antisense siNA strand are chemically-modified with 2′-deoxy, 2′-O-methyl and/or 2′-deoxy-2′-fluoro nucleotides, with or without one or more, for example about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more phosphorothioate internucleotide linkages and/or a terminal cap molecule at the 3′-end, the 5′-end, or both of the 3′ and 5′-ends, being present in the same or different strand.
In another embodiment, the invention features a siNA molecule, wherein the antisense strand comprises between about 1 and about 5 or more, specifically about 1, 2, 3, 4, 5 or more phosphorothioate internucleotide linkages, and/or one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) 2′-deoxy, 2′-O-methyl, 2′-deoxy-2′-fluoro, and/or one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) universal base modified nucleotides, and optionally a terminal cap molecule at the 3′-end, the 5′-end, or both of the 3′- and 5′-ends of the sense strand; and wherein the antisense strand comprises any of between about 1 and about 5 or more, specifically about 1, 2, 3, 4, 5 or more phosphorothioate internucleotide linkages, and/or one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) 2′-deoxy, 2′-O-methyl, 2′-deoxy-2′-fluoro, and/or one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more) universal base modified nucleotides, and optionally a terminal cap molecule at the 3′-end, the 5′-end, or both of the 3′- and 5′-ends of the antisense strand. In another embodiment, one or more, for example about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more pyrimidine nucleotides of the sense and/or antisense siNA strand are chemically-modified with 2′-deoxy, 2′-O-methyl and/or 2′-deoxy-2′-fluoro nucleotides, with or without between about 1 and about 5, for example about 1, 2, 3, 4, 5 or more phosphorothioate internucleotide linkages and/or a terminal cap molecule at the 3′-end, the 5′-end, or both of the 3′- and 5′-ends, being present in the same or different strand.
In one embodiment, the invention features a chemically-modified short interfering nucleic acid (siNA) molecule having between about 1 and about 5, specifically about 1, 2, 3, 4, 5 or more phosphorothioate internucleotide linkages in each strand of the siNA molecule.
In another embodiment, the invention features a siNA molecule comprising 2′-5′ internucleotide linkages. The 2′-5′ internucleotide linkage(s) can be at the 3′-end, the 5′-end, or both of the 3′- and 5′-ends of one or both siNA sequence strands. In addition, the 2′-5′ internucleotide linkage(s) can be present at various other positions within one or both siNA sequence strands, for example, about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more including every internucleotide linkage of a pyrimidine nucleotide in one or both strands of the siNA molecule can comprise a 2′-5′ internucleotide linkage, or about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more including every internucleotide linkage of a purine nucleotide in one or both strands of the siNA molecule can comprise a 2′-5′ internucleotide linkage.
In another embodiment, a chemically-modified siNA molecule of the invention comprises a duplex having two strands, one or both of which can be chemically-modified, wherein each strand is between about 18 and about 27 (e.g., about 18, 19, 20, 21, 22, 23, 24, 25, 26, or 27) nucleotides in length, wherein the duplex has between about 18 and about 23 (e.g., about 18, 19, 20, 21, 22, or 23) base pairs, and wherein the chemical modification comprises a structure having any of Formulae I-VII. For example, an exemplary chemically-modified siNA molecule of the invention comprises a duplex having two strands, one or both of which can be chemically-modified with a chemical modification having any of Formulae I-VII or any combination thereof, wherein each strand consists of about 21 nucleotides, each having a 2-nucleotide 3′-terminal nucleotide overhang, and wherein the duplex has about 19 base pairs. In another embodiment, a siNA molecule of the invention comprises a single stranded hairpin structure, wherein the siNA is between about 36 and about 70 (e.g., about 36, 40, 45, 50, 55, 60, 65, or 70) nucleotides in length having between about 18 and about 23 (e.g., about 18, 19, 20, 21, 22, or 23) base pairs, and wherein the siNA can include a chemical modification comprising a structure having any of Formulae I-VII or any combination thereof. For example, an exemplary chemically-modified siNA molecule of the invention comprises a linear oligonucleotide having between about 42 and about 50 (e.g., about 42, 43, 44, 45, 46, 47, 48, 49, or 50) nucleotides that is chemically-modified with a chemical modification having any of Formulae I-VII or any combination thereof, wherein the linear oligonucleotide forms a hairpin structure having about 19 base pairs and a 2-nucleotide 3′-terminal nucleotide overhang. In another embodiment, a linear hairpin siNA molecule of the invention contains a stem loop motif, wherein the loop portion of the siNA molecule is biodegradable. For example, a linear hairpin siNA molecule of the invention is designed such that degradation of the loop portion of the siNA molecule in vivo can generate a double-stranded siNA molecule with 3′-terminal overhangs, such as 3′-terminal nucleotide overhangs comprising about 2 nucleotides.
In another embodiment, a siNA molecule of the invention comprises a circular nucleic acid molecule, wherein the siNA is between about 38 and about 70 (e.g., about 38, 40, 45, 50, 55, 60, 65, or 70) nucleotides in length having between about 18 and about 23 (e.g., about 18, 19, 20, 21, 22, or 23) base pairs, and wherein the siNA can include a chemical modification, which comprises a structure having any of Formulae I-VII or any combination thereof. For example, an exemplary chemically-modified siNA molecule of the invention comprises a circular oligonucleotide having between about 42 and about 50 (e.g., about 42, 43, 44, 45, 46, 47, 48, 49, or 50) nucleotides that is chemically-modified with a chemical modification having any of Formulae I-VII or any combination thereof, wherein the circular oligonucleotide forms a dumbbell shaped structure having about 19 base pairs and 2 loops.
In another embodiment, a circular siNA molecule of the invention contains two loop motifs, wherein one or both loop portions of the siNA molecule is biodegradable. For example, a circular siNA molecule of the invention is designed such that degradation of the loop portions of the siNA molecule in vivo can generate a double-stranded siNA molecule with 3′-terminal overhangs, such as 3′-terminal nucleotide overhangs comprising about 2 nucleotides.
In one embodiment, a siNA molecule of the invention comprises at least one (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) abasic moiety, for example a compound having Formula V:
##STR00005##
wherein each R3, R4, R5, R6, R7, R8, R10, R11, R12, and R13 is independently H, OH, alkyl, substituted alkyl, alkaryl or aralkyl, F, Cl, Br, CN, CF3, OCF3, OCN, O-alkyl, S-alkyl, N-alkyl, O-alkenyl, S-alkenyl, N-alkenyl, SO-alkyl, alkyl-OSH, alkyl-OH, O-alkyl-OH, O-alkyl-SH, S-alkyl-OH, S-alkyl-SH, alkyl-S-alkyl, alkyl-O-alkyl, ONO2, NO2, N3, NH2, aminoalkyl, aminoacid, aminoacyl, ONH2, O-aminoalkyl, O-aminoacid, O-aminoacyl, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalklylamino, substituted silyl, or group having Formula I; R9 is O, S, CH2, S═O, CHF, or CF2.
In one embodiment, a siNA molecule of the invention comprises at least one (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) inverted abasic moiety, for example a compound having Formula VI:
##STR00006##
wherein each R3, R4, R5, R6, R7, R8, R10, R11, R12, and R13 is independently H, OH, alkyl, substituted alkyl, alkaryl or aralkyl, F, Cl, Br, CN, CF3, OCF3, OCN, O-alkyl, S-alkyl, N-alkyl, O-alkenyl, S-alkenyl, N-alkenyl, SO-alkyl, alkyl-OSH, alkyl-OH, O-alkyl-OH, O-alkyl-SH, S-alkyl-OH, S-alkyl-SH, alkyl-5-alkyl, alkyl-O-alkyl, ONO2, NO2, N3, NH2, aminoalkyl, aminoacid, aminoacyl, ONH2, O-aminoalkyl, O-aminoacid, O-aminoacyl, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalklylamino, substituted silyl, or group having Formula I; R9 is O, S, CH2, S═O, CHF, or CF2, and either R2, R3, R8 or R13 serve as points of attachment to the siNA molecule of the invention.
In another embodiment, a siNA molecule of the invention comprises at least one (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) substituted polyalkyl moieties, for example a compound having Formula VII:
##STR00007##
wherein each n is independently an integer from 1 to 12, each R1, R2 and R3 is independently H, OH, alkyl, substituted alkyl, alkaryl or aralkyl, F, Cl, Br, CN, CF3, OCF3, OCN, O-alkyl, S-alkyl, N-alkyl, O-alkenyl, S-alkenyl, N-alkenyl, SO-alkyl, alkyl-OSH, alkyl-OH, O-alkyl-OH, O-alkyl-SH, S-alkyl-OH, S-alkyl-SH, alkyl-S-alkyl, alkyl-O-alkyl, ONO2, NO2, N3, NH2, aminoalkyl, aminoacid, aminoacyl, ONH2, O-aminoalkyl, O-aminoacid, O-aminoacyl, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalklylamino, substituted silyl, or a group having Formula I, and R1, R2 or R3 serves as points of attachment to the siNA molecule of the invention.
In another embodiment, the invention features a compound having Formula VII, wherein R1 and R2 are hydroxyl (OH) groups, n=1, and R3 comprises O and is the point of attachment to the 3′-end, the 5′-end, or both of the 3′ and 5′-ends of one or both strands of a double-stranded siNA molecule of the invention or to a single-stranded siNA molecule of the invention. This modification is referred to herein as “glyceryl”.
In another embodiment, a moiety having any of Formula V, VI or VII of the invention is at the 3′-end, the 5′-end, or both of the 3′ and 5′-ends of a siNA molecule of the invention. For example, a moiety having Formula V, VI or VII can be present at the 3′-end, the 5′-end, or both of the 3′ and 5′-ends of the antisense strand, the sense strand, or both antisense and sense strands of the siNA molecule. In addition, a moiety having Formula VII can be present at the 3′-end or the 5′-end of a hairpin siNA molecule as described herein.
In another embodiment, a siNA molecule of the invention comprises an abasic residue having Formula V or VI, wherein the abasic residue having Formula VI or VI is connected to the siNA construct in a 3′-3′, 2′-3′, or 5′-5′ configuration, such as at the 3′-end, the 5′-end, or both of the 3′ and 5′-ends of one or both siNA strands.
In one embodiment, a siNA molecule of the invention comprises one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) locked nucleic acid (LNA) nucleotides, for example at the 5′-end, the 3′-end, both of the 5′ and 3′-ends, or any combination thereof, of the siNA molecule.
In another embodiment, a siNA molecule of the invention comprises one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) acyclic nucleotides, for example at the 5′-end, the 3′-end, both of the 5′ and 3′-ends, or any combination thereof, of the siNA molecule.
In one embodiment, the invention features a chemically-modified short interfering nucleic acid (siNA) molecule of the invention, wherein the chemically-modified siNA comprises a sense region, where any (e.g., one or more or all) pyrimidine nucleotides present in the sense region are 2′-deoxy-2′-fluoro pyrimidine nucleotides (e.g., wherein all pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides or alternately a plurality of pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides), and where any (e.g., one or more or all) purine nucleotides present in the sense region are 2′-deoxy purine nucleotides (e.g., wherein all purine nucleotides are 2′-deoxy purine nucleotides or alternately a plurality of purine nucleotides are 2′-deoxy purine nucleotides).
In one embodiment, the invention features a chemically-modified short interfering nucleic acid (siNA) molecule of the invention, wherein the chemically-modified siNA comprises a sense region, where any (e.g., one or more or all) pyrimidine nucleotides present in the sense region are 2′-deoxy-2′-fluoro pyrimidine nucleotides (e.g., wherein all pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides or alternately a plurality of pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides), and where any (e.g., one or more or all) purine nucleotides present in the sense region are 2′-deoxy purine nucleotides (e.g., wherein all purine nucleotides are 2′-deoxy purine nucleotides or alternately a plurality of purine nucleotides are 2′-deoxy purine nucleotides), wherein any nucleotides comprising a 3′-terminal nucleotide overhang that are present in said sense region are 2′-deoxy nucleotides.
In one embodiment, the invention features a chemically-modified short interfering nucleic acid (siNA) molecule of the invention, wherein the chemically-modified siNA comprises an antisense region, where any (e.g., one or more or all) pyrimidine nucleotides present in the antisense region are 2′-deoxy-2′-fluoro pyrimidine nucleotides (e.g., wherein all pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides or alternately a plurality of pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides), and wherein any (e.g., one or more or all) purine nucleotides present in the antisense region are 2′-O-methyl purine nucleotides (e.g., wherein all purine nucleotides are 2′-O-methyl purine nucleotides or alternately a plurality of purine nucleotides are 2′-O-methyl purine nucleotides).
In one embodiment, the invention features a chemically-modified short interfering nucleic acid (siNA) molecule of the invention, wherein the chemically-modified siNA comprises an antisense region, where any (e.g., one or more or all) pyrimidine nucleotides present in the antisense region are 2′-deoxy-2′-fluoro pyrimidine nucleotides (e.g., wherein all pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides or alternately a plurality of pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides), and wherein any (e.g., one or more or all) purine nucleotides present in the antisense region are 2′-O-methyl purine nucleotides (e.g., wherein all purine nucleotides are 2′-O-methyl purine nucleotides or alternately a plurality of purine nucleotides are 2′-O-methyl purine nucleotides), wherein any nucleotides comprising a 3′-terminal nucleotide overhang that are present in said antisense region are 2′-deoxy nucleotides.
In one embodiment, the invention features a chemically-modified short interfering nucleic acid (siNA) molecule of the invention, wherein the chemically-modified siNA comprises an antisense region, where any (e.g., one or more or all) pyrimidine nucleotides present in the antisense region are 2′-deoxy-2′-fluoro pyrimidine nucleotides (e.g., wherein all pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides or alternately a plurality of pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides), and where any (e.g., one or more or all) purine nucleotides present in the antisense region are 2′-deoxy purine nucleotides (e.g., wherein all purine nucleotides are 2′-deoxy purine nucleotides or alternately a plurality of purine nucleotides are 2′-deoxy purine nucleotides).
In one embodiment, the invention features a chemically-modified short interfering nucleic acid (siNA) molecule of the invention capable of mediating RNA interference (RNAi) inside a cell or reconstituted in vitro system, wherein the chemically-modified siNA comprises a sense region, where one or more pyrimidine nucleotides present in the sense region are 2′-deoxy-2′-fluoro pyrimidine nucleotides (e.g., wherein all pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides or alternately a plurality of pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides), and where one or more purine nucleotides present in the sense region are 2′-deoxy purine nucleotides (e.g., wherein all purine nucleotides are 2′-deoxy purine nucleotides or alternately a plurality of purine nucleotides are 2′-deoxy purine nucleotides), and inverted deoxy abasic modifications that are optionally present at the 3′-end, the 5′-end, or both of the 3′ and 5′-ends of the sense region, the sense region optionally further comprising a 3′-terminal overhang having between about 1 and about 4 (e.g, about 1, 2, 3, or 4) 2′-deoxyribonucleotides; and wherein the chemically-modified short interfering nucleic acid molecule comprises an antisense region, where one or more pyrimidine nucleotides present in the antisense region are 2′-deoxy-2′-fluoro pyrimidine nucleotides (e.g., wherein all pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides or alternately a plurality of pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides), and wherein one or more purine nucleotides present in the antisense region are 2′-O-methyl purine nucleotides (e.g., wherein all purine nucleotides are 2′-O-methyl purine nucleotides or alternately a plurality of purine nucleotides are 2′-O-methyl purine nucleotides), and a terminal cap modification, such as any modification described herein, that is optionally present at the 3′-end, the 5′-end, or both of the 3′ and 5′-ends of the antisense sequence, the antisense region optionally further comprising a 3′-terminal nucleotide overhang having between about 1 and about 4 (e.g, about 1, 2, 3, or 4) 2′-deoxynucleotides, wherein the overhang nucleotides can further comprise one or more (e.g., 1, 2, 3, or 4) phosphorothioate internucleotide linkages.
In one embodiment, the invention features a chemically-modified short interfering nucleic acid (siNA) molecule of the invention capable of mediating RNA interference (RNAi) inside a cell or reconstituted in vitro system, wherein the siNA comprises a sense region, where one or more pyrimidine nucleotides present in the sense region are 2′-deoxy-2′-fluoro pyrimidine nucleotides (e.g., wherein all pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides or alternately a plurality of pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides), and where one or more purine nucleotides present in the sense region are purine ribonucleotides (e.g., wherein all purine nucleotides are purine ribonucleotides or alternately a plurality of purine nucleotides are purine ribonucleotides), and inverted deoxy abasic modifications that are optionally present at the 3′-end, the 5′-end, or both of the 3′ and 5′-ends of the sense region, the sense region optionally further comprising a 3′-terminal overhang having between about 1 and about 4 (e.g, about 1, 2, 3, or 4) 2′-deoxyribonucleotides; and wherein the siNA comprises an antisense region, where one or more pyrimidine nucleotides present in the antisense region are 2′-deoxy-2′-fluoro pyrimidine nucleotides (e.g., wherein all pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides or alternately a plurality of pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides), and wherein any purine nucleotides present in the antisense region are 2′-O-methyl purine nucleotides (e.g., wherein all purine nucleotides are 2′-O-methyl purine nucleotides or alternately a plurality of purine nucleotides are 2′-O-methyl purine nucleotides), and a terminal cap modification, such as any modification described herein, that is optionally present at the 3′-end, the 5′-end, or both of the 3′ and 5′-ends of the antisense sequence, the antisense region optionally further comprising a 3′-terminal nucleotide overhang having between about 1 and about 4 (e.g, about 1, 2, 3, or 4) 2′-deoxynucleotides, wherein the overhang nucleotides can further comprise one or more (e.g., 1, 2, 3, or 4) phosphorothioate internucleotide linkages.
In one embodiment, the invention features a chemically-modified short interfering nucleic acid (siNA) molecule of the invention capable of mediating RNA interference (RNAi) inside a cell or reconstituted in vitro system, wherein the chemically-modified siNA comprises a sense region, where one or more pyrimidine nucleotides present in the sense region are 2′-deoxy-2′-fluoro pyrimidine nucleotides (e.g., wherein all pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides or alternately a plurality of pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides), and for example where one or more purine nucleotides present in the sense region are selected from the group consisting of 2′-deoxy nucleotides, locked nucleic acid (LNA) nucleotides, 2′-methoxyethyl nucleotides, 4′-thionucleotides, and 2′-O-methyl nucleotides (e.g., wherein all purine nucleotides are selected from the group consisting of 2′-deoxy nucleotides, locked nucleic acid (LNA) nucleotides, 2′-methoxyethyl nucleotides, 4′-thionucleotides, and 2′-O-methyl nucleotides or alternately a plurality of purine nucleotides are selected from the group consisting of 2′-deoxy nucleotides, locked nucleic acid (LNA) nucleotides, 2′-methoxyethyl nucleotides, 4′-thionucleotides, and 2′-O-methyl nucleotides), and wherein inverted deoxy abasic modifications are optionally present at the 3′-end, the 5′-end, or both of the 3′ and 5′-ends of the sense region, the sense region optionally further comprising a 3′-terminal overhang having between about 1 and about 4 (e.g, about 1, 2, 3, or 4) 2′-deoxyribonucleotides, and wherein the chemically-modified short interfering nucleic acid molecule comprises an antisense region, where one or more pyrimidine nucleotides present in the antisense region are 2′-deoxy-2′-fluoro pyrimidine nucleotides (e.g., wherein all pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides or alternately a plurality of pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides), and wherein one or more purine nucleotides present in the antisense region are selected from the group consisting of 2′-deoxy nucleotides, locked nucleic acid (LNA) nucleotides, 2′-methoxyethyl nucleotides, 4′-thionucleotides, and 2′-O-methyl nucleotides (e.g., wherein all purine nucleotides are selected from the group consisting of 2′-deoxy nucleotides, locked nucleic acid (LNA) nucleotides, 2′-methoxyethyl nucleotides, 4′-thionucleotides, and 2′-O-methyl nucleotides or alternately a plurality of purine nucleotides are selected from the group consisting of 2′-deoxy nucleotides, locked nucleic acid (LNA) nucleotides, 2′-methoxyethyl nucleotides, 4′-thionucleotides, and 2′-O-methyl nucleotides), and a terminal cap modification, that is optionally present at the 3′-end, the 5′-end, or both of the 3′ and 5′-ends of the antisense sequence, the antisense region optionally further comprising a 3′-terminal nucleotide overhang having between about 1 and about 4 (e.g, about 1, 2, 3, or 4) 2′-deoxynucleotides, wherein the overhang nucleotides can further comprise one or more (e.g., 1, 2, 3, or 4) phosphorothioate internucleotide linkages.
In another embodiment, any modified nucleotides present in the siNA molecules of the invention, preferably in the antisense strand of the siNA molecules of the invention, comprise modified nucleotides having properties or characteristics similar to naturally occurring ribonucleotides. For example, the invention features siNA molecules including modified nucleotides having a Northern conformation (e.g., Northern pseudorotation cycle, see for example Saenger, Principles of Nucleic Acid Structure, Springer-Verlag ed., 1984). As such, chemically modified nucleotides present in the siNA molecules of the invention, preferably in the antisense strand of the siNA molecules of the invention, are preferably resistant to nuclease degradation while at the same time maintaining the capacity to mediate RNAi. Non-limiting examples of nucleotides having a northern configuration include locked nucleic acid (LNA) nucleotides (e.g., 2′-O,4′-C-methylene-(D-ribofuranosyl)nucleotides); 2′-methoxyethoxy (MOE) nucleotides; 2′-deoxy-2′-fluoro nucleotides, 2′-deoxy-2′-chloro nucleotides, 2′-azido nucleotides, and 2′-O-methyl nucleotides.
In one embodiment, the invention features a chemically-modified short interfering nucleic acid molecule (siNA) capable of mediating RNA interference (RNAi) inside a cell or reconstituted in vitro system, wherein the chemical modification comprises one or more conjugates covalently attached to the chemically-modified siNA molecule. In another embodiment, the conjugate is covalently attached to the chemically-modified siNA molecule via a biodegradable linker. In one embodiment, the conjugate molecule is attached at the 3′-end of either the sense strand, the antisense strand, or both strands of the chemically-modified siNA molecule. In another embodiment, the conjugate molecule is attached at the 5′-end of either the sense strand, the antisense strand, or both strands of the chemically-modified siNA molecule. In yet another embodiment, the conjugate molecule is attached both the 3′-end and 5′-end of either the sense strand, the antisense strand, or both strands of the chemically-modified siNA molecule, or any combination thereof. In one embodiment, a conjugate molecule of the invention comprises a molecule that facilitates delivery of a chemically-modified siNA molecule into a biological system such as a cell. In another embodiment, the conjugate molecule attached to the chemically-modified siNA molecule is a poly ethylene glycol, human serum albumin, or a ligand for a cellular receptor that can mediate cellular uptake. Examples of specific conjugate molecules contemplated by the instant invention that can be attached to chemically-modified siNA molecules are described in Vargeese et al., U.S. Ser. No. 60/311,865, incorporated by reference herein. The type of conjugates used and the extent of conjugation of siNA molecules of the invention can be evaluated for improved pharmacokinetic profiles, bioavailability, and/or stability of siNA constructs while at the same time maintaining the ability of the siNA to mediate RNAi activity. As such, one skilled in the art can screen siNA constructs that are modified with various conjugates to determine whether the siNA conjugate complex possesses improved properties while maintaining the ability to mediate RNAi, for example in animal models as are generally known in the art.
In one embodiment, the invention features a short interfering nucleic acid (siNA) molecule of the invention, wherein the siNA further comprises a nucleotide, non-nucleotide, or mixed nucleotide/non-nucleotide linker that joins the sense region of the siNA to the antisense region of the siNA. In another embodiment, a nucleotide linker of the invention can be a linker of ≧2 nucleotides in length, for example 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides in length. In yet another embodiment, the nucleotide linker can be a nucleic acid aptamer. By “aptamer” or “nucleic acid aptamer” as used herein is meant a nucleic acid molecule that binds specifically to a target molecule wherein the nucleic acid molecule has sequence that is comprises a sequence recognized by the target molecule in its natural setting. Alternately, an aptamer can be a nucleic acid molecule that binds to a target molecule where the target molecule does not naturally bind to a nucleic acid. The target molecule can be any molecule of interest. For example, the aptamer can be used to bind to a ligand-binding domain of a protein, thereby preventing interaction of the naturally occurring ligand with the protein. This is a non-limiting example and those in the art will recognize that other embodiments can be readily generated using techniques generally known in the art, see for example Gold et al., 1995, Annu. Rev. Biochem., 64, 763; Brody and Gold, 2000, J. Biotechnol., 74, 5; Sun, 2000, Curr. Opin. Mol. Ther., 2, 100; Kusser, 2000, J. Biotechnol., 74, 27; Hermann and Patel, 2000, Science, 287, 820; and Jayasena, 1999, Clinical Chemistry, 45, 1628.
In yet another embodiment, a non-nucleotide linker of the invention comprises abasic nucleotide, polyether, polyamine, polyamide, peptide, carbohydrate, lipid, polyhydrocarbon, or other polymeric compounds (e.g. polyethylene glycols such as those having between 2 and 100 ethylene glycol units). Specific examples include those described by Seela and Kaiser, Nucleic Acids Res. 1990, 18:6353 and Nucleic Acids Res. 1987, 15:3113; Cload and Schepartz, J. Am. Chem. Soc. 1991, 113:6324; Richardson and Schepartz, J. Am. Chem. Soc. 1991, 113:5109; Ma et al., Nucleic Acids Res. 1993, 21:2585 and Biochemistry 1993, 32:1751; Durand et al., Nucleic Acids Res. 1990, 18:6353; McCurdy et al., Nucleosides & Nucleotides 1991, 10:287; Jschke et al., Tetrahedron Lett. 1993, 34:301; Ono et al., Biochemistry 1991, 30:9914; Arnold et al., International Publication No. WO 89/02439; Usman et al., International Publication No. WO 95/06731; Dudycz et al., International Publication No. WO 95/11910 and Ferentz and Verdine, J. Am. Chem. Soc. 1991, 113:4000, all hereby incorporated by reference herein. A “non-nucleotide” further means any group or compound that can be incorporated into a nucleic acid chain in the place of one or more nucleotide units, including either sugar and/or phosphate substitutions, and allows the remaining bases to exhibit their enzymatic activity. The group or compound can be abasic in that it does not contain a commonly recognized nucleotide base, such as adenosine, guanine, cytosine, uracil or thymine, for example at the C1 position of the sugar.
In one embodiment, the invention features a short interfering nucleic acid (siNA) molecule capable of mediating RNA interference (RNAi) inside a cell or reconstituted in vitro system, wherein one or both strands of the siNA molecule that are assembled from two separate oligonucleotides do not comprise any ribonucleotides. All positions within the siNA can include chemically modified nucleotides and/or non-nucleotides such as nucleotides and or non-nucleotides having Formula I, H, III, IV, V, VI, or VII or any combination thereof to the extent that the ability of the siNA molecule to support RNAi activity in a cell is maintained.
In one embodiment, a siNA molecule of the invention is a single stranded siNA molecule that mediates RNAi activity in a cell or reconstituted in vitro system, wherein the siNA molecule comprises a single stranded oligonucleotide having complementarity to a target nucleic acid sequence. In another embodiment, the single stranded siNA molecule of the invention comprises a 5′-terminal phosphate group. In another embodiment, the single stranded siNA molecule of the invention comprises a 5′-terminal phosphate group and a 3′-terminal phosphate group (e.g., a 2′,3′-cyclic phosphate). In another embodiment, the single stranded siNA molecule of the invention comprises between 19 and 29 nucleotides. In yet another embodiment, the single stranded siNA molecule of the invention comprises one or more chemically modified nucleotides or non-nucleotides described herein. For example, all the positions within the siNA molecule can include chemically-modified nucleotides such as nucleotides having any of Formulae I-VII, or any combination thereof to the extent that the ability of the siNA molecule to support RNAi activity in a cell is maintained.
In one embodiment, a siNA molecule of the invention is a single stranded siNA molecule that mediates RNAi activity in a cell or reconstituted in vitro system, wherein the siNA molecule comprises a single stranded oligonucleotide having complementarity to a target nucleic acid sequence, and wherein one or more pyrimidine nucleotides present in the siNA are 2′-deoxy-2′-fluoro pyrimidine nucleotides (e.g., wherein all pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides or alternately a plurality of pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides), and wherein any purine nucleotides present in the antisense region are 2′-O-methyl purine nucleotides (e.g., wherein all purine nucleotides are 2′-O-methyl purine nucleotides or alternately a plurality of purine nucleotides are 2′-O-methyl purine nucleotides), and a terminal cap modification, such as any modification described herein, that is optionally present at the 3′-end, the 5′-end, or both of the 3′ and 5′-ends of the antisense sequence, the siNA optionally further comprising between about 1 and about 4 (e.g, about 1, 2, 3, or 4) terminal 2′-deoxynucleotides at the 3′-end of the siNA molecule, wherein the terminal nucleotides can further comprise one or more (e.g., 1, 2, 3, or 4) phosphorothioate internucleotide linkages, and wherein the siNA optionally further comprises a terminal phosphate group, such as a 5′-terminal phosphate group.
In one embodiment, a siNA molecule of the invention is a single stranded siNA molecule that mediates RNAi activity in a cell or reconstituted in vitro system, wherein the siNA molecule comprises a single stranded oligonucleotide having complementarity to a target nucleic acid sequence, and wherein one or more pyrimidine nucleotides present in the siNA are 2′-deoxy-2′-fluoro pyrimidine nucleotides (e.g., wherein all pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides or alternately a plurality of pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides), and wherein any purine nucleotides present in the antisense region are 2′-deoxy purine nucleotides (e.g., wherein all purine nucleotides are 2′-deoxy purine nucleotides or alternately a plurality of purine nucleotides are 2′-deoxy purine nucleotides), and a terminal cap modification, such as any modification described herein, that is optionally present at the 3′-end, the 5′-end, or both of the 3′ and 5′-ends of the antisense sequence, the siNA optionally further comprising between about 1 and about 4 (e.g, about 1, 2, 3, or 4) terminal 2′-deoxynucleotides at the 3′-end of the siNA molecule, wherein the terminal nucleotides can further comprise one or more (e.g., 1, 2, 3, or 4) phosphorothioate internucleotide linkages, and wherein the siNA optionally further comprises a terminal phosphate group, such as a 5′-terminal phosphate group.
In one embodiment, a siNA molecule of the invention is a single stranded siNA molecule that mediates RNAi activity in a cell or reconstituted in vitro system, wherein the siNA molecule comprises a single stranded oligonucleotide having complementarity to a target nucleic acid sequence, and wherein one or more pyrimidine nucleotides present in the siNA are 2′-deoxy-2′-fluoro pyrimidine nucleotides (e.g., wherein all pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides or alternately a plurality of pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides), and wherein any purine nucleotides present in the antisense region are locked nucleic acid (LNA) nucleotides (e.g., wherein all purine nucleotides are LNA nucleotides or alternately a plurality of purine nucleotides are LNA nucleotides), and a terminal cap modification, such as any modification described herein, that is optionally present at the 3′-end, the 5′-end, or both of the 3′ and 5′-ends of the antisense sequence, the siNA optionally further comprising between about 1 and about 4 (e.g, about 1, 2, 3, or 4) terminal 2′-deoxynucleotides at the 3′-end of the siNA molecule, wherein the terminal nucleotides can further comprise one or more (e.g., 1, 2, 3, or 4) phosphorothioate internucleotide linkages, and wherein the siNA optionally further comprises a terminal phosphate group, such as a 5′-terminal phosphate group.
In one embodiment, a siNA molecule of the invention is a single stranded siNA molecule that mediates RNAi activity in a cell or reconstituted in vitro system, wherein the siNA molecule comprises a single stranded oligonucleotide having complementarity to a target nucleic acid sequence, and wherein one or more pyrimidine nucleotides present in the siNA are 2′-deoxy-2′-fluoro pyrimidine nucleotides (e.g., wherein all pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides or alternately a plurality of pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides), and wherein any purine nucleotides present in the antisense region are 2′-methoxyethyl purine nucleotides (e.g., wherein all purine nucleotides are 2′-methoxyethyl purine nucleotides or alternately a plurality of purine nucleotides are 2′-methoxyethyl purine nucleotides), and a terminal cap modification, such as any modification described herein, that is optionally present at the 3′-end, the 5′-end, or both of the 3′ and 5′-ends of the antisense sequence, the siNA optionally further comprising between about 1 and about 4 (e.g, about 1, 2, 3, or 4) terminal 2′-deoxynucleotides at the 3′-end of the siNA molecule, wherein the terminal nucleotides can further comprise one or more (e.g., 1, 2, 3, or 4) phosphorothioate internucleotide linkages, and wherein the siNA optionally further comprises a terminal phosphate group, such as a 5′-terminal phosphate group.
In one embodiment, a siNA molecule of the invention is a single stranded siNA molecule that mediates RNAi activity in a cell or reconstituted in vitro system, wherein the siNA molecule comprises a single stranded oligonucleotide having complementarity to a target nucleic acid sequence, and wherein one or more pyrimidine nucleotides present in the siNA are 2′-deoxy-2′-fluoro pyrimidine nucleotides (e.g., wherein all pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides or alternately a plurality of pyrimidine nucleotides are 2′-deoxy-2′-fluoro pyrimidine nucleotides), and wherein any purine nucleotides present in the antisense region are purine ribonucleotides (e.g., wherein all purine nucleotides are purine ribonucleotides or alternately a plurality of purine nucleotides are purine ribonucleotides), and a terminal cap modification, such as any modification described herein, that is optionally present at the 3′-end, the 5′-end, or both of the 3′ and 5′-ends of the antisense sequence, the siNA optionally further comprising between about 1 and about 4 (e.g, about 1, 2, 3, or 4) terminal 2′-deoxynucleotides at the 3′-end of the siNA molecule, wherein the terminal nucleotides can further comprise one or more (e.g., 1, 2, 3, or 4) phosphorothioate internucleotide linkages, and wherein the siNA optionally further comprises a terminal phosphate group, such as a 5′-terminal phosphate group.
In another embodiment, any modified nucleotides present in the single stranded siNA molecules of the invention comprise modified nucleotides having properties or characteristics similar to naturally occurring ribonucleotides. For example, the invention features siNA molecules including modified nucleotides having a Northern conformation (e.g., Northern pseudorotation cycle, see for example Saenger, Principles of Nucleic Acid Structure, Springer-Verlag ed., 1984). As such, chemically modified nucleotides present in the single stranded siNA molecules of the invention are preferably resistant to nuclease degradation while at the same time maintaining the capacity to mediate RNAi.
E. Preparation of Oligonucleotides
The present oligonucleotides can be prepared by methods available to those skilled in the art. For example, unmodified RNA can be prepared by transcription, e.g., in vitro, using methods and constructs available in the art. The sequence for the particular target, and its complementary sequence can be inserted into a selected vector, and transcribed to produce the desired oligonucleotides by conventional methods.
In many cases, it will be desirable to chemically synthesize the oligonucleotides, e.g., for chemically modified oligonucleotides. Such syntheses are known in the art, and are described, for example, below.
Thus, siNA molecules can be designed to interact with various sites in the RNA message, for example target sequences within the RNA sequences described herein. The sequence of one strand of the siNA molecule(s) is complementary to the target site sequences described above. The siNA molecules can be chemically synthesized using methods described herein. Inactive siNA molecules that are used as control sequences can be synthesized by scrambling the sequence of the siNA molecules such that it is not complementary to the target sequence. Generally, siNA constructs can by synthesized using solid phase oligonucleotide synthesis methods as described herein (see for example Usman et al., U.S. Pat. Nos. 5,804,683; 5,831,071; 5,998,203; 6,117,657; 6,353,098; 6,362,323; 6,437,117; 6,469,158; Scaringe et al., U.S. Pat. Nos. 6,111,086; 6,008,400; 6,111,086). Modification of synthesis conditions can be used to optimize coupling efficiency, for example by using differing coupling times, differing reagent/phosphoramidite concentrations, differing contact times, differing solid supports and solid support linker chemistries depending on the particular chemical composition of the siNA to be synthesized. Deprotection and purification of the siNA can be performed as is generally described in Vargeese et al., U.S. Ser. No. 10/194,875, incorporated by reference herein in its entirety. Additionally, deprotection conditions can be modified to provide the best possible yield and purity of siNA constructs. For example, applicant has observed that oligonucleotides comprising 2′-deoxy-2′-fluoro nucleotides can degrade under inappropriate deprotection conditions. Such oligonucleotides are deprotected using aqueous methylamine at about 35° C. for 30 minutes. If the 2′-deoxy-2′-fluoro containing oligonucleotide also comprises ribonucleotides, after deprotection with aqueous methylamine at about 35° C. for 30 minutes, TEA-HF is added and the reaction maintained at about 65° C. for an additional 15 minutes.
Synthesis of Nucleic Acid Molecules
In greater detail, synthesis of nucleic acids greater than 100 nucleotides in length is difficult using automated methods, and the therapeutic cost of such molecules is prohibitive. In this invention, small nucleic acid motifs, “small” refers to nucleic acid motifs no more than 100 nucleotides in length, preferably no more than 80 nucleotides in length, and most preferably no more than 50 nucleotides in length; e.g., individual siNA oligonucleotide sequences or siNA sequences synthesized in tandem) are preferably used for exogenous delivery. The simple structure of these molecules increases the ability of the nucleic acid to invade targeted regions of protein and/or RNA structure. Exemplary molecules of the instant invention are chemically synthesized, and others can similarly be synthesized.
Oligonucleotides (e.g., certain modified oligonucleotides or portions of oligonucleotides lacking ribonucleotides) are synthesized using protocols known in the art, for example as described in Caruthers et al., 1992, Methods in Enzymology 211, 3-19, Thompson et al., International PCT Publication No. WO 99/54459, Wincott et al., 1995, Nucleic Acids Res. 23, 2677-2684, Wincott et al., 1997, Methods Mol. Bio., 74, 59, Brennan et al., 1998, Biotechnol Bioeng., 61, 33-45, and Brennan, U.S. Pat. No. 6,001,311. All of these references are incorporated herein by reference. The synthesis of oligonucleotides makes use of common nucleic acid protecting and coupling groups, such as dimethoxytrityl at the 5′-end, and phosphoramidites at the 3′-end. In a non-limiting example, small scale syntheses are conducted on a 394 Applied Biosystems, Inc. synthesizer using a 0.2 μmol scale protocol with a 2.5 min coupling step for 2′-O-methylated nucleotides and a 45 sec coupling step for 2′-deoxy nucleotides or 2′-deoxy-2′-fluoro nucleotides. Alternatively, syntheses at the 0.2 μmol scale can be performed on a 96-well plate synthesizer, such as the instrument produced by Protogene (Palo Alto, Calif.) with minimal modification to the cycle. A 33-fold excess (60 μl of 0.11 M=6.6 μmol) of 2′-O-methyl phosphoramidite and a 105-fold excess of S-ethyl tetrazole (60 μL of 0.25 M=15 μmol) can be used in each coupling cycle of 2′-O-methyl residues relative to polymer-bound 5′-hydroxyl. A 22-fold excess (40 μL of 0.11 M=4.4 μmol) of deoxy phosphoramidite and a 70-fold excess of S-ethyl tetrazole (40 μL of 0.25 M=10 μmol) can be used in each coupling cycle of deoxy residues relative to polymer-bound 5′-hydroxyl. Average coupling yields on the 394 Applied Biosystems, Inc. synthesizer, determined by colorimetric quantitation of the trityl fractions, are typically 97.5-99%. Other oligonucleotide synthesis reagents for the 394 Applied Biosystems, Inc. synthesizer include the following: detritylation solution is 3% TCA in methylene chloride (ABI); capping is performed with 16% N-methyl imidazole in THF (ABI) and 10% acetic anhydride/10% 2,6-lutidine in THF (ABI); and oxidation solution is 16.9 mM I2, 49 mM pyridine, 9% water in THF (PERSEPTIVE™). Burdick & Jackson Synthesis Grade acetonitrile is used directly from the reagent bottle. S-Ethyltetrazole solution (0.25 M in acetonitrile) is made up from the solid obtained from American International Chemical, Inc. Alternately, for the introduction of phosphorothioate linkages, Beaucage reagent (3H-1,2-Benzodithiol-3-one 1,1-dioxide, 0.05 M in acetonitrile) is used.
Deprotection of the DNA-based oligonucleotides is performed as follows: the polymer-bound trityl-on oligoribonucleotide is transferred to a 4 mL glass screw top vial and suspended in a solution of 40% aq. methylamine (1 mL) at 65° C. for 10 min. After cooling to −20° C., the supernatant is removed from the polymer support. The support is washed three times with 1.0 mL of EtOH:MeCN:H2O/3:1:1, vortexed and the supernatant is then added to the first supernatant. The combined supernatants, containing the oligoribonucleotide, are dried to a white powder.
The method of synthesis used for RNA including certain siNA molecules of the invention follows the procedure as described in Usman et al., 1987, J. Am. Chem. Soc., 109, 7845; Scaringe et al., 1990, Nucleic Acids Res., 18, 5433; and Wincott et al., 1995, Nucleic Acids Res. 23, 2677-2684 Wincott et al., 1997, Methods Mol. Bio., 74, 59, and makes use of common nucleic acid protecting and coupling groups, such as dimethoxytrityl at the 5′-end, and phosphoramidites at the 3′-end. In a non-limiting example, small scale syntheses are conducted on a 394 Applied Biosystems, Inc. synthesizer using a 0.2 μmol scale protocol with a 7.5 min coupling step for alkylsilyl protected nucleotides and a 2.5 min coupling step for 2′-O-methylated nucleotides. Alternatively, syntheses at the 0.2 μmol scale can be done on a 96-well plate synthesizer, such as the instrument produced by Protogene (Palo Alto, Calif.) with minimal modification to the cycle. A 33-fold excess (60 μL of 0.11 M=6.6 μmol) of 2′-O-methyl phosphoramidite and a 75-fold excess of S-ethyl tetrazole (60 μL of 0.25 M=15 μmol) can be used in each coupling cycle of 2′-O-methyl residues relative to polymer-bound 5′-hydroxyl. A 66-fold excess (120 μL of 0.11 M=13.2 μmol) of alkylsilyl (ribo) protected phosphoramidite and a 150-fold excess of S-ethyl tetrazole (120 μL of 0.25 M=30 μmol) can be used in each coupling cycle of ribo residues relative to polymer-bound 5′-hydroxyl. Average coupling yields on the 394 Applied Biosystems, Inc. synthesizer, determined by colorimetric quantitation of the trityl fractions, are typically 97.5-99%. Other oligonucleotide synthesis reagents for the 394 Applied Biosystems, Inc. synthesizer include the following: detritylation solution is 3% TCA in methylene chloride (ABI); capping is performed with 16% N-methyl imidazole in THF (ABI) and 10% acetic anhydride/10% 2,6-lutidine in THF (ABI); oxidation solution is 16.9 mM I2, 49 mM pyridine, 9% water in THF (PERSEPTIVE™). Burdick & Jackson Synthesis Grade acetonitrile is used directly from the reagent bottle. S-Ethyltetrazole solution (0.25 M in acetonitrile) is made up from the solid obtained from American International Chemical, Inc. Alternately, for the introduction of phosphorothioate linkages, Beaucage reagent (3H-1,2-Benzodithiol-3-one 1,1-dioxide 0.05 M in acetonitrile) is used.
Deprotection of the RNA is performed using either a two-pot or one-pot protocol. For the two-pot protocol, the polymer-bound trityl-on oligoribonucleotide is transferred to a 4 mL glass screw top vial and suspended in a solution of 40% aq. methylamine (1 mL) at 65° C. for 10 min. After cooling to −20° C., the supernatant is removed from the polymer support. The support is washed three times with 1.0 mL of EtoH:MeCN:H2O/3:1:1, vortexed and the supernatant is then added to the first supernatant. The combined supernatants, containing the oligoribonucleotide, are dried to a white powder. The base deprotected oligoribonucleotide is resuspended in anhydrous TEA/HF/NMP solution (300 μL of a solution of 1.5 mL N-methylpyrrolidinone, 750 μL TEA and 1 mL TEA.3HF to provide a 1.4 M HF concentration) and heated to 65° C. After 1.5 h, the oligomer is quenched with 1.5 M NH4HCO3.
Alternatively, for the one-pot protocol, the polymer-bound trityl-on oligoribonucleotide is transferred to a 4 mL glass screw top vial and suspended in a solution of 33% ethanolic methylamine/DMSO: 1/1 (0.8 mL) at 65° C. for 15 min. The vial is brought to r.t. TEA.3HF (0.1 mL) is added and the vial is heated at 65° C. for 15 min. The sample is cooled at −20° C. and then quenched with 1.5 M NH4HCO3.
For purification of the trityl-on oligomers, the quenched NH4HCO3 solution is loaded onto a C-18 containing cartridge that had been prewashed with acetonitrile followed by 50 mM TEAA. After washing the loaded cartridge with water, the RNA is detritylated with 0.5% TFA for 13 min. The cartridge is then washed again with water, salt exchanged with 1 M NaCl and washed with water again. The oligonucleotide is then eluted with 30% acetonitrile.
The average stepwise coupling yields are typically >98% (Wincott et al., 1995 Nucleic Acids Res. 23, 2677-2684). Those of ordinary skill in the art will recognize that the scale of synthesis can be adapted to be larger or smaller than the example described above including but not limited to 96-well format.
Alternatively, the nucleic acid molecules of the present invention can be synthesized separately and joined together post-synthetically, for example, by ligation (Moore et al., 1992, Science 256, 9923; Draper et al., International PCT publication No. WO 93/23569; Shabarova et al., 1991, Nucleic Acids Research 19, 4247; Bellon et al., 1997, Nucleosides & Nucleotides, 16, 951; Bellon et al., 1997, Bioconjugate Chem. 8, 204), or by hybridization following synthesis and/or deprotection.
The siNA molecules of the invention can also be synthesized via a tandem synthesis methodology as described below, where both siNA strands are synthesized as a single contiguous oligonucleotide fragment or strand separated by a cleavable linker which is subsequently cleaved to provide separate siNA fragments or strands that hybridize and permit purification of the siNA duplex. The linker can be a oligonucleotide linker or a non-nucleotide linker. The tandem synthesis of siNA as described herein can be readily adapted to both multiwell/multiplate synthesis platforms such as 96 well or similarly larger multi-well platforms. The tandem synthesis of siNA as described herein can also be readily adapted to large scale synthesis platforms employing batch reactors, synthesis columns and the like.
A siNA molecule can also be assembled from two distinct nucleic acid strands or fragments wherein one fragment includes the sense region and the second fragment includes the antisense region of the RNA molecule.
The nucleic acid molecules of the present invention can be modified extensively to enhance stability by modification with nuclease resistant groups, for example, 2′-amino, 2′-C-allyl, 2′-fluoro, 2′-O-methyl, 2′-H (for a review see Usman and Cedergren, 1992, TIBS 17, 34; Usman et al., 1994, Nucleic Acids Symp. Ser. 31, 163). siNA constructs can be purified by gel electrophoresis using general methods or can be purified by high pressure liquid chromatography (HPLC; see Wincott et al., supra, the totality of which is hereby incorporated herein by reference) and re-suspended in water.
In another aspect of the invention, siNA molecules of the invention are expressed from transcription units inserted into DNA or RNA vectors. The recombinant vectors can be DNA plasmids or viral vectors. siNA expressing viral vectors can be constructed based on, but not limited to, adeno-associated virus, retrovirus, adenovirus, or alphavirus. The recombinant vectors capable of expressing the siNA molecules can be delivered as described herein, and persist in target cells. Alternatively, viral vectors can be used that provide for transient expression of siNA molecules.
Tandem Synthesis of siNA Constructs
Exemplary siNA molecules are synthesized in tandem using a cleavable linker, for example a succinyl-based linker. Tandem synthesis as described herein is followed by a one-step purification process that provides RNAi molecules in high yield. This approach is highly amenable to siNA synthesis in support of high throughput RNAi screening, and can be readily adapted to multi-column or multi-well synthesis platforms.
After completing a tandem synthesis of an siNA oligo and its complement in which the 5′-terminal dimethoxytrityl (5′-O-DMT) group remains intact (trityl on synthesis), the oligonucleotides are deprotected as described above. Following deprotection, the siNA sequence strands are allowed to spontaneously hybridize. This hybridization yields a duplex in which one strand has retained the 5′-O-DMT group while the complementary strand comprises a terminal 5′-hydroxyl. The newly funned duplex behaves as a single molecule during routine solid-phase extraction purification (Trityl-On purification) even though only one molecule has a dimethoxytrityl group. Because the strands form a stable duplex, this dimethoxytrityl group (or an equivalent group, such as other trityl groups or other hydrophobic moieties) is all that is required to purify the pair of oligos, for example by using a C18 cartridge.
Standard phosphoramidite synthesis chemistry is used up to point of introducing a tandem linker, such as an inverted deoxy abasic succinate or glyceryl succinate linker or an equivalent cleavable linker. A non-limiting example of linker coupling conditions that can be used includes a hindered base such as diisopropylethylamine (DIPA) and/or DMAP in the presence of an activator reagent such as Bromotripyrrolidinophosphoniumhexafluororophosphate (PyBrOP). After the linker is coupled, standard synthesis chemistry is utilized to complete synthesis of the second sequence leaving the terminal the 5′-O-DMT intact. Following synthesis, the resulting oligonucleotide is deprotected according to the procedures described herein and quenched with a suitable buffer, for example with 50 mM NaOAc or 1.5M NH4H2CO3.
Purification of the siNA duplex can be readily accomplished using solid phase extraction, for example using a Waters C18 SepPak 1 g cartridge conditioned with 1 column volume (CV) of acetonitrile, 2 CV H2O, and 2 CV 50 mM NaOAc. The sample is loaded and then washed with 1 CV H2O or 50 mM NaOAc. Failure sequences are eluted with 1 CV 14% ACN (Aqueous with 50 mM NaOAc and 50 mM NaCl). The column is then washed, for example with 1 CV H2O followed by on-column detritylation, for example by passing 1 CV of 1% aqueous trifluoroacetic acid (TFA) over the column, then adding a second CV of 1% aqueous TFA to the column and allowing to stand for approx. 10 minutes. The remaining TFA solution is removed and the column washed with H20 followed by 1 CV 1M NaCl and additional H2O. The siNA duplex product is then eluted, for example using 1 CV 20% aqueous CAN.
Optimizing Activity of the Nucleic Acid Molecules.
Chemically synthesizing nucleic acid molecules with modifications (base, sugar and/or phosphate) can prevent their degradation by serum ribonucleases, which can increase their potency (see e.g., Eckstein et al., International Publication No. WO 92/07065; Perrault et al., 1990 Nature 344, 565; Pieken et al., 1991, Science 253, 314; Usman and Cedergren, 1992, Trends in Biochem. Sci. 17, 334; Usman et al., International Publication No. WO 93/15187; and Rossi et al., International Publication No. WO 91/03162; Sproat, U.S. Pat. No. 5,334,711; Gold et al., U.S. Pat. No. 6,300,074; and Burgin et al., supra; all of which are incorporated by reference herein). All of the above references describe various chemical modifications that can be made to the base, phosphate and/or sugar moieties of the nucleic acid molecules described herein. Modifications that enhance their efficacy in cells, and removal of bases from nucleic acid molecules to shorten oligonucleotide synthesis times and reduce chemical requirements are desired.
There are several examples in the art describing sugar, base and phosphate modifications that can be introduced into nucleic acid molecules with significant enhancement in their nuclease stability and efficacy. For example, oligonucleotides are modified to enhance stability and/or enhance biological activity by modification with nuclease resistant groups, for example, 2′-amino, 2′-C-allyl, 2′-fluoro, 2′-O-methyl, 2′-O-allyl, 2′-H, nucleotide base modifications (for a review see Usman and Cedergren, 1992, TIBS. 17, 34; Usman et al., 1994, Nucleic Acids Symp. Ser. 31, 163; Burgin et al., 1996, Biochemistry, 35, 14090). Sugar modification of nucleic acid molecules have been extensively described in the art (see Eckstein et al., International Publication PCT No. WO 92/07065; Perrault et al. Nature, 1990, 344, 565-568; Pieken et al. Science, 1991, 253, 314-317; Usman and Cedergren, Trends in Biochem. Sci., 1992, 17, 334-339; Usman et al. International Publication PCT No. WO 93/15187; Sproat, U.S. Pat. No. 5,334,711 and Beigelman et al., 1995, J. Biol. Chem., 270, 25702; Beigelman et al., International PCT publication No. WO 97/26270; Beigelman et al., U.S. Pat. No. 5,716,824; Usman et al., U.S. Pat. No. 5,627,053; Woolf et al., International PCT Publication No. WO 98/13526; Thompson et al., U.S. Ser. No. 60/082,404 which was filed on Apr. 20, 1998; Karpeisky et al., 1998, Tetrahedron Lett., 39, 1131; Earnshaw and Gait, 1998, Biopolymers (Nucleic Acid Sciences), 48, 39-55; Verma and Eckstein, 1998, Annu. Rev. Biochem., 67, 99-134; and Burlina et al., 1997, Bioorg. Med. Chem., 5, 1999-2010; all of the references are hereby incorporated in their totality by reference herein). Such publications describe general methods and strategies to determine the location of incorporation of sugar, base and/or phosphate modifications and the like into nucleic acid molecules without modulating catalysis, and are incorporated by reference herein. In view of such teachings, similar modifications can be used as described herein to modify the siNA nucleic acid molecules of the instant invention so long as the ability of siNA to promote RNAi is cells is not significantly inhibited.
While chemical modification of oligonucleotide internucleotide linkages with phosphorothioate, phosphorodithioate, and/or 5′-methylphosphonate linkages improves stability, excessive modifications can cause some toxicity or decreased activity. Therefore, when designing nucleic acid molecules, the amount of these internucleotide linkages should be minimized. The reduction in the concentration of these linkages should lower toxicity, resulting in increased efficacy and higher specificity of these molecules.
Short interfering nucleic acid (siNA) molecules having chemical modifications that maintain or enhance activity are provided. Such a nucleic acid is also generally more resistant to nucleases than an unmodified nucleic acid. Accordingly, the in vitro and/or in vivo activity should not be significantly lowered. In cases in which modulation is the goal, therapeutic nucleic acid molecules delivered exogenously should optimally be stable within cells until translation of the target RNA has been modulated long enough to reduce the levels of the undesirable protein. This period of time varies between hours to days depending upon the disease state. Improvements in the chemical synthesis of RNA and DNA (Wincott et al., 1995, Nucleic Acids Res. 23, 2677; Caruthers et al., 1992, Methods in Enzymology 211, 3-19 (incorporated by reference herein)) have expanded the ability to modify nucleic acid molecules by introducing nucleotide modifications to enhance their nuclease stability, as described above.
In one embodiment, nucleic acid molecules of the invention include one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) G-clamp nucleotides. A G-clamp nucleotide is a modified cytosine analog wherein the modifications confer the ability to hydrogen bond both Watson-Crick and Hoogsteen faces of a complementary guanine within a duplex, see for example Lin and Matteucci, 1998, J. Am. Chem. Soc., 120, 8531-8532. A single G-clamp analog substitution within an oligonucleotide can result in substantially enhanced helical thermal stability and mismatch discrimination when hybridized to complementary oligonucleotides. The inclusion of such nucleotides in nucleic acid molecules of the invention results in both enhanced affinity and specificity to nucleic acid targets, complementary sequences, or template strands. In another embodiment, nucleic acid molecules of the invention include one or more (e.g., about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more) LNA “locked nucleic acid” nucleotides such as a 2′,4′-C mythylene bicyclo nucleotide (see for example Wengel et al., International PCT Publication No. WO 00/66604 and WO 99/14226).
In another embodiment, the invention features conjugates and/or complexes of siNA molecules of the invention. Such conjugates and/or complexes can be used to facilitate delivery of siNA molecules into a biological system, such as a cell. The conjugates and complexes provided by the instant invention can impart therapeutic activity by transferring therapeutic compounds across cellular membranes, altering the pharmacokinetics, and/or modulating the localization of nucleic acid molecules of the invention. The present invention encompasses the design and synthesis of novel conjugates and complexes for the delivery of molecules, including, but not limited to, small molecules, lipids, phospholipids, nucleosides, nucleotides, nucleic acids, antibodies, toxins, negatively charged polymers and other polymers, for example proteins, peptides, hormones, carbohydrates, polyethylene glycols, or polyamines, across cellular membranes. In general, the transporters described are designed to be used either individually or as part of a multi-component system, with or without degradable linkers. These compounds are expected to improve delivery and/or localization of nucleic acid molecules of the invention into a number of cell types originating from different tissues, in the presence or absence of serum (see Sullenger and Cech, U.S. Pat. No. 5,854,038). Conjugates of the molecules described herein can be attached to biologically active molecules via linkers that are biodegradable, such as biodegradable nucleic acid linker molecules.
The term “biodegradable linker” as used herein, refers to a nucleic acid or non-nucleic acid linker molecule that is designed as a biodegradable linker to connect one molecule to another molecule, for example, a biologically active molecule to a siNA molecule of the invention or the sense and antisense strands of a siNA molecule of the invention. The biodegradable linker is designed such that its stability can be modulated for a particular purpose, such as delivery to a particular tissue or cell type. The stability of a nucleic acid-based biodegradable linker molecule can be modulated by using various chemistries, for example combinations of ribonucleotides, deoxyribonucleotides, and chemically-modified nucleotides, such as 2′-O-methyl, 2′-fluoro, 2′-amino, 2′-O-amino, 2′-C-allyl, 2′-O-allyl, and other 2′-modified or base modified nucleotides. The biodegradable nucleic acid linker molecule can be a dimer, trimer, tetramer or longer nucleic acid molecule, for example, an oligonucleotide of about 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides in length, or can comprise a single nucleotide with a phosphorus-based linkage, for example, a phosphoramidate or phosphodiester linkage. The biodegradable nucleic acid linker molecule can also comprise nucleic acid backbone, nucleic acid sugar, or nucleic acid base modifications.
The term “biodegradable” as used herein, refers to degradation in a biological system, for example enzymatic degradation or chemical degradation.
The term “biologically active molecule” as used herein, refers to compounds or molecules that are capable of eliciting or modifying a biological response in a system. Non-limiting examples of biologically active siNA molecules either alone or in combination with other molecules contemplated by the instant invention include therapeutically active molecules such as antibodies, hormones, antivirals, peptides, proteins, chemotherapeutics, small molecules, vitamins, co-factors, nucleosides, nucleotides, oligonucleotides, enzymatic nucleic acids, antisense nucleic acids, triplex forming oligonucleotides, 2,5-A chimeras, siNA, dsRNA, allozymes, aptamers, decoys and analogs thereof. Biologically active molecules of the invention also include molecules capable of modulating the pharmacokinetics and/or pharmacodynamics of other biologically active molecules, for example, lipids and polymers such as polyamines, polyamides, polyethylene glycol and other polyethers.
The term “phospholipid” as used herein, refers to a hydrophobic molecule comprising at least one phosphorus group. For example, a phospholipid can comprise a phosphorus-containing group and saturated or unsaturated alkyl group, optionally substituted with OH, COOH, oxo, amine, or substituted or unsubstituted aryl groups.
Therapeutic nucleic acid molecules (e.g., siNA molecules) delivered exogenously optimally are stable within cells until reverse trascription of the RNA has been modulated long enough to reduce the levels of the RNA transcript. The nucleic acid molecules are resistant to nucleases in order to function as effective intracellular therapeutic agents. Improvements in the chemical synthesis of nucleic acid molecules described in the instant invention and in the art have expanded the ability to modify nucleic acid molecules by introducing nucleotide modifications to enhance their nuclease stability as described above.
In yet another embodiment, siNA molecules having chemical modifications that maintain or enhance enzymatic activity of proteins involved in RNAi are provided. Such nucleic acids are also generally more resistant to nucleases than unmodified nucleic acids. Thus, in vitro and/or in vivo the activity should not be significantly lowered.
Use of the nucleic acid-based molecules of the invention will lead to better treatment of the disease progression by affording the possibility of combination therapies (e.g., multiple siNA molecules targeted to different genes; nucleic acid molecules coupled with known small molecule modulators; or intermittent treatment with combinations of molecules, including different motifs and/or other chemical or biological molecules). The treatment of subjects with siNA molecules can also include combinations of different types of nucleic acid molecules, such as enzymatic nucleic acid molecules (ribozymes), allozymes, antisense, 2,5-A oligoadenylate, decoys, and aptamers.
In another aspect a siNA molecule of the invention comprises one or more 5′ and/or a 3′-cap structure, for example on only the sense siNA strand, the antisense siNA strand, or both siNA strands.
By “cap structure” is meant chemical modifications, which have been incorporated at either terminus of the oligonucleotide (see, for example, Adamic et al., U.S. Pat. No. 5,998,203, incorporated by reference herein). These terminal modifications protect the nucleic acid molecule from exonuclease degradation, and may help in delivery and/or localization within a cell. The cap may be present at the 5′-terminus (5′-cap) or at the 3′-terminal (3′-cap) or may be present on both termini. In non-limiting examples: the 5′-cap is selected from the group comprising glyceryl, inverted deoxy abasic residue (moiety); 4′,5′-methylene nucleotide; 1-(beta-D-erythrofuranosyl) nucleotide, 4′-thio nucleotide; carbocyclic nucleotide; 1,5-anhydrohexitol nucleotide; L-nucleotides; alpha-nucleotides; modified base nucleotide; phosphorodithioate linkage; threo-pentofuranosyl nucleotide; acyclic 3′,4′-seco nucleotide; acyclic 3,4-dihydroxybutyl nucleotide; acyclic 3,5-dihydroxypentyl nucleotide, 3′-3′-inverted nucleotide moiety; 3′-3′-inverted abasic moiety; 3′-2′-inverted nucleotide moiety; 3′-2′-inverted abasic moiety; 1,4-butanediol phosphate; 3′-phosphoramidate; hexylphosphate; aminohexyl phosphate; 3′-phosphate; 3′-phosphorothioate; phosphorodithioate; or bridging or non-bridging methylphosphonate moiety.
In yet another embodiment, the 3′-cap is selected from a group comprising glyceryl, inverted deoxy abasic residue (moiety), 4′,5′-methylene nucleotide; 1-(beta-D-erythrofuranosyl) nucleotide; 4′-thio nucleotide, carbocyclic nucleotide; 5′-amino-alkyl phosphate; 1,3-diamino-2-propyl phosphate; 3-aminopropyl phosphate; 6-aminohexyl phosphate; 1,2-aminododecyl phosphate; hydroxypropyl phosphate; 1,5-anhydrohexitol nucleotide; L-nucleotide; alpha-nucleotide; modified base nucleotide; phosphorodithioate; threo-pentofuranosyl nucleotide; acyclic 3′,4′-seco nucleotide; 3,4-dihydroxybutyl nucleotide; 3,5-dihydroxypentyl nucleotide, 5′-5′-inverted nucleotide moiety; 5′-5′-inverted abasic moiety; 5′-phosphoramidate; 5′-phosphorothioate; 1,4-butanediol phosphate; 5′-amino; bridging and/or non-bridging 5′-phosphoramidate, phosphorothioate and/or phosphorodithioate, bridging or non bridging methylphosphonate and 5′-mercapto moieties (for more details see Beaucage and Iyer, is 1993, Tetrahedron 49, 1925; incorporated by reference herein).
By the term “non-nucleotide” is meant any group or compound which can be incorporated into a nucleic acid chain in the place of one or more nucleotide units, including either sugar and/or phosphate substitutions, and allows the remaining bases to exhibit their enzymatic activity. The group or compound is abasic in that it does not contain a commonly recognized nucleotide base, such as adenosine, guanine, cytosine, uracil or thymine and therefore lacks a base at the 1′-position.
An “alkyl” group refers to a saturated aliphatic hydrocarbon, including straight-chain, branched-chain, and cyclic alkyl groups. Preferably, the alkyl group has 1 to 12 carbons. More preferably, it is a lower alkyl of from 1 to 7 carbons, more preferably 1 to 4 carbons. The alkyl group can be substituted or unsubstituted. When substituted the substituted group(s) is preferably, hydroxyl, cyano, alkoxy, ═O, ═S, NO2 or N(CH3)2, amino, or SH. The term also includes alkenyl groups that are unsaturated hydrocarbon groups containing at least one carbon-carbon double bond, including straight-chain, branched-chain, and cyclic groups. Preferably, the alkenyl group has 1 to 12 carbons. More preferably, it is a lower alkenyl of from 1 to 7 carbons, more preferably 1 to 4 carbons. The alkenyl group may be substituted or unsubstituted. When substituted the substituted group(s) is preferably, hydroxyl, cyano, alkoxy, ═O, ═S, NO2, halogen, N(CH3)2, amino, or SH. The term “alkyl” also includes alkynyl groups that have an unsaturated hydrocarbon group containing at least one carbon-carbon triple bond, including straight-chain, branched-chain, and cyclic groups. Preferably, the alkynyl group has 1 to 12 carbons. More preferably, it is a lower alkynyl of from 1 to 7 carbons, more preferably 1 to 4 carbons. The alkynyl group may be substituted or unsubstituted. When substituted the substituted group(s) is preferably, hydroxyl, cyano, alkoxy, ═O, ═S, NO2 or N(CH3)2, amino or SH.
Such alkyl groups can also include aryl, alkylaryl, carbocyclic aryl, heterocyclic aryl, amide and ester groups. An “aryl” group refers to an aromatic group that has at least one ring having a conjugated pi electron system and includes carbocyclic aryl, heterocyclic aryl and biaryl groups, all of which may be optionally substituted. The preferred substituent(s) of aryl groups are halogen, trihalomethyl, hydroxyl, SH, OH, cyano, alkoxy, alkyl, alkenyl, alkynyl, and amino groups. An “alkylaryl” group refers to an alkyl group (as described above) covalently joined to an aryl group (as described above). Carbocyclic aryl groups are groups wherein the ring atoms on the aromatic ring are all carbon atoms. The carbon atoms are optionally substituted. Heterocyclic aryl groups are groups having from 1 to 3 heteroatoms as ring atoms in the aromatic ring and the remainder of the ring atoms are carbon atoms. Suitable heteroatoms include oxygen, sulfur, and nitrogen, and include furanyl, thienyl, pyridyl, pyrrolyl, N-lower alkyl pyrrolo, pyrimidyl, pyrazinyl, imidazolyl and the like, all optionally substituted. An “amide” refers to an —C(O)—NH—R, where R is either alkyl, aryl, alkylaryl or hydrogen. An “ester” refers to an —C(O)—OR′, where R is either alkyl, aryl, alkylaryl or hydrogen.
By “nucleotide” as used herein is as recognized in the art to include natural bases (standard), and modified bases well known in the art. Such bases are generally located at the 1′ position of a nucleotide sugar moiety. Nucleotides generally comprise a base, sugar and a phosphate group. The nucleotides can be unmodified or modified at the sugar, phosphate and/or base moiety, (also referred to interchangeably as nucleotide analogs, modified nucleotides, non-natural nucleotides, non-standard nucleotides and other; see, for example, Usman and McSwiggen, supra; Eckstein et al., International PCT Publication No. WO 92/07065; Usman et al., International PCT Publication No. WO 93/15187; Uhlman & Peyman, supra, all are hereby incorporated by reference herein). There are several examples of modified nucleic acid bases known in the art as summarized by Limbach et al., 1994, Nucleic Acids Res. 22, 2183. Some of the non-limiting examples of base modifications that can be introduced into nucleic acid molecules include, inosine, purine, pyridin-4-one, pyridin-2-one, phenyl, pseudouracil, 2, 4, 6-trimethoxy benzene, 3-methyl uracil, dihydrouridine, naphthyl, aminophenyl, 5-alkylcytidines (e.g., 5-methylcytidine), 5-alkyluridines (e.g., ribothymidine), 5-halouridine (e.g., 5-bromouridine) or 6-azapyrimidines or 6-alkylpyrimidines (e.g. 6-methyluridine), propyne, and others (Burgin et al., 1996, Biochemistry, 35, 14090; Uhlman & Peyman, supra). By “modified bases” in this aspect is meant nucleotide bases other than adenine, guanine, cytosine and uracil at 1′ position or their equivalents.
In one embodiment, the invention features modified siNA molecules, with phosphate backbone modifications comprising one or more phosphorothioate, phosphorodithioate, methylphosphonate, phosphotriester, morpholino, amidate carbamate, carboxymethyl, acetamidate, polyamide, sulfonate, sulfonamide, sulfamate, formacetal, thioformacetal, and/or alkylsilyl, substitutions. For a review of oligonucleotide backbone modifications, see Hunziker and Leumann, 1995, Nucleic Acid Analogues: Synthesis and Properties, in Modern Synthetic Methods, VCH, 331-417, and Mesmaeker et al., 1994, Novel Backbone Replacements for Oligonucleotides, in Carbohydrate Modifications in Antisense Research, ACS, 24-39.
By “abasic” is meant sugar moieties lacking a base or having other chemical groups in place of a base at the 1′ position, see for example Adamic et al., U.S. Pat. No. 5,998,203.
By “unmodified nucleoside” is meant one of the bases adenine, cytosine, guanine, thymine, or uracil joined to the 1′ carbon of β-D-ribo-furanose.
By “modified nucleoside” is meant any nucleotide base which contains a modification in the chemical structure of an unmodified nucleotide base, sugar and/or phosphate. Non-limiting examples of modified nucleotides are shown by Formulae I-VII and/or other modifications described herein.
In connection with 2′-modified nucleotides as described for the present invention, by “amino” is meant 2′-NH2 or 2′-O—NH2, which may be modified or unmodified. Such modified groups are described, for example, in Eckstein et al., U.S. Pat. No. 5,672,695 and Matulic-Adamic et al., U.S. Pat. No. 6,248,878, which are both incorporated by reference in their entireties.
Various modifications to nucleic acid siNA structure can be made to enhance the utility of these molecules. Such modifications will enhance shelf-life, half-life in vitro, stability, and ease of introduction of such oligonucleotides to the target site, e.g., to enhance penetration of cellular membranes, and confer the ability to recognize and bind to targeted cells.
F. Compositions for Administration
Suitable pharmaceutical compositions containing the present RNAi inducing oligonucleotides can be prepared in many different forms. In most cases, it is desirable to apply the active oligonucleotide topically to one or more hair producing skin areas on a subject. For these applications, a composition that flows, or is spreadable or sprayable is advantageous. Examples of such compositions include, for example, solutions, suspensions, emulsions, lotions, creams, gels, ointments, liposome preparations, and the like. Preparation of such pharmaceutical compositions is well-known in the art, and can be utilized for the present invention.
Thus, the oligonucleotide formulations useful in the present invention will generally include the oligonucleotide(s) and a pharmaceutically acceptable carrier, e.g., any liquid or nonliquid carrier, gel, cream, ointment, lotion, paste, emulsifier, solvent, liquid diluent, powder, or the like, which is stable with respect to all components of the topical pharmaceutical formulation and which is suitable for topical administration of oligonucleotides according to the method of the invention. Such carriers are well known in the art.
A topical carrier, as noted above, is one which is generally suited to topical drug administration and includes any such materials known in the art. The topical carrier is selected so as to provide the composition in the desired form, e.g., as a liquid, lotion, cream, paste, gel, or ointment, and may be comprised of a material of either naturally occurring or synthetic origin. It is essential, clearly, that the selected carrier not adversely affect the oligonucleotide or other components of the topical formulation. Examples of suitable topical carriers for use herein include water, alcohols and other nontoxic organic solvents, glycerin, mineral oil, silicone, petroleum jelly, lanolin, fatty acids, vegetable oils, waxes, and the like. Particularly preferred formulations herein are colorless, odorless ointments, lotions, creams and gels.
Ointments, which are semisolid preparations, are typically based on petrolatum or other petroleum derivatives. As will be appreciated by the ordinarily skilled artisan, the specific ointment base to be used is one that provides for optimum oligonucleotide delivery, and, preferably, provides for other desired characteristics as well, e.g., emolliency or the like. As with other carriers or vehicles, an ointment base should be inert, stable, nonirritating and nonsensitizing. As explained in Remington: The Science and Practice of Pharmacy, 19th Ed. (Easton, Pa.: Mack Publishing Co., 1995), at pages 1399-1404, ointment bases may be grouped in four classes: oleaginous bases; emulsifiable bases; emulsion bases; and water-soluble bases. Oleaginous ointment bases include, for example, vegetable oils, fats obtained from animals, and semisolid hydrocarbons obtained from petroleum. Emulsifiable ointment bases, also known as absorbent ointment bases, contain little or no water and include, for example, hydroxystearin sulfate, anhydrous lanolin and hydrophilic petrolatum. Emulsion ointment bases are either water-in-oil (W/O) emulsions or oil-in-water (O/W) emulsions, and include, for example, cetyl alcohol, glyceryl monostearate, lanolin and stearic acid. Preferred water-soluble ointment bases are prepared from polyethylene glycols of varying molecular weight; again, reference may be had to Remington: The Science and Practice of Pharmacy for further information.
Lotions, which are preparations that are to be applied to the skin surface without friction, are typically liquid or semiliquid preparations in which solid particles, including the oligonucleotide, are present in a water or alcohol base. Lotions are usually suspensions of solids, and preferably, for the present purpose, comprise a liquid oily emulsion of the oil-in-water type. Lotions are preferred formulations for oligonucleotide delivery to large body areas, because of the ease of applying a more fluid composition. It is generally necessary that the insoluble matter in a lotion be finely divided. Lotions will typically contain suspending agents to produce better dispersions as well as compounds useful for localizing and holding the active agent in contact with the skin, e.g., methylcellulose, sodium carboxymethyl-cellulose, or the like.
Creams containing a oligonucleotide for delivery according to the method of the invention are viscous liquid or semisolid emulsions, either oil-in-water or water-in-oil. Cream bases are water-washable, and contain an oil phase, an emulsifier and an aqueous phase. The oil phase, also sometimes called the “internal” phase, is generally comprised of petrolatum and a fatty alcohol such as cetyl or stearyl alcohol; the aqueous phase usually, although not necessarily, exceeds the oil phase in volume, and generally contains a humectant. The emulsifier in a cream formulation, as explained in Remington, supra, is generally a nonionic, anionic, cationic or amphoteric surfactant.
Gel formulations can also be used in connection with the present invention. As will be appreciated by those working in the field of topical drug formulation, gels are semisolid, suspension-type systems. Single-phase gels contain organic macromolecules distributed substantially uniformly throughout the carrier liquid, which is typically aqueous, but also, preferably, contain an alcohol and, optionally, an oil.
The oligonucleotide formulations useful in the invention also encompass sprays, that generally provide the oligonucleotide in an aqueous solution which can be misted onto the skin for delivery. Such sprays include those formulated to provide for concentration of the oligonucleotide solution at the site of administration following delivery, e.g., the spray solution can be primarily composed of alcohol or other like volatile liquid in which the oligonucleotide can be dissolved. Upon delivery to the skin, the alcohol carrier evaporates, leaving concentrated oligonucleotide at the site of administration.
The oligonucleotide formulations useful in the invention can also contain other optional such as opacifiers, anti-oxidants, gelling agents, thickening agents, stabilizers, and the like. Other agents may also be added, such as antimicrobial agents, antifungal agents, antibiotics and anti-inflammatory agents such as steroids.
The oligonucleotide formulations can include other components that, while not necessary for delivery of oligonucleotides to the skin, may enhance such delivery. For example, although it is not necessary to the practice of the invention, the oligonucleotide formulations may also contain a skin permeation enhancer. Suitable enhancers are well know in the art and include, for example, dimethylsulfoxide (DMSO), dimethyl formamide (DMF), N,N-dimethylacetamide (DMA), decylmethylsulfoxide (C.sub.10 MSO), C.sub.2-C.sub.6 alkanediols, and the 1-substituted azacycloheptan-2-ones, particularly 1-n-dodecylcyclazacycloheptan-2-one (available under the trademark Azone® from Whitby Research Incorporated, Richmond, Va.), alcohols, and the like. Preferably, the oligonucleotides delivered are substantially free of such permeation enhancers.
The additional components should not substantially interfere with the integrity or biological activity of the oligonucleotide or the formulation in which it is provided, i.e., the additional components do not adversely affect the uptake of the oligonucleotide by skin cells or chemically modify the oligonucleotide in an undesirable manner.
It will be recognized by those skilled in the art that the optimal quantity and spacing of individual dosages of oligonucleotides will be determined by the precise form and components of the oligonucleotide formulation to be delivered, the site of administration, the use to which the delivery device is applied (e.g., immunization, treatment of a condition, production of transgenic animals, etc.), and the particular subject to which the oligonucleotide formulation is to be delivered, and that such optimums can be determined by conventional techniques. It will also be appreciated by one skilled in the art that the optimal dosing regimen, i.e., the number of doses of oligonucleotides, can be ascertained using conventional methods, e.g., course of treatment determination tests. Generally, a dosing regimen will involve administration of the selected oligonucleotide formulation at least once daily, and may be one to four times daily or more.
The practice of the present invention will employ, unless otherwise indicated, conventional techniques of drug formulation, particularly topical drug formulation, which are within the skill of the art. Such techniques are fully explained in the literature. See Remington: The Science and Practice of Pharmacy, cited supra, as well as Goodman & Gilman's The Pharmacological Basis of Therapeutics, 9th Ed. (New York: McGraw-Hill, 1996).
Dosage Forms of the Oligonucleotide Formulations
The oligonucleotides can be prepared in unit dosage form (e.g., in ampules), or in multidose form. The oligonucleotides may be present in such forms as suspensions, solutions, gels, or creams, preferably in an aqueous vehicle (e.g., in a buffered solution). Alternatively, the oligonucleotide salt may be in lyophilized form for reconstitution, at the time of delivery, with a suitable vehicle, such as sterile pyrogen-free water or phosphate-buffered saline (PBS). Both liquid as well as lyophilized forms that are to be reconstituted preferably comprise agents, preferably buffers, in amounts necessary to suitably adjust the pH of the solution. Nonionic materials, such as sugars, are preferred for adjusting tonicity, and sucrose is particularly preferred. Any of these forms may further comprise suitable formulatory agents, such as starch or sugar, glycerol or saline. The compositions per unit dosage, whether liquid, gel, cream, or solid, may contain from 0.1% to 99% of oligonucleotide material.
Delivery Devices
The oligonucleotide formulation can administered using and be provided within, a delivery device (e.g., a patch, bandage, etc.) that provides for both maintenance of contact between the skin of the subject and the oligonucleotide formulation and substantially uninhibited movement of the oligonucleotide into the skin. The delivery device generally does not in and of itself facilitate movement of the oligonucleotide contained therein into the skin, but rather primarily acts to ensure that the oligonucleotide formulation is in contact with the skin for a time sufficient to allow genetic alteration of skin cells. The delivery device comprises a delivery means, or “reservoir,” which is saturated with a formulation that comprises an amount of oligonucleotide sufficient to genetic alteration of skin cells to which it is to be delivered and sufficient to elicit the desired biological effect. For example, where the delivery device is to be used to deliver a oligonucleotide for genetic immunization of a human, the delivery means of the device preferably contains an amount of oligonucleotide ranging from about 10.mu.g to about 1,000.mu.g, preferably from about 100.mu.g to about 500.mu.g.
Suitable delivery means of the delivery devices of the invention include, but are not limited to, sponges, hydrogels, and absorptive materials (e.g., gauze) that allow for retention of the oligonucleotide formulation at the site of oligonucleotide administration without substantially interfering with the delivery of oligonucleotide to the skin. It is important that, upon contact of the delivery means with the skin, the oligonucleotides contained in the delivery means diffuse or otherwise pass from the delivery means into the skin at a rate and in an amount suitable to accomplish the desired effect.
In general, the delivery means has at least two surfaces: a first surface that serves as a skin-contacting surface; and a second surface opposite the skin-contacting surface. Preferably, the second surface is in contact with a liquid-impermeable coating that substantially prevents movement of the oligonucleotide out of the delivery means through the second surface (e.g., in a direction away from the first skin-contacting surface). Preferably, the liquid-impermeable coating also decreases the rate of dehydration of the oligonucleotide formulation contained in the delivery means. In one embodiment, the first skin-contacting surface of the delivery means is associated with a liquid-impermeable, removable layer (e.g., release liner), which layer is removed just prior to placement of the first surface on the skin of a subject for administration of the oligonucleotide.
The delivery device preferably comprises an adhesive means, which can be a polymeric matrix of a pharmaceutically acceptable contact adhesive material, which serves to affix the system to the skin during drug delivery. The adhesive means facilitates retention of the delivery means on the skin at the desired site of administration. Preferably, the adhesive means comprises an adhesive substance that allows for retention of the delivery means at the desired site for a selected amount of time, but additionally allows for easy removal of the delivery means without substantially adversely affecting the skin with which the adhesive substance was in contact.
The adhesive substance used must be biocompatible with the skin of the subject, and should not substantially interfere with the delivery of oligonucleotide to the subject. Examples of suitable skin contact adhesive materials include, but are not limited to, polyethylenes, polysiloxanes, polyisobutylenes, polyacrylates, polyurethanes, and the like. The particular polymeric adhesive selected will depend on the particular oligonucleotide formulation, vehicle, etc., i.e., the adhesive must be compatible with all components of the oligonucleotide formulation.
In one embodiment, the delivery means and skin contact adhesive are present as separate and distinct layers of the delivery device, with the adhesive underlying the delivery means which, in this case, may be either a polymeric matrix as described above, or it may be a liquid or hydrogel reservoir, or may take some other form. In another embodiment, the delivery means is an adhesive bandage. Exemplary delivery devices suitable for use in the invention include, but are not limited to, those devices described in U.S. Pat. No. 5,160,328; U.S. Pat. No. 5,254,346; U.S. Pat. No. 5,714,162; U.S. Pat. No. 5,667,798; U.S. Pat. No. 5,230,896; and U.S. Pat. No. 5,260,066. Methods for preparation of suitable delivery means and other elements associated with the delivery means, such as an adhesive means are well known in the art.
In another embodiment, the oligonucleotide formulation of the invention is provided as a patch, wherein the drug composition is contained within, for example, a laminated structure that serves as a drug delivery device to be affixed to the skin. In such a structure, the oligonucleotide composition is contained within a delivery means, or “reservoir,” which lies beneath an upper backing layer. The laminated structure may contain a single reservoir, or it may contain multiple reservoirs.
The backing layer in the laminates of the patch, which serves as the upper surface of the delivery device, functions as the primary structural element of the laminated structure and provides the device with much of its flexibility. The material selected for the backing material should be selected so that it is substantially impermeable to oligonucleotide and, preferably, to other components of the oligonucleotide formulation, thus preventing loss of any components through the upper surface of the device, and preferably substantially impeding dehydration of the composition in the reservoir. The backing layer may be either occlusive or nonocclusive, depending on whether it is desired that the skin become hydrated during drug delivery. The backing is preferably made of a sheet or film of a preferably flexible elastomeric material. Examples of polymers that are suitable for the backing layer include polyethylene, polypropylene, polyesters, and the like.
During storage and prior to use, the laminated structure includes a release liner. Immediately prior to use, this layer is removed from the device to expose the skin-contacting surface of the device, which as noted above may be either the reservoir itself or a separate contact adhesive layer, so that the system may be affixed to the skin. The release liner is preferably made of a material that is substantially impermeable to the oligonucleotide and other components in the oligonucleotide formulation.
Delivery devices suitable for use in the present invention may be fabricated using conventional techniques, known in the art, for example by casting a fluid admixture of adhesive, oligonucleotide, and carrier/vehicle onto the backing layer, followed by lamination of the release liner. Similarly, the adhesive mixture may be cast onto the release liner, followed by lamination of the backing layer. Alternatively, the oligonucleotide reservoir may be prepared in the absence of oligonucleotide formulation or excipient, and then loaded by “soaking” in a drug/vehicle mixture.
As with the topical formulations of the invention, the oligonucleotide formulation contained within the delivery means of the delivery devices may contain a number of components. Furthermore, such delivery devices can be used in connection with administration of any of the oligonucleotide formulations described herein, e.g., naked oligonucleotide formulations, or lipid- or liposome-comprising oligonucleotide formulations. Regardless of the specific basic components of the oligonucleotide formulation, the oligonucleotide formulation will generally dissolved, dispersed or suspended in a suitable pharmaceutically acceptable vehicle, typically an aqueous solution or gel. Other components that may be present include preservatives, stabilizers, and the like.
Packaging of the Oligonucleotide Formulations and Delivery Devices
The units dosage ampules, multidose containers, and/or delivery devices (e.g., patches) in which the oligonucleotides are packaged prior to use may comprise an hermetically sealed container enclosing an amount of oligonucleotide or oligonucleotide formulation containing a oligonucleotide suitable for a pharmaceutically effective dose thereof, or multiples of an effective dose. The oligonucleotide is preferably packaged as a sterile formulation, and the hermetically sealed container is designed to preserve sterility of the formulation until use. Where the oligonucleotides are provided in a patch-style delivery device, the patches may be contained in a strip of individually separable packaged patches for ease in dispensing.
The container in which the oligonucleotide formulation and/or delivery device is packaged is labeled, and the label bears a notice in the form prescribed by any appropriate governmental agency. For example, where the oligonucleotides are to be administered to humans, the package comprises a notice that reflects approval by the Food and Drug Administration under the applicable federal law, of the manufacture, use, or sale of the oligonucleotide material therein for human administration. Federal law requires that the use of pharmaceutical agents in the therapy of humans be approved by an agency of the Federal government. Responsibility for enforcement is the responsibility of the Food and Drug Administration, which issues appropriate regulations for securing such approval, detailed in 21 U.S.C. 301-392. Regulation for biologic material, comprising products made from the tissues of animals is provided under 42 U.S.C 262. Similar approval is required by most foreign countries. Regulations vary from country to country, but the individual procedures are well known to those in the art.
Introduction of Oligonucleotides into Skin Cells According to the Method of the Invention
Application of the Oligonucleotide to Skin
Administration of the oligonucleotide is accomplished by contacting a oligonucleotide-comprising formulation (e.g., a buffered salt solution comprising the oligonucleotide) with an area of skin for a time sufficient to allow genetic alteration of skin cells. Preferably, the oligonucleotide is applied to hirsute skin. The oligonucleotide can be applied to skin without substantial pretreatment or with pretreatment, preferably without pretreatment of the skin. “Pretreatment” can generally encompass removal of hair from the skin, increasing skin permeability by mechanical means (e.g., abrasion), increasing skin permeability by application of a chemical agent to the site either before or during oligonucleotide administration, and application of an irritant or other like chemical agent to elicit a non-specific immune response or an immune response toward the irritant (e.g., by application of a keratinolytic agent). Administration of the oligonucleotide can be accomplished according to the invention without the application of an electric field or electric pulse (e.g., as in iontophoresis), without breaking the skin (e.g., by abrasion or through use of a needle), and without application of pressure to the site of administration (e.g., via jet propulsion, pressurized air, etc.). Furthermore, oligonucleotide administration can be accomplished using a oligonucleotide formulation that is substantially free of permeabilizing agents, detergents, or other chemical agents that facilitate entry of the oligonucleotide into the skin.
Once the oligonucleotide-comprising formulation is brought into contact with skin, contact is maintained for a time sufficient to allow movement of the oligonucleotide from the formulation into skin and into skin cells. In general, the time of contact between the oligonucleotide and the skin will be at least about 1 min to about 1 hr or more, preferably at least about 30 min. Because there is substantially no toxicity associated with contacting the oligonucleotide with the skin, the time of contact maintained between the oligonucleotide and the skin to which the oligonucleotide is to be delivered is limited only by such factors as the ability to keep the oligonucleotide in a suitable delivery form (e.g., a time during which the oligonucleotide-comprising solution can be prevented from dehydrating) and the ability to physically maintain contact between the oligonucleotide and the site of delivery (e.g., maintenance of a patch comprising the oligonucleotide(s) on the skin). Therefore, the time of contact of a single dose can be as long as several hours to several days, and may be weeks or more. Furthermore, the time of delivery can be further extended by additional subsequent applications of the oligonucleotide to the same or different delivery site on the skin.
While an ethanolic/propylene glycol solution of anti-hairless oligonucleotide as found to deliver beneficial amounts of oligonucleotide to the hair follicle and result in inhibition of hairless, other formulations can also advantageously be used. In particular, liposome compositions can be advantageous. Liposomes were introduced first in about 1980 for topical drug delivery and have since attracted considerable interest due to their potential utility both as a drug carrier and a reservoir for controlled release of drugs within various layers of the skin and the hair follicle. In addition to reducing the undesirable high systemic absorption of topically applied drugs, the major advantage of liposomes compared to other formulations such as ointments or creams, is based on their ability to create a depot, from which the drug is slowly released. The delivery agents also provide advantages in that they protect oligonucleotides against degradation, increase cellular uptake, and may target the drug to specific cells or tissue compartment. Thus, a delivery system allowing the controlled and sustained release of oligonucleotides in vivo can greatly increase the efficacy of gene inhibition technology.
One of the most favored sites of liposome penetration is into the hair follicle, since the hair canal opens directly onto the surface of the skin. Liposomes applied to cultured hair follicles are easily detected in cells lining the inner root sheath. (Li et al., 1992b, In Vitro Cell Dev Biol 28A:679-681.) Liposomes also find their way into the pilosebaceous unit once traveling down the root sheath. (Lieb et al. 1992, J Invest Dermatol 99:108-113.) Liposomes have been shown to direct compounds into the sebaceous gland, when they would otherwise be trapped in the stratum corneum. (Bernard et al., 1997, J Pharm Sci 86:573-578.) Liposomes function both as a controlled release system and as a delivery system transporting encapsulated substances into cells. After topical application, and upon drying, the liposomes develop into a structured film that fills the follicular openings, intimately mixing with the follicular contents, and fostering drug diffusion to the depths of the follicles.
A number of different compositions of liposomes have been tested for in vivo oligonucleotide delivery. For example, three different lipids were compared: N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethyl ammonium chloride (DOTMA), 2,3-dioleyloxy-N-[2(sperminecarboxamido) ethyl]-N,N-dimethyl-1-propanaminium trifluoroacetate (DOSPA) and N-(1-(2,3-dimyristyloxypropyl)-N,N dimethyl-(2-hydroxyethyl) ammonium bromide (DMRIE). The macrophages incorporated tenfold more oligonucleotide when delivered in conjunction with DOSPA than with the other cationic lipids.
Liposome preparation and encapsulation of oligonucleotides are available from commercial manufacturer, e.g., BioZone Laboratories, Inc. Pittsburg, Calif., which manufactures a wide range of topically applied LipoCeutical products that include cationic lipids.
In addition to cationic lipid liposomes, other types of liposomes can also be used, e.g. pH-sensitive liposomes. The cellular uptake of liposomes passes mainly through an endocytic pathway, and occasionally, liposomes and their contents inadvertently arrive in the lysosomes where they are degraded. The quantity of oligonucleotides that can avoid degradation and reach their nuclear or cytoplasmic target is probably very low. To overcome lysosomal degradation and in order to increase the efficiency of delivery, pH sensitive fusogenic liposomes have been used. These consist of a non-bilayer-forming lipid such as dioleylphosphatidylethanolamine (DOPE) and a titratable acidic amphiphile such as oleic acid (OA) or cholesterylhemisuccinate (CHEMS). (DeOliveira et al., 1998, Biochim. Biophys. Acta Biomembr. 1372:301-310.) At pH 7, the amphiphile maintains the lipid mix in a bilayer (liposome) structure. However, as the complex moves through the endosomes, the pH drops and the amphiphile becomes protonated. This causes the liposome to collapse resulting in fusion with the endosomal membrane and release of the liposome contents into the cytoplasm. However, the anionic nature of pH-sensitive liposomes may lead to poor encapsulation of ODNs. (Hughes et al., 2000, Methods Enzymol 313:342-358.).
As one alternative to liposomes, other carriers/delivery agents can be used, such as cationic polymers. The most widely studied polymers are polylactides and co-polymers of lactic acid and glycolic acid P(LA-GA) and both of these have been evaluated for the use for delivery of oligonucleotides. (Lewis et al., 1998, J Drug Target 5:291-302; Hudson et al., 1999, Int J Pharm 182:49-58.)
In addition to the above, certain patents have described methods for delivery that can be used in the present invention. Examples include the following.
Li and Lishko, U.S. Pat. No. 5,914,126 (incorporated herein by reference in its entirety) describes methods to deliver macromolecules to hair follicles, where the method involves applying to the skin a formulation that includes a macromolecule, such as a nucleic acid, in a liposomal formulation, such that the liposomes target the macromolecule selectively into hair follicle cells by transfer into the follicle without entry into the circulation of the adjacent skin tissue.
Khavari et al., U.S. Pat. No. 6,087,341 (incorporated herein by reference in its entirety) describes methods and compositions for introduction of nucleic acid into skin cells by topical application.
Li and Baranov, U.S. Pat. No. 6,080,127 (incorporated herein by reference in its entirety) describes a skin vibration method for topical targeted delivery of beneficial agents into hair follicles. The vibration frequency can, for example, be about 1 Hz to 100 Hz.
In some applications, it may be useful to include transdermal penetration enhancers, for example, as described in Karande et al., 2004, Nature Biotech. 192-197. As described, two types of compositions were particularly effective. One included sodium laureth sulfate (SLA) with phenyl piperazine (PP). In a particular composition the SLA:PP was as 0.5% (w/v) with the weight ration of SLA=0.7 in the combination. The second included N-lauroyl sarcosine (NLS) with sorbitan monolaurate (S20). In a particular composition, the combination was at 1.0% (w/v) with the weight ration of NLS=0.6.
G. Administration
The present compositions can be administered in various ways, e.g., depending on the condition to be treated, and the type of composition to be used. In many cases, topical administration will be used. This mode of administration is particularly suitable for local hair removal.
In some applications, hair removal is desired in only a portion of the skin area of a subject. In those cases, the composition can be applied locally.
Exemplary Topical Application Methods
Spreading
In most cases, the composition containing the RNAi inducing oligonucleotides will be spread or wiped on the treatment area to form a thin film. Thus, for example, for any of the forms of liquid suspension or solution, cream, lotion, gel, or ointment, a quantity of the composition is spread on the treatment surface or surfaces of the subject, and left for a time to allow oligonucleotides (which may be in a carrier species such as in liposomes, to migrate to the hair follicles.
Spraying
For compositions that are sufficiently liquid, the composition can be sprayed on the treatment site, either with or without protection against overspray on surrounding areas. For spray applications, it may be desirable to protect against inhalation of sprayed material, e.g., by using masks that will filter out the relevant sized aerosol particles.
Injection
In some applications, it will be desirable to remove only specific hairs. Thus, rather than contacting a particular area, a composition will be delivered to one or more particular hair follicles. Such individual follicle delivery can be accomplished in various ways. For example, a drop of liquid containing the active oligonucleotide(s) can be deposited on the hair shaft, and allowed to migrate down the shaft to the follicle. In another approach, a needle can be inserted in the hair channel, and liquid or other composition deposited at or near the follicle.
Application Site Preparation and Hair Cycle Synchronization
In some cases, the present compositions can be applied without any special preparation of the application site. In other cases, however, it is advantageous to prepare the site, e.g., by preliminary removal of hair from the site and/or to combine the present invention with a supplementary method of hair removal. Such removal can be beneficial in several different ways. For example, such removal can reduce the amount of active agent required for the present invention because the material will not be lost by adhering to the hair, and instead will be available for absorption/migration to the hair follicles.
Such removal can also be beneficially be used to supplement the present invention by removing residual hairs. Depending on the manner and amount of RNAi inducing oligonucleotide delivered to the hair follicles, some of the follicles may not be sufficiently inhibited, such that some hairs may grow in the treated area and/or some hairs may be reduced in thickness or length but still present. In such cases, a supplementary method of hair removal can be used to produce a desired level of hair removal, e.g., shaving, chemical depilation, enzymatic hair removal; laser treatment; electrolysis. Certain embodiments of the present invention include such an supplemental method.
It can also be advantageous to synchronize hair cycles in the treatment area. Such synchronization can advantageously be done prior to application of the present compositions, or during an interval of treatment with the present compositions, or in an interval between two occasions or intervals of application of the present compositions.
Such synchronization can be accomplished, for example, by pulling hairs from the follicles (either individually or in larger numbers). Examples of methods for pulling the hairs include plucking and waxing. In some circumstances it will be necessary/desirable to induce follicle synchrony by molecular means. In these instances, skin is treated with a known follicle growth inducer such as cyclosporin A, TPA, Noggin, estrogen receptor agonist, and the like.
In general, if a hair is pulled from a follicle in anagen, that follicle goes into catagen; if a hair is pulled from a follicle in telogen, the follicle is stimulated to produce hair, and thus goes into anagen. Thus, for a more extensive effect using the present invention, a distribution of hairs in anagen, catagen, and telogen can be synchronized in catagen, with one pulling to push anagen follicles to catagen, and two pullings to stimulate telegen follicles to anagen, and then push the newly anagen follicles to catagen. Depending on the reaction of the follicles, such procedure can produce a single phase synchrony, or a two phase synchrony.
siRNAs were commercially obtained from Ambion, Inc. for human and mouse hairless genes. These are validated, chemically synthesized siRNAs, that are HPLC purified, annealed and ready to use, and guaranteed to reduce target gene expression by 70% or more. For both human and mouse transcripts, two different siRNAs were used. The sequence of the hairless siRNAs is given in the following table. In this and the subsequent tables in this example, upper case letter are used to refer to the human homologs, and lower case letter refer to the mouse homologs of the specified genes.
List of pre-designed siRNAs used for gene silencing experiments.
siRNA
Sense Sequence
Antisense Sequence
HR#1
5′-GGACAUGCUCCCACUUGUGtt-3′
5′-CACAAGUGGGAGCAUGUCCtt-3′
(SEQ ID NO: 11355)
(SEQ ID NO: 11356)
HR#2
5′-GGAGGCCAUGCUUACCCAUtt-3′
5′-AUGGGUAAGCAUGGCCUCCtt-3′
(SEQ ID NO: 11357)
(SEQ ID NO: 11358)
hr#1
5′-GGACACACUCUCACUGGUGtt-3′
5′-CACCAGUGAGAGUGUGUCCtt-3′
(SEQ ID NO: 11359)
(SEQ ID NO: 11360)
hr#2
5′-GGGCUUUUACCACAAGGAUtt-3′
5′-AUCCUUGUGGUAAAAGCCCtt-3′
(SEQ ID NO: 11361)
(SEQ ID NO: 11362)
We also used siRNAs for the mouse glyceraldehyde-3-phosphate dehydrogenase (gapdh) gene, Silencer™ GAPDH siRNA (Cat no. 4605, Ambion, Inc. Austin, Tex.) as controls to monitor and optimize siRNA experiments.
Human HaCaT, HeLa and mouse NIH 3T3 cells were used in siRNA transfection experiments. Cells were plated on 6-well tissue culture plates in Dulbecco's Modified Eagle Media (D-MEM, Cat no. 10569-010, Invitrogen Corp., Carlsbad, Calif.) with 10% Fetal Bovine Serum (Cat no. 16000-044, Invitrogen, Corp.) so that they were 30-50% confluent at the time of transfection. Immediately before the transfection, the cells were washed in Opti-MEM I Reduced Serum Medium (Cat no. 31985-070, Invitrogen, Inc.). We used 200 pmol of short interfering RNA (siRNA) for each well and the Oligofectamine™ reagent. The transfections were performed according to the manufacturer's instructions (Cat no. 12252-011, Invitrogen, Inc).
Total RNA was isolated 24 and 48 hours post-transfection using the RNeasy Mini Kit (Cat no. 74104, QIAGEN, Inc., Valencia, Calif.) according to the manufacturer's instructions. cDNA synthesis was performed using the SuperScript First-Strand Synthesis System for RT-PCR kit (Cat no. 11904-018, Invitrogen, Corp.) and oligo (dT) primers. Gene activity was determined by the Real-Time quantitative RT-PCR (qRT-PCR) technique.
Real Time Quantitative RT-PCR (qRT-PCR)
Real-Time qRT-PCR was performed using MJ Research Opticon 2 continuous fluorescence detector. For qRT-PCR 40 ng of cDNA obtained from cultured HaCaT, HeLa, and NIH3T3 cells (siRNA treated and untreated), was amplified using the MJ Research DyNAmo Hot Start SYBR Green qPCR kit (Cat no. F-410L, MJ Research, Inc., Waltham, Mass. The DyNAmo Hot Start SYBR Green qPCR kit is a master mix of a modified hot start DNA polymerase with SYBR Green I and the appropriate buffers, all of which have been optimized for real-time quantitative analysis with the MJ Research Opticon 2. PCR amplification of cDNA samples was performed in 96 well optical plates under the following conditions:
1. Incubate at 95.0 C for 00:10:00
2. Incubate at 95.0 C for 00:00:20
3. Incubate at 55.0 C for 00:00:30
4. Incubate at 72.0 C for 00:00:40
5. Plate Read
6. Incubate at 77.0 C for 00:00:01
7. Plate Read
8. Go to line 3 for 39 more times
9. Incubate at 72.0 C for 00:05:00
10. Melting Curve from 65.0 C to 95.0 C read every 0.2 C hold 00:00:01
11. Incubate at 72.0 C for 00:05:00
END
The list of PCR primers used for Real Time PCR amplifications is given in the following table.
PCR primers used for Real-Time RT-PCR amplifications of mouse and human hairless, mouse glyceraldehyde-3-phosphate dehydrogenase gene, and hypoxanthine guanine phosphoriboxyltransferase 1 (hprt). (HPRT was used as a normalizing internal control in mouse cells the same way GAPDH was used for the human cell lines.)
Gene
Forward primer
Reverse primer
Hr
5′-TTCTACCGCGGTCAAACTCT-3′
5′-TTGGTGTCAGGGATCCAAAG-3′
(SEQ ID NO: 11363)
(SEQ ID NO: 11364)
GAPDH
5′-AGCCACATCGCTCAGAACAC-3′
5′-GAGGCATTGCTGATGATCTTG-3′
(SEQ ID NO: 11365)
(SEQ ID NO: 11366)
hr
5′-ACATCAAAGAAGAGACCCCAG-3′
5′-TTCGCACTGGTGACAATGGAA-3′
(SEQ ID NO: 11367)
(SEQ ID NO: 11368)
gapdh
5′-GTGAACGGATTTGGCCGTATT-3′
5′-TTTTGGCTCCACCCTTCAAGT-3′
(SEQ ID NO: 11369)
(SEQ ID NO: 11370)
hplt
5′-CCCTGGTTAAGCAGTACAGC-3′
5′-CAGGACTAGAACACCTGCTAA-3′
(SEQ ID NO: 11371)
(SEQ ID NO: 11372)
Plate readings for fluorescence levels are taken at two steps, 5 and 7. These values indicate the relative amounts of amplicon per well at a particular cycle. The raw numbers obtained from these readings were used to determine the PCR amplification efficiency. This is the measurement of fold amplification per PCR cycle, and is expressed as a fraction or percentage relative to perfect doubling. A PCR resulting in perfect doubling would exhibit 100% amplification efficiency. All of the calculations are done using the LinRegPCR program by J. M. Ruijter and C. Ramakers. The crossing threshold for the experiment is determined manually and is defined at the cycle at which amplification for all samples becomes logarithmic. The relative fold for each amplicon is then determined using the amplification efficiency and crossing threshold for that particular amplicon and normalizing it against the relative starting amounts, which is determined by the GAPDH amplification efficiency and crossing threshold that corresponds to that sample. This is done using parameters and equations set by Lui and Saint (Analytical Biochemistry 302, 52-59 (2002)). The final values can then be used to compare the fold differences in gene expression of a particular gene across several different samples or conditions.
This technique and analysis can be applied to determine the levels of hairless expression, or more specifically, the efficiency of gene silencing using hairless siRNA through comparison of the treated and untreated cell populations.
The following table shows the percentage of gene silencing observed following siRNA treatment of human HeLa and HaCaT cells. Total RNA was collected 48 hours following transfection with siRNAs for hairless (Hr) gene. Gene activity was assayed by real-time quantitative RT-PCR (qRT-PCR) technique. Percent knockdown is calculated by obtaining the ratio of the normalized level of Hr expression in treated and untreated cell populations and subtracting this value from 1 (100% expression).
Gene
Expression
Cell
Percent
RNA isolation
siRNA
Tested
Type
Knockdown
time point
HR#1
Hr
HeLa
97.3%
48 hours
HR#2
Hr
HeLa
98.7%
48 hours
HR#2
Hr
HaCaT
95.8%
48 hours
The following table shows the percentage of gene silencing observed following siRNA treatment of mouse NIH3T3 cells. Total RNA was collected 48 hours following transfection with siRNAs for hairless (hr) and glyceraldehyde-3-phosphate dehydrogenase (gpdh) genes. Gene activity was assayed by real-time quantitative RT-PCR (qRT-PCR) technique. Percent knockdown is calculated by obtaining the ratio of the normalized level of hr and gapdh expression in treated and untreated cell populations and subtracting this value from 1 (100% expression).
Gene
Expression
Cell
Percent
RNA isolation
siRNA
Tested
Type
Knockdown
time point
hr#1
Hr
NIH3T3
99.3%
48 hours
hr#2
Hr
NIH3T3
99.17%
48 hours
Gapdh
Gapdh
NIH3T3
99.3%
48 hours
The goal of this study is to establish the safety of topical application of anti-hairless siRNA (Trichozyme) in healthy human subjects at a dose of 10 μg daily, administered over a period of 3 months.
Inhibition of gene expression using or siRNA technology is a recently developing area of therapy. Several recent studies indicate the usefulness of such therapeutic strategies in a number of different conditions. Our preliminary in vivo studies demonstrated the inhibition of hairless mRNA can be used to permanently inhibit hair growth in experimental animals. Briefly, they inhibit translation from the mRNA transcript originating from the human hairless gene, the first known gene participating in the regulation of the human hair cycle as identified by our group earlier, preventing the synthesis of functional hairless protein. Presence of hairless protein is necessary for uninterrupted hair cycling, and lack of hairless gene expression due to a deleterious mutation or temporary inhibition leads to a permanent inhibition of hair growth and the involution of hair follicles as evidenced by our own in vivo trials in animal models. The successful translation of the result of animal studies to human application leads to a strategy to obtain permanent inhibition of hair growth by temporary topical treatment with Trichozyme.
Study Design
This will be an open label, uncontrolled, safety study. Monitoring for side effects, alterations in hematology, serum chemistries and urine analysis will continue during the 3 month treatment period as well as during the 6 month follow up period after the application is stopped. Subjects will be seen daily by Study personnel during the treatment period and monthly during the follow-up period. The Study will not offer treatment of any side effects that develop.
We will enlist 20 subjects, 10 of which will be treated with the siRNA in an isopropranol or liposomal based vehicle, the other 10 subject will receive treatment with vehicle only. Hair from the dorsal surface of the left forearm will be removed by waxing before applying treatment during the first 30 days of the study. Treatment will consist of topical application of an isopropranol based solution alone or containing anti-hairless siRNA over a 15 cm2 area of the dorsal surface of the left forearm using a glass rod. Ample time will be left for absorption.
Subjective side effects, alterations in serum chemistry, hematology and urine analysis will be monitored as well as serum and urine isopropranol level and presence of Trichozymes in serum and urine samples. Photography of the treatment area and hair count will be performed during the initial visit and weekly afterwards during the treatment period of the study then monthly during the follow-up period of the study.
Study Procedures
Before entering in the study subjects will sign an informed consent for disclosure of medical records. A screening questionnaire will be completed as well as a review of medical records to exclude any preexisting medical conditions affecting hair growth or other preexisting diseases listed as exclusion criteria.
Laboratory evaluation—Fasting blood and urine samples will be obtained for the following tests: (a) Hematology—hemoglobin and hematocrit, CBC with differential and platelet count, (b) Serum Chemistry—sodium, total bilirubin, potassium, glucose, chloride, alkaline phosphatase, calcium, AST, ALT, inorganic phosphorus, BUN, creatinine, bicarbonate; (c) urinalysis—protein, glucose, pH, Ketones, nitrates, blood (d.) pregnancy test.
Screening/Baseline Visit—Informed consent for study participation signed. Complete history (including record of systemic and topical medication, both prescription and non-prescription). Physical exam—Comprehensive skin exam and photography of the treatment area and hair count. (e) Review criteria for inclusion/exclusion and determine eligibility.
Daily Clinic Visits for treatment—waxing of the treatment area (for first 30 days only) followed by topical application of Treatment. Blood and urine samples for Hematology, Serum chemistry, Urine analysis, Isporopranol serum/urine level and siRNA detection in serum/urine will be obtained monthly. Photography of the treatment area and hair count will be performed weekly. Subjects will be interviewed for subjective side effects weekly.
Monthly Clinic Visits for follow-up—Blood and urine samples for Hematology, Serum chemistry, Urine analysis, Isporopranol serum/urine level and siRNA detection in serum/urine will be obtained. Photography of the treatment area and to hair count. Subjects will be interviewed for subjective side effects.
Study Site—Subjects will be seen at the clinical facilities for the study.
Study Drugs
siRNAs for the study are oligonucleotides with RNAi activity that is specific to mRNA sequences present in the human hairless mRNA. This study will utilize a mixture of 8-10 different siRNAs. To date there is no data available of topical cutaneous application of any deoxy-ribozymes. The siRNAs to be used in this study will be provided by a manufacturer offering custom synthesized human grade oligonucleotides.
Study Questionnaires
All subjects will complete study questionnaires at baseline.
Study Subjects
Criteria-Inclusion—(i) Study subjects must be 18 to 35 years of age, female of Hispanic ethnicity. (ii) Have no previous medical history of hair growth abnormalities or endocrine, renal, autoimmune, cardiac, pulmonary, hematological or psychiatric disorders. (iii) Other inclusion criteria: (iv) The subject has provided written informed consent prior to administration of any study-related procedures. (v) The subject has been using adequate contraception since her last menses and will use adequate contraception during the study, is not lactating, and has a documented negative serum pregnancy test within 14 days prior to the first dose of study medication. (vi) The subject is willing to abstain from any voluntary alteration of body hair of the treated area. (vii) The subject is willing to abstain from application of prescription and over the counter topical medications for the duration of the study, including moisturizers, emollients and sunscreens. (viii) The subject is willing to return for scheduled follow-up visits for the duration of the study. (ix) The subject must meet the following laboratory criteria during a time not to exceed 8 weeks prior to randomization: 1) hemoglobin level of greater than 12.0 (women) or 13.0 (men); 2) WBC count greater than 3000/mm3; 3) platelet count greater than 125,000; 4) BUN within normal limits; 5) electrolytes within normal limits; 6) creatinine≦1.5×ULN; 7) AST≦1.5×ULN; 8) ALT≦1.5×ULN; 9) total bilirubin within normal limits; and 10) creatinin clearance within normal limits.
Exclusion—(i) existence of any medical conditions listed above. (ii) any laboratory values that do not meet the criteria listed above. (iii) Pregnancy or lactation. (iv) Invasive cancer or anticipated hormonal, chemo-, or radiotherapy while participating in the study. (v) Any medical or psychosocial condition that, in the opinion of the investigator, could jeopardize subject's participation in this study.
Recruitment of Subjects
Potential subjects for this Study will be recruited from among residents in proximity to the study site because of the daily visit requirements. Subjects with Hispanic ethnicity will be recruited to avoid inter-ethnicity variations of hair density and follicle site as well as blonde hair that is less appropriate for complete hair count and photography.
It was demonstrated that inhibiting the expression of hairless mRNA in an animal model system created essentially a hairless condition. This exemplary test was conducted using ribozymes targeting the hairless mRNA, and is described in Cserhalmi-Friedman et al., Exp Dermatol., 2004 March; 13(3):155-62, which is incorporated herein by reference in its entirety.
Short Term Results in Newborn Mice
The mice, who were gender-matched littermates, were sacrificed after four weeks of treatment that started immediately after the animals were born. All treated mice demonstrated a variable degree of visible sparseness of hair at the treated area of the back, which was not observed in the control animals treated with non-specific deoxyribozymes. The specimens taken from the control animal show the presence of large number of hair follicles in anagen V stage, corresponding to the clinical appearance. In contrast, the samples taken from the treated mice demonstrate the presence of smaller hair follicles with morphological features similar to those observed in anagen III stage (i.e.: hair shaft did not reach the level of the sebaceous gland). A large portion of the hair follicles in the treated region showed delayed anagen development as well as significant dilatation of the hair canal, reminiscent of utricles characteristic of the hairless phenotype. In these samples, we observed several large cysts filled with keratinous material and remnants of coiled and degraded hair follicles. These dermal cysts are believed to be the result of hair follicle disintegration and abnormal hair shaft formation. Importantly, dermal cysts are hallmark features of the hairless phenotype and usually contain either keratinous mass or a degraded hair shaft, as seen in the sample taken from the skin of a hairless mouse. The inhibition of hair growth, formation of the utriculi, and appearance of dermal cysts were present in all treated mice, but were not detected in any control animals.
b. Long Term Results in Newborn Mice
Another group of littermates of identical gender was sacrificed after seven weeks of treatment that started immediately after the animals were born. A noticeable decrease in the density of hair was present in the treated animals as compared to the control mice treated with on specific deoxyribozymes. The sample from the control animals showed the presence of regularly spaced telogen hair follicles. In the treated area, we observed a significantly decreased number of follicles with large areas of the skin devoid of any hair follicles at all. In the treated area, we detected the presence of large cysts filled with amorphous keratin material, corresponding to dermal cysts, which are characteristics of the hairless phenotype. Histopathology of the treated area showed the presence of small dense groups of cells with condensed nuclei in the deep dermis. These cell groups were reminiscent of detached dermal papillae, which are typically found in hairless mice. The lack of hair follicles, the presence of dermal cysts and the detached dermal papillae were present in every treated animal, while all the control animals showed the presence of evenly spaced telogen follicles.
c. Results in Depilated Animals
This group of eight week old female littermates was wax-depilated and subsequently sacrificed after four weeks of treatment that began immediately after the depilation. Clinically, the control animals showed active hair regrowth in the depilated area.
In contrast, the hair regrowth was of lesser magnitude in the treated mice, and the hair became sparse (not shown). Histopathology of the control mouse skin shows the presence of a large number of hair follicles in advanced anagen. In the samples taken from the treated animals, the treated regions could be easily identified by the lack of depilation-induced hair regrowth. These untreated hair follicles were identical to those observed in the control animals treated with nonspecific deoxyribozymes. On histology, the treated area with small telogen hair follicles could be easily distinguished from neighboring untreated area with hair follicles at advanced anagen stages, suggesting that in the treated portion of skin the hair follicles were not able to enter depilation-induced anagen at all, or exhibited much lower growth rates compare to control skin.
All patents and other references cited in the specification are indicative of the level of skill of those skilled in the art to which the invention pertains, and are incorporated by reference in their entireties, including any tables and figures, to the same extent as if each reference had been incorporated by reference in its entirety individually.
One skilled in the art would readily appreciate that the present invention is well adapted to obtain the ends and advantages mentioned, as well as those inherent therein. The methods, variances, and compositions described herein as presently representative of preferred embodiments are exemplary and are not intended as limitations on the scope of the invention. Changes therein and other uses will occur to those skilled in the art, which are encompassed within the spirit of the invention, are defined by the scope of the claims.
It will be readily apparent to one skilled in the art that varying substitutions and modifications may be made to the invention disclosed herein without departing from the scope and spirit of the invention. For example, variations can be made to the number, length, and chemical modifications in the dsRNA. Thus, such additional embodiments are within the scope of the present invention and the following claims.
The invention illustratively described herein suitably may be practiced in the absence of any element or elements, limitation or limitations which is not specifically disclosed herein. Thus, for example, in each instance herein any of the terms “comprising”, “consisting essentially of” and “consisting of” may be replaced with either of the other two terms. The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention that in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed. Thus, it should be understood that although the present invention has been specifically disclosed by preferred embodiments and optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the appended claims.
In addition, where features or aspects of the invention are described in terms of Markush groups or other grouping of alternatives, those skilled in the art will recognize that the invention is also thereby described in terms of any individual member or subgroup of members of the Markush group or other group.
Also, unless indicated to the contrary, where various numerical values are provided for embodiments, additional embodiments are described by taking any 2 different values as the endpoints of a range. Such ranges are also within the scope of the described invention.
Thus, additional embodiments are within the scope of the invention and within the following claims.
TABLE 1
cDNA Human Hairless 19-mer Target Sequences
and Complement
Referenced to NM_005144-Homo sapiens
hairless homolog (mouse) (HR), transcript variant
1, complete mRNA (1-5699 bp). (SEQ ID NO: for
Sense equals (2X-1) SEQ ID NO: for Antisense
equals (2X), (e.g. where X = 1 Sense has
SEQ ID NO: 1 and Antisense has SEQ ID NO: 2)
X
Sense (5′-3′)
Antisense (5′-3′)
1
TCTCCCGGGAGCCACTCCC
GGGAGTGGCTCCCGGGAGA
2
CTCCCGGGAGCCACTCCCA
TGGGAGTGGCTCCCGGGAG
3
TCCCGGGAGCCACTCCCAT
ATGGGAGTGGCTCCCGGGA
4
CCCGGGAGCCACTCCCATG
CATGGGAGTGGCTCCCGGG
5
CCGGGAGCCACTCCCATGG
CCATGGGAGTGGCTCCCGG
6
CGGGAGCCACTCCCATGGG
CCCATGGGAGTGGCTCCCG
7
GGGAGCCACTCCCATGGGC
GCCCATGGGAGTGGCTCCC
8
GGAGCCACTCCCATGGGCG
CGCCCATGGGAGTGGCTCC
9
GAGCCACTCCCATGGGCGC
GCGCCCATGGGAGTGGCTC
10
AGCCACTCCCATGGGCGCC
GGCGCCCATGGGAGTGGCT
11
GCCACTCCCATGGGCGCCT
AGGCGCCCATGGGAGTGGC
12
CCACTCCCATGGGCGCCTC
GAGGCGCCCATGGGAGTGG
13
CACTCCCATGGGCGCCTCT
AGAGGCGCCCATGGGAGTG
14
ACTCCCATGGGCGCCTCTC
GAGAGGCGCCCATGGGAGT
15
CTCCCATGGGCGCCTCTCC
GGAGAGGCGCCCATGGGAG
16
TCCCATGGGCGCCTCTCCA
TGGAGAGGCGCCCATGGGA
17
CCCATGGGCGCCTCTCCAG
CTGGAGAGGCGCCCATGGG
18
CCATGGGCGCCTCTCCAGC
GCTGGAGAGGCGCCCATGG
19
CATGGGCGCCTCTCCAGCC
GGCTGGAGAGGCGCCCATG
20
ATGGGCGCCTCTCCAGCCC
GGGCTGGAGAGGCGCCCAT
21
TGGGCGCCTCTCCAGCCCC
GGGGCTGGAGAGGCGCCCA
22
GGGCGCCTCTCCAGCCCCT
AGGGGCTGGAGAGGCGCCC
23
GGCGCCTCTCCAGCCCCTG
CAGGGGCTGGAGAGGCGCC
24
GCGCCTCTCCAGCCCCTGG
CCAGGGGCTGGAGAGGCGC
25
CGCCTCTCCAGCCCCTGGC
GCCAGGGGCTGGAGAGGCG
26
GCCTCTCCAGCCCCTGGCC
GGCCAGGGGCTGGAGAGGC
27
CCTCTCCAGCCCCTGGCCT
AGGCCAGGGGCTGGAGAGG
28
CTCTCCAGCCCCTGGCCTG
CAGGCCAGGGGCTGGAGAG
29
TCTCCAGCCCCTGGCCTGG
CCAGGCCAGGGGCTGGAGA
30
CTCCAGCCCCTGGCCTGGA
TCCAGGCCAGGGGCTGGAG
31
TCCAGCCCCTGGCCTGGAA
TTCCAGGCCAGGGGCTGGA
32
CCAGCCCCTGGCCTGGAAG
CTTCCAGGCCAGGGGCTGG
33
CAGCCCCTGGCCTGGAAGC
GCTTCCAGGCCAGGGGCTG
34
AGCCCCTGGCCTGGAAGCA
TGCTTCCAGGCCAGGGGCT
35
GCCCCTGGCCTGGAAGCAC
GTGCTTCCAGGCCAGGGGC
36
CCCCTGGCCTGGAAGCACC
GGTGCTTCCAGGCCAGGGG
37
CCCTGGCCTGGAAGCACCA
TGGTGCTTCCAGGCCAGGG
38
CCTGGCCTGGAAGCACCAG
CTGGTGCTTCCAGGCCAGG
39
CTGGCCTGGAAGCACCAGG
CCTGGTGCTTCCAGGCCAG
40
TGGCCTGGAAGCACCAGGA
TCCTGGTGCTTCCAGGCCA
41
GGCCTGGAAGCACCAGGAA
TTCCTGGTGCTTCCAGGCC
42
GCCTGGAAGCACCAGGAAC
GTTCCTGGTGCTTCCAGGC
43
CCTGGAAGCACCAGGAACC
GGTTCCTGGTGCTTCCAGG
44
CTGGAAGCACCAGGAACCC
GGGTTCCTGGTGCTTCCAG
45
TGGAAGCACCAGGAACCCT
AGGGTTCCTGGTGCTTCCA
46
GGAAGCACCAGGAACCCTG
CAGGGTTCCTGGTGCTTCC
47
GAAGCACCAGGAACCCTGG
CCAGGGTTCCTGGTGCTTC
48
AAGCACCAGGAACCCTGGG
CCCAGGGTTCCTGGTGCTT
49
AGCACCAGGAACCCTGGGG
CCCCAGGGTTCCTGGTGCT
50
GCACCAGGAACCCTGGGGA
TCCCCAGGGTTCCTGGTGC
51
CACCAGGAACCCTGGGGAT
ATCCCCAGGGTTCCTGGTG
52
ACCAGGAACCCTGGGGATG
CATCCCCAGGGTTCCTGGT
53
CCAGGAACCCTGGGGATGG
CCATCCCCAGGGTTCCTGG
54
CAGGAACCCTGGGGATGGG
CCCATCCCCAGGGTTCCTG
55
AGGAACCCTGGGGATGGGG
CCCCATCCCCAGGGTTCCT
56
GGAACCCTGGGGATGGGGC
GCCCCATCCCCAGGGTTCC
57
GAACCCTGGGGATGGGGCA
TGCCCCATCCCCAGGGTTC
58
AACCCTGGGGATGGGGCAG
CTGCCCCATCCCCAGGGTT
59
ACCCTGGGGATGGGGCAGA
TCTGCCCCATCCCCAGGGT
60
CCCTGGGGATGGGGCAGAC
GTCTGCCCCATCCCCAGGG
61
CCTGGGGATGGGGCAGACC
GGTCTGCCCCATCCCCAGG
62
CTGGGGATGGGGCAGACCC
GGGTCTGCCCCATCCCCAG
63
TGGGGATGGGGCAGACCCT
AGGGTCTGCCCCATCCCCA
64
GGGGATGGGGCAGACCCTC
GAGGGTCTGCCCCATCCCC
65
GGGATGGGGCAGACCCTCA
TGAGGGTCTGCCCCATCCC
66
GGATGGGGCAGACCCTCAC
GTGAGGGTCTGCCCCATCC
67
GATGGGGCAGACCCTCACA
TGTGAGGGTCTGCCCCATC
68
ATGGGGCAGACCCTCACAG
CTGTGAGGGTCTGCCCCAT
69
TGGGGCAGACCCTCACAGC
GCTGTGAGGGTCTGCCCCA
70
GGGGCAGACCCTCACAGCC
GGCTGTGAGGGTCTGCCCC
71
GGGCAGACCCTCACAGCCC
GGGCTGTGAGGGTCTGCCC
72
GGCAGACCCTCACAGCCCG
CGGGCTGTGAGGGTCTGCC
73
GCAGACCCTCACAGCCCGG
CCGGGCTGTGAGGGTCTGC
74
CAGACCCTCACAGCCCGGG
CCCGGGCTGTGAGGGTCTG
75
AGACCCTCACAGCCCGGGG
CCCCGGGCTGTGAGGGTCT
76
GACCCTCACAGCCCGGGGT
ACCCCGGGCTGTGAGGGTC
77
ACCCTCACAGCCCGGGGTC
GACCCCGGGCTGTGAGGGT
78
CCCTCACAGCCCGGGGTCT
AGACCCCGGGCTGTGAGGG
79
CCTCACAGCCCGGGGTCTG
CAGACCCCGGGCTGTGAGG
80
CTCACAGCCCGGGGTCTGG
CCAGACCCCGGGCTGTGAG
81
TCACAGCCCGGGGTCTGGA
TCCAGACCCCGGGCTGTGA
82
CACAGCCCGGGGTCTGGAG
CTCCAGACCCCGGGCTGTG
83
ACAGCCCGGGGTCTGGAGC
GCTCCAGACCCCGGGCTGT
84
CAGCCCGGGGTCTGGAGCC
GGCTCCAGACCCCGGGCTG
85
AGCCCGGGGTCTGGAGCCG
CGGCTCCAGACCCCGGGCT
86
GCCCGGGGTCTGGAGCCGG
CCGGCTCCAGACCCCGGGC
87
CCCGGGGTCTGGAGCCGGT
ACCGGCTCCAGACCCCGGG
88
CCGGGGTCTGGAGCCGGTG
CACCGGCTCCAGACCCCGG
89
CGGGGTCTGGAGCCGGTGT
ACACCGGCTCCAGACCCCG
90
GGGGTCTGGAGCCGGTGTC
GACACCGGCTCCAGACCCC
91
GGGTCTGGAGCCGGTGTCG
CGACACCGGCTCCAGACCC
92
GGTCTGGAGCCGGTGTCGG
CCGACACCGGCTCCAGACC
93
GTCTGGAGCCGGTGTCGGA
TCCGACACCGGCTCCAGAC
94
TCTGGAGCCGGTGTCGGAG
CTCCGACACCGGCTCCAGA
95
CTGGAGCCGGTGTCGGAGC
GCTCCGACACCGGCTCCAG
96
TGGAGCCGGTGTCGGAGCT
AGCTCCGACACCGGCTCCA
97
GGAGCCGGTGTCGGAGCTC
GAGCTCCGACACCGGCTCC
98
GAGCCGGTGTCGGAGCTCA
TGAGCTCCGACACCGGCTC
99
AGCCGGTGTCGGAGCTCAT
ATGAGCTCCGACACCGGCT
100
GCCGGTGTCGGAGCTCATC
GATGAGCTCCGACACCGGC
101
CCGGTGTCGGAGCTCATCT
AGATGAGCTCCGACACCGG
102
CGGTGTCGGAGCTCATCTG
CAGATGAGCTCCGACACCG
103
GGTGTCGGAGCTCATCTGG
CCAGATGAGCTCCGACACC
104
GTGTCGGAGCTCATCTGGG
CCCAGATGAGCTCCGACAC
105
TGTCGGAGCTCATCTGGGC
GCCCAGATGAGCTCCGACA
106
GTCGGAGCTCATCTGGGCC
GGCCCAGATGAGCTCCGAC
107
TCGGAGCTCATCTGGGCCC
GGGCCCAGATGAGCTCCGA
108
CGGAGCTCATCTGGGCCCA
TGGGCCCAGATGAGCTCCG
109
GGAGCTCATCTGGGCCCAT
ATGGGCCCAGATGAGCTCC
110
GAGCTCATCTGGGCCCATG
CATGGGCCCAGATGAGCTC
111
AGCTCATCTGGGCCCATGA
TCATGGGCCCAGATGAGCT
112
GCTCATCTGGGCCCATGAC
GTCATGGGCCCAGATGAGC
113
CTCATCTGGGCCCATGACC
GGTCATGGGCCCAGATGAG
114
TCATCTGGGCCCATGACCT
AGGTCATGGGCCCAGATGA
115
CATCTGGGCCCATGACCTC
GAGGTCATGGGCCCAGATG
116
ATCTGGGCCCATGACCTCT
AGAGGTCATGGGCCCAGAT
117
TCTGGGCCCATGACCTCTC
GAGAGGTCATGGGCCCAGA
118
CTGGGCCCATGACCTCTCC
GGAGAGGTCATGGGCCCAG
119
TGGGCCCATGACCTCTCCA
TGGAGAGGTCATGGGCCCA
120
GGGCCCATGACCTCTCCAG
CTGGAGAGGTCATGGGCCC
121
GGCCCATGACCTCTCCAGA
TCTGGAGAGGTCATGGGCC
122
GCCCATGACCTCTCCAGAC
GTCTGGAGAGGTCATGGGC
123
CCCATGACCTCTCCAGACA
TGTCTGGAGAGGTCATGGG
124
CCATGACCTCTCCAGACAT
ATGTCTGGAGAGGTCATGG
125
CATGACCTCTCCAGACATT
AATGTCTGGAGAGGTCATG
126
ATGACCTCTCCAGACATTT
AAATGTCTGGAGAGGTCAT
127
TGACCTCTCCAGACATTTG
CAAATGTCTGGAGAGGTCA
128
GACCTCTCCAGACATTTGG
CCAAATGTCTGGAGAGGTC
129
ACCTCTCCAGACATTTGGC
GCCAAATGTCTGGAGAGGT
130
CCTCTCCAGACATTTGGCA
TGCCAAATGTCTGGAGAGG
131
CTCTCCAGACATTTGGCAA
TTGCCAAATGTCTGGAGAG
132
TCTCCAGACATTTGGCAAA
TTTGCCAAATGTCTGGAGA
133
CTCCAGACATTTGGCAAAA
TTTTGCCAAATGTCTGGAG
134
TCCAGACATTTGGCAAAAT
ATTTTGCCAAATGTCTGGA
135
CCAGACATTTGGCAAAATC
GATTTTGCCAAATGTCTGG
136
CAGACATTTGGCAAAATCA
TGATTTTGCCAAATGTCTG
137
AGACATTTGGCAAAATCAA
TTGATTTTGCCAAATGTCT
138
GACATTTGGCAAAATCAAG
CTTGATTTTGCCAAATGTC
139
ACATTTGGCAAAATCAAGG
CCTTGATTTTGCCAAATGT
140
CATTTGGCAAAATCAAGGC
GCCTTGATTTTGCCAAATG
141
ATTTGGCAAAATCAAGGCC
GGCCTTGATTTTGCCAAAT
142
TTTGGCAAAATCAAGGCCC
GGGCCTTGATTTTGCCAAA
143
TTGGCAAAATCAAGGCCCT
AGGGCCTTGATTTTGCCAA
144
TGGCAAAATCAAGGCCCTT
AAGGGCCTTGATTTTGCCA
145
GGCAAAATCAAGGCCCTTA
TAAGGGCCTTGATTTTGCC
146
GCAAAATCAAGGCCCTTAG
CTAAGGGCCTTGATTTTGC
147
CAAAATCAAGGCCCTTAGA
TCTAAGGGCCTTGATTTTG
148
AAAATCAAGGCCCTTAGAC
GTCTAAGGGCCTTGATTTT
149
AAATCAAGGCCCTTAGACC
GGTCTAAGGGCCTTGATTT
150
AATCAAGGCCCTTAGACCA
TGGTCTAAGGGCCTTGATT
151
ATCAAGGCCCTTAGACCAG
CTGGTCTAAGGGCCTTGAT
152
TCAAGGCCCTTAGACCAGG
CCTGGTCTAAGGGCCTTGA
153
CAAGGCCCTTAGACCAGGG
CCCTGGTCTAAGGGCCTTG
154
AAGGCCCTTAGACCAGGGA
TCCCTGGTCTAAGGGCCTT
155
AGGCCCTTAGACCAGGGAC
GTCCCTGGTCTAAGGGCCT
156
GGCCCTTAGACCAGGGACA
TGTCCCTGGTCTAAGGGCC
157
GCCCTTAGACCAGGGACAG
CTGTCCCTGGTCTAAGGGC
158
CCCTTAGACCAGGGACAGA
TCTGTCCCTGGTCTAAGGG
159
CCTTAGACCAGGGACAGAC
GTCTGTCCCTGGTCTAAGG
160
CTTAGACCAGGGACAGACC
GGTCTGTCCCTGGTCTAAG
161
TTAGACCAGGGACAGACCC
GGGTCTGTCCCTGGTCTAA
162
TAGACCAGGGACAGACCCA
TGGGTCTGTCCCTGGTCTA
163
AGACCAGGGACAGACCCAA
TTGGGTCTGTCCCTGGTCT
164
GACCAGGGACAGACCCAAG
CTTGGGTCTGTCCCTGGTC
165
ACCAGGGACAGACCCAAGC
GCTTGGGTCTGTCCCTGGT
166
CCAGGGACAGACCCAAGCC
GGCTTGGGTCTGTCCCTGG
167
CAGGGACAGACCCAAGCCC
GGGCTTGGGTCTGTCCCTG
168
AGGGACAGACCCAAGCCCA
TGGGCTTGGGTCTGTCCCT
169
GGGACAGACCCAAGCCCAG
CTGGGCTTGGGTCTGTCCC
170
GGACAGACCCAAGCCCAGG
CCTGGGCTTGGGTCTGTCC
171
GACAGACCCAAGCCCAGGC
GCCTGGGCTTGGGTCTGTC
172
ACAGACCCAAGCCCAGGCC
GGCCTGGGCTTGGGTCTGT
173
CAGACCCAAGCCCAGGCCC
GGGCCTGGGCTTGGGTCTG
174
AGACCCAAGCCCAGGCCCT
AGGGCCTGGGCTTGGGTCT
175
GACCCAAGCCCAGGCCCTC
GAGGGCCTGGGCTTGGGTC
176
ACCCAAGCCCAGGCCCTCC
GGAGGGCCTGGGCTTGGGT
177
CCCAAGCCCAGGCCCTCCC
GGGAGGGCCTGGGCTTGGG
178
CCAAGCCCAGGCCCTCCCA
TGGGAGGGCCTGGGCTTGG
179
CAAGCCCAGGCCCTCCCAG
CTGGGAGGGCCTGGGCTTG
180
AAGCCCAGGCCCTCCCAGA
TCTGGGAGGGCCTGGGCTT
181
AGCCCAGGCCCTCCCAGAG
CTCTGGGAGGGCCTGGGCT
182
GCCCAGGCCCTCCCAGAGG
CCTCTGGGAGGGCCTGGGC
183
CCCAGGCCCTCCCAGAGGT
ACCTCTGGGAGGGCCTGGG
184
CCAGGCCCTCCCAGAGGTC
GACCTCTGGGAGGGCCTGG
185
CAGGCCCTCCCAGAGGTCC
GGACCTCTGGGAGGGCCTG
186
AGGCCCTCCCAGAGGTCCT
AGGACCTCTGGGAGGGCCT
187
GGCCCTCCCAGAGGTCCTA
TAGGACCTCTGGGAGGGCC
188
GCCCTCCCAGAGGTCCTAG
CTAGGACCTCTGGGAGGGC
189
CCCTCCCAGAGGTCCTAGG
CCTAGGACCTCTGGGAGGG
190
CCTCCCAGAGGTCCTAGGA
TCCTAGGACCTCTGGGAGG
191
CTCCCAGAGGTCCTAGGAC
GTCCTAGGACCTCTGGGAG
192
TCCCAGAGGTCCTAGGACG
CGTCCTAGGACCTCTGGGA
193
CCCAGAGGTCCTAGGACGC
GCGTCCTAGGACCTCTGGG
194
CCAGAGGTCCTAGGACGCA
TGCGTCCTAGGACCTCTGG
195
CAGAGGTCCTAGGACGCAA
TTGCGTCCTAGGACCTCTG
196
AGAGGTCCTAGGACGCAAC
GTTGCGTCCTAGGACCTCT
197
GAGGTCCTAGGACGCAACC
GGTTGCGTCCTAGGACCTC
198
AGGTCCTAGGACGCAACCC
GGGTTGCGTCCTAGGACCT
199
GGTCCTAGGACGCAACCCT
AGGGTTGCGTCCTAGGACC
200
GTCCTAGGACGCAACCCTT
AAGGGTTGCGTCCTAGGAC
201
TCCTAGGACGCAACCCTTT
AAAGGGTTGCGTCCTAGGA
202
CCTAGGACGCAACCCTTTG
CAAAGGGTTGCGTCCTAGG
203
CTAGGACGCAACCCTTTGT
ACAAAGGGTTGCGTCCTAG
204
TAGGACGCAACCCTTTGTG
CACAAAGGGTTGCGTCCTA
205
AGGACGCAACCCTTTGTGC
GCACAAAGGGTTGCGTCCT
206
GGACGCAACCCTTTGTGCC
GGCACAAAGGGTTGCGTCC
207
GACGCAACCCTTTGTGCCC
GGGCACAAAGGGTTGCGTC
208
ACGCAACCCTTTGTGCCCT
AGGGCACAAAGGGTTGCGT
209
CGCAACCCTTTGTGCCCTT
AAGGGCACAAAGGGTTGCG
210
GCAACCCTTTGTGCCCTTG
CAAGGGCACAAAGGGTTGC
211
CAACCCTTTGTGCCCTTGG
CCAAGGGCACAAAGGGTTG
212
AACCCTTTGTGCCCTTGGG
CCCAAGGGCACAAAGGGTT
213
ACCCTTTGTGCCCTTGGGC
GCCCAAGGGCACAAAGGGT
214
CCCTTTGTGCCCTTGGGCT
AGCCCAAGGGCACAAAGGG
215
CCTTTGTGCCCTTGGGCTC
GAGCCCAAGGGCACAAAGG
216
CTTTGTGCCCTTGGGCTCT
AGAGCCCAAGGGCACAAAG
217
TTTGTGCCCTTGGGCTCTG
CAGAGCCCAAGGGCACAAA
218
TTGTGCCCTTGGGCTCTGG
CCAGAGCCCAAGGGCACAA
219
TGTGCCCTTGGGCTCTGGA
TCCAGAGCCCAAGGGCACA
220
GTGCCCTTGGGCTCTGGAA
TTCCAGAGCCCAAGGGCAC
221
TGCCCTTGGGCTCTGGAAG
CTTCCAGAGCCCAAGGGCA
222
GCCCTTGGGCTCTGGAAGA
TCTTCCAGAGCCCAAGGGC
223
CCCTTGGGCTCTGGAAGAG
CTCTTCCAGAGCCCAAGGG
224
CCTTGGGCTCTGGAAGAGG
CCTCTTCCAGAGCCCAAGG
225
CTTGGGCTCTGGAAGAGGT
ACCTCTTCCAGAGCCCAAG
226
TTGGGCTCTGGAAGAGGTT
AACCTCTTCCAGAGCCCAA
227
TGGGCTCTGGAAGAGGTTT
AAACCTCTTCCAGAGCCCA
228
GGGCTCTGGAAGAGGTTTG
CAAACCTCTTCCAGAGCCC
229
GGCTCTGGAAGAGGTTTGG
CCAAACCTCTTCCAGAGCC
230
GCTCTGGAAGAGGTTTGGG
CCCAAACCTCTTCCAGAGC
231
CTCTGGAAGAGGTTTGGGA
TCCCAAACCTCTTCCAGAG
232
TCTGGAAGAGGTTTGGGAA
TTCCCAAACCTCTTCCAGA
233
CTGGAAGAGGTTTGGGAAG
CTTCCCAAACCTCTTCCAG
234
TGGAAGAGGTTTGGGAAGG
CCTTCCCAAACCTCTTCCA
235
GGAAGAGGTTTGGGAAGGG
CCCTTCCCAAACCTCTTCC
236
GAAGAGGTTTGGGAAGGGT
ACCCTTCCCAAACCTCTTC
237
AAGAGGTTTGGGAAGGGTT
AACCCTTCCCAAACCTCTT
238
AGAGGTTTGGGAAGGGTTT
AAACCCTTCCCAAACCTCT
239
GAGGTTTGGGAAGGGTTTG
CAAACCCTTCCCAAACCTC
240
AGGTTTGGGAAGGGTTTGG
CCAAACCCTTCCCAAACCT
241
GGTTTGGGAAGGGTTTGGG
CCCAAACCCTTCCCAAACC
242
GTTTGGGAAGGGTTTGGGG
CCCCAAACCCTTCCCAAAC
243
TTTGGGAAGGGTTTGGGGT
ACCCCAAACCCTTCCCAAA
244
TTGGGAAGGGTTTGGGGTG
CACCCCAAACCCTTCCCAA
245
TGGGAAGGGTTTGGGGTGG
CCACCCCAAACCCTTCCCA
246
GGGAAGGGTTTGGGGTGGA
TCCACCCCAAACCCTTCCC
247
GGAAGGGTTTGGGGTGGAA
TTCCACCCCAAACCCTTCC
248
GAAGGGTTTGGGGTGGAAG
CTTCCACCCCAAACCCTTC
249
AAGGGTTTGGGGTGGAAGA
TCTTCCACCCCAAACCCTT
250
AGGGTTTGGGGTGGAAGAT
ATCTTCCACCCCAAACCCT
251
GGGTTTGGGGTGGAAGATG
CATCTTCCACCCCAAACCC
252
GGTTTGGGGTGGAAGATGG
CCATCTTCCACCCCAAACC
253
GTTTGGGGTGGAAGATGGC
GCCATCTTCCACCCCAAAC
254
TTTGGGGTGGAAGATGGCA
TGCCATCTTCCACCCCAAA
255
TTGGGGTGGAAGATGGCAA
TTGCCATCTTCCACCCCAA
256
TGGGGTGGAAGATGGCAAA
TTTGCCATCTTCCACCCCA
257
GGGGTGGAAGATGGCAAAG
CTTTGCCATCTTCCACCCC
258
GGGTGGAAGATGGCAAAGA
TCTTTGCCATCTTCCACCC
259
GGTGGAAGATGGCAAAGAG
CTCTTTGCCATCTTCCACC
260
GTGGAAGATGGCAAAGAGC
GCTCTTTGCCATCTTCCAC
261
TGGAAGATGGCAAAGAGCA
TGCTCTTTGCCATCTTCCA
262
GGAAGATGGCAAAGAGCAG
CTGCTCTTTGCCATCTTCC
263
GAAGATGGCAAAGAGCAGC
GCTGCTCTTTGCCATCTTC
264
AAGATGGCAAAGAGCAGCT
AGCTGCTCTTTGCCATCTT
265
AGATGGCAAAGAGCAGCTT
AAGCTGCTCTTTGCCATCT
266
GATGGCAAAGAGCAGCTTG
CAAGCTGCTCTTTGCCATC
267
ATGGCAAAGAGCAGCTTGG
CCAAGCTGCTCTTTGCCAT
268
TGGCAAAGAGCAGCTTGGC
GCCAAGCTGCTCTTTGCCA
269
GGCAAAGAGCAGCTTGGCC
GGCCAAGCTGCTCTTTGCC
270
GCAAAGAGCAGCTTGGCCA
TGGCCAAGCTGCTCTTTGC
271
CAAAGAGCAGCTTGGCCAG
CTGGCCAAGCTGCTCTTTG
272
AAAGAGCAGCTTGGCCAGG
CCTGGCCAAGCTGCTCTTT
273
AAGAGCAGCTTGGCCAGGT
ACCTGGCCAAGCTGCTCTT
274
AGAGCAGCTTGGCCAGGTG
CACCTGGCCAAGCTGCTCT
275
GAGCAGCTTGGCCAGGTGA
TCACCTGGCCAAGCTGCTC
276
AGCAGCTTGGCCAGGTGAG
CTCACCTGGCCAAGCTGCT
277
GCAGCTTGGCCAGGTGAGG
CCTCACCTGGCCAAGCTGC
278
CAGCTTGGCCAGGTGAGGA
TCCTCACCTGGCCAAGCTG
279
AGCTTGGCCAGGTGAGGAT
ATCCTCACCTGGCCAAGCT
280
GCTTGGCCAGGTGAGGATG
CATCCTCACCTGGCCAAGC
281
CTTGGCCAGGTGAGGATGA
TCATCCTCACCTGGCCAAG
282
TTGGCCAGGTGAGGATGAG
CTCATCCTCACCTGGCCAA
283
TGGCCAGGTGAGGATGAGG
CCTCATCCTCACCTGGCCA
284
GGCCAGGTGAGGATGAGGC
GCCTCATCCTCACCTGGCC
285
GCCAGGTGAGGATGAGGCA
TGCCTCATCCTCACCTGGC
286
CCAGGTGAGGATGAGGCAG
CTGCCTCATCCTCACCTGG
287
CAGGTGAGGATGAGGCAGG
CCTGCCTCATCCTCACCTG
288
AGGTGAGGATGAGGCAGGG
CCCTGCCTCATCCTCACCT
289
GGTGAGGATGAGGCAGGGC
GCCCTGCCTCATCCTCACC
290
GTGAGGATGAGGCAGGGCA
TGCCCTGCCTCATCCTCAC
291
TGAGGATGAGGCAGGGCAG
CTGCCCTGCCTCATCCTCA
292
GAGGATGAGGCAGGGCAGA
TCTGCCCTGCCTCATCCTC
293
AGGATGAGGCAGGGCAGAC
GTCTGCCCTGCCTCATCCT
294
GGATGAGGCAGGGCAGACA
TGTCTGCCCTGCCTCATCC
295
GATGAGGCAGGGCAGACAC
GTGTCTGCCCTGCCTCATC
296
ATGAGGCAGGGCAGACACA
TGTGTCTGCCCTGCCTCAT
297
TGAGGCAGGGCAGACACAG
CTGTGTCTGCCCTGCCTCA
298
GAGGCAGGGCAGACACAGG
CCTGTGTCTGCCCTGCCTC
299
AGGCAGGGCAGACACAGGC
GCCTGTGTCTGCCCTGCCT
300
GGCAGGGCAGACACAGGCC
GGCCTGTGTCTGCCCTGCC
301
GCAGGGCAGACACAGGCCA
TGGCCTGTGTCTGCCCTGC
302
CAGGGCAGACACAGGCCAG
CTGGCCTGTGTCTGCCCTG
303
AGGGCAGACACAGGCCAGT
ACTGGCCTGTGTCTGCCCT
304
GGGCAGACACAGGCCAGTG
CACTGGCCTGTGTCTGCCC
305
GGCAGACACAGGCCAGTGG
CCACTGGCCTGTGTCTGCC
306
GCAGACACAGGCCAGTGGG
CCCACTGGCCTGTGTCTGC
307
CAGACACAGGCCAGTGGGG
CCCCACTGGCCTGTGTCTG
308
AGACACAGGCCAGTGGGGC
GCCCCACTGGCCTGTGTCT
309
GACACAGGCCAGTGGGGCG
CGCCCCACTGGCCTGTGTC
310
ACACAGGCCAGTGGGGCGT
ACGCCCCACTGGCCTGTGT
311
CACAGGCCAGTGGGGCGTG
CACGCCCCACTGGCCTGTG
312
ACAGGCCAGTGGGGCGTGC
GCACGCCCCACTGGCCTGT
313
CAGGCCAGTGGGGCGTGCC
GGCACGCCCCACTGGCCTG
314
AGGCCAGTGGGGCGTGCCA
TGGCACGCCCCACTGGCCT
315
GGCCAGTGGGGCGTGCCAT
ATGGCACGCCCCACTGGCC
316
GCCAGTGGGGCGTGCCATG
CATGGCACGCCCCACTGGC
317
CCAGTGGGGCGTGCCATGT
ACATGGCACGCCCCACTGG
318
CAGTGGGGCGTGCCATGTG
CACATGGCACGCCCCACTG
319
AGTGGGGCGTGCCATGTGC
GCACATGGCACGCCCCACT
320
GTGGGGCGTGCCATGTGCC
GGCACATGGCACGCCCCAC
321
TGGGGCGTGCCATGTGCCA
TGGCACATGGCACGCCCCA
322
GGGGCGTGCCATGTGCCAC
GTGGCACATGGCACGCCCC
323
GGGCGTGCCATGTGCCACA
TGTGGCACATGGCACGCCC
324
GGCGTGCCATGTGCCACAG
CTGTGGCACATGGCACGCC
325
GCGTGCCATGTGCCACAGA
TCTGTGGCACATGGCACGC
326
CGTGCCATGTGCCACAGAT
ATCTGTGGCACATGGCACG
327
GTGCCATGTGCCACAGATG
CATCTGTGGCACATGGCAC
328
TGCCATGTGCCACAGATGG
CCATCTGTGGCACATGGCA
329
GCCATGTGCCACAGATGGA
TCCATCTGTGGCACATGGC
330
CCATGTGCCACAGATGGAG
CTCCATCTGTGGCACATGG
331
CATGTGCCACAGATGGAGA
TCTCCATCTGTGGCACATG
332
ATGTGCCACAGATGGAGAG
CTCTCCATCTGTGGCACAT
333
TGTGCCACAGATGGAGAGG
CCTCTCCATCTGTGGCACA
334
GTGCCACAGATGGAGAGGA
TCCTCTCCATCTGTGGCAC
335
TGCCACAGATGGAGAGGAC
GTCCTCTCCATCTGTGGCA
336
GCCACAGATGGAGAGGACC
GGTCCTCTCCATCTGTGGC
337
CCACAGATGGAGAGGACCA
TGGTCCTCTCCATCTGTGG
338
CACAGATGGAGAGGACCAG
CTGGTCCTCTCCATCTGTG
339
ACAGATGGAGAGGACCAGG
CCTGGTCCTCTCCATCTGT
340
CAGATGGAGAGGACCAGGA
TCCTGGTCCTCTCCATCTG
341
AGATGGAGAGGACCAGGAG
CTCCTGGTCCTCTCCATCT
342
GATGGAGAGGACCAGGAGC
GCTCCTGGTCCTCTCCATC
343
ATGGAGAGGACCAGGAGCC
GGCTCCTGGTCCTCTCCAT
344
TGGAGAGGACCAGGAGCCA
TGGCTCCTGGTCCTCTCCA
345
GGAGAGGACCAGGAGCCAG
CTGGCTCCTGGTCCTCTCC
346
GAGAGGACCAGGAGCCAGT
ACTGGCTCCTGGTCCTCTC
347
AGAGGACCAGGAGCCAGTG
CACTGGCTCCTGGTCCTCT
348
GAGGACCAGGAGCCAGTGG
CCACTGGCTCCTGGTCCTC
349
AGGACCAGGAGCCAGTGGC
GCCACTGGCTCCTGGTCCT
350
GGACCAGGAGCCAGTGGCC
GGCCACTGGCTCCTGGTCC
351
GACCAGGAGCCAGTGGCCC
GGGCCACTGGCTCCTGGTC
352
ACCAGGAGCCAGTGGCCCG
CGGGCCACTGGCTCCTGGT
353
CCAGGAGCCAGTGGCCCGG
CCGGGCCACTGGCTCCTGG
354
CAGGAGCCAGTGGCCCGGC
GCCGGGCCACTGGCTCCTG
355
AGGAGCCAGTGGCCCGGCA
TGCCGGGCCACTGGCTCCT
356
GGAGCCAGTGGCCCGGCAG
CTGCCGGGCCACTGGCTCC
357
GAGCCAGTGGCCCGGCAGG
CCTGCCGGGCCACTGGCTC
358
AGCCAGTGGCCCGGCAGGC
GCCTGCCGGGCCACTGGCT
359
GCCAGTGGCCCGGCAGGCA
TGCCTGCCGGGCCACTGGC
360
CCAGTGGCCCGGCAGGCAC
GTGCCTGCCGGGCCACTGG
361
CAGTGGCCCGGCAGGCACA
TGTGCCTGCCGGGCCACTG
362
AGTGGCCCGGCAGGCACAG
CTGTGCCTGCCGGGCCACT
363
GTGGCCCGGCAGGCACAGC
GCTGTGCCTGCCGGGCCAC
364
TGGCCCGGCAGGCACAGCC
GGCTGTGCCTGCCGGGCCA
365
GGCCCGGCAGGCACAGCCC
GGGCTGTGCCTGCCGGGCC
366
GCCCGGCAGGCACAGCCCG
CGGGCTGTGCCTGCCGGGC
367
CCCGGCAGGCACAGCCCGG
CCGGGCTGTGCCTGCCGGG
368
CCGGCAGGCACAGCCCGGT
ACCGGGCTGTGCCTGCCGG
369
CGGCAGGCACAGCCCGGTT
AACCGGGCTGTGCCTGCCG
370
GGCAGGCACAGCCCGGTTG
CAACCGGGCTGTGCCTGCC
371
GCAGGCACAGCCCGGTTGG
CCAACCGGGCTGTGCCTGC
372
CAGGCACAGCCCGGTTGGC
GCCAACCGGGCTGTGCCTG
373
AGGCACAGCCCGGTTGGCG
CGCCAACCGGGCTGTGCCT
374
GGCACAGCCCGGTTGGCGT
ACGCCAACCGGGCTGTGCC
375
GCACAGCCCGGTTGGCGTG
CACGCCAACCGGGCTGTGC
376
CACAGCCCGGTTGGCGTGG
CCACGCCAACCGGGCTGTG
377
ACAGCCCGGTTGGCGTGGG
CCCACGCCAACCGGGCTGT
378
CAGCCCGGTTGGCGTGGGC
GCCCACGCCAACCGGGCTG
379
AGCCCGGTTGGCGTGGGCC
GGCCCACGCCAACCGGGCT
380
GCCCGGTTGGCGTGGGCCA
TGGCCCACGCCAACCGGGC
381
CCCGGTTGGCGTGGGCCAG
CTGGCCCACGCCAACCGGG
382
CCGGTTGGCGTGGGCCAGA
TCTGGCCCACGCCAACCGG
383
CGGTTGGCGTGGGCCAGAG
CTCTGGCCCACGCCAACCG
384
GGTTGGCGTGGGCCAGAGC
GCTCTGGCCCACGCCAACC
385
GTTGGCGTGGGCCAGAGCG
CGCTCTGGCCCACGCCAAC
386
TTGGCGTGGGCCAGAGCGC
GCGCTCTGGCCCACGCCAA
387
TGGCGTGGGCCAGAGCGCC
GGCGCTCTGGCCCACGCCA
388
GGCGTGGGCCAGAGCGCCC
GGGCGCTCTGGCCCACGCC
389
GCGTGGGCCAGAGCGCCCA
TGGGCGCTCTGGCCCACGC
390
CGTGGGCCAGAGCGCCCAT
ATGGGCGCTCTGGCCCACG
391
GTGGGCCAGAGCGCCCATC
GATGGGCGCTCTGGCCCAC
392
TGGGCCAGAGCGCCCATCA
TGATGGGCGCTCTGGCCCA
393
GGGCCAGAGCGCCCATCAC
GTGATGGGCGCTCTGGCCC
394
GGCCAGAGCGCCCATCACT
AGTGATGGGCGCTCTGGCC
395
GCCAGAGCGCCCATCACTG
CAGTGATGGGCGCTCTGGC
396
CCAGAGCGCCCATCACTGA
TCAGTGATGGGCGCTCTGG
397
CAGAGCGCCCATCACTGAC
GTCAGTGATGGGCGCTCTG
398
AGAGCGCCCATCACTGACC
GGTCAGTGATGGGCGCTCT
399
GAGCGCCCATCACTGACCC
GGGTCAGTGATGGGCGCTC
400
AGCGCCCATCACTGACCCG
CGGGTCAGTGATGGGCGCT
401
GCGCCCATCACTGACCCGT
ACGGGTCAGTGATGGGCGC
402
CGCCCATCACTGACCCGTG
CACGGGTCAGTGATGGGCG
403
GCCCATCACTGACCCGTGA
TCACGGGTCAGTGATGGGC
404
CCCATCACTGACCCGTGAG
CTCACGGGTCAGTGATGGG
405
CCATCACTGACCCGTGAGA
TCTCACGGGTCAGTGATGG
406
CATCACTGACCCGTGAGAA
TTCTCACGGGTCAGTGATG
407
ATCACTGACCCGTGAGAAC
GTTCTCACGGGTCAGTGAT
408
TCACTGACCCGTGAGAACT
AGTTCTCACGGGTCAGTGA
409
CACTGACCCGTGAGAACTC
GAGTTCTCACGGGTCAGTG
410
ACTGACCCGTGAGAACTCG
CGAGTTCTCACGGGTCAGT
411
CTGACCCGTGAGAACTCGA
TCGAGTTCTCACGGGTCAG
412
TGACCCGTGAGAACTCGAC
GTCGAGTTCTCACGGGTCA
413
GACCCGTGAGAACTCGACT
AGTCGAGTTCTCACGGGTC
414
ACCCGTGAGAACTCGACTG
CAGTCGAGTTCTCACGGGT
415
CCCGTGAGAACTCGACTGC
GCAGTCGAGTTCTCACGGG
416
CCGTGAGAACTCGACTGCC
GGCAGTCGAGTTCTCACGG
417
CGTGAGAACTCGACTGCCC
GGGCAGTCGAGTTCTCACG
418
GTGAGAACTCGACTGCCCC
GGGGCAGTCGAGTTCTCAC
419
TGAGAACTCGACTGCCCCT
AGGGGCAGTCGAGTTCTCA
420
GAGAACTCGACTGCCCCTG
CAGGGGCAGTCGAGTTCTC
421
AGAACTCGACTGCCCCTGC
GCAGGGGCAGTCGAGTTCT
422
GAACTCGACTGCCCCTGCC
GGCAGGGGCAGTCGAGTTC
423
AACTCGACTGCCCCTGCCA
TGGCAGGGGCAGTCGAGTT
424
ACTCGACTGCCCCTGCCAG
CTGGCAGGGGCAGTCGAGT
425
CTCGACTGCCCCTGCCAGC
GCTGGCAGGGGCAGTCGAG
426
TCGACTGCCCCTGCCAGCT
AGCTGGCAGGGGCAGTCGA
427
CGACTGCCCCTGCCAGCTC
GAGCTGGCAGGGGCAGTCG
428
GACTGCCCCTGCCAGCTCT
AGAGCTGGCAGGGGCAGTC
429
ACTGCCCCTGCCAGCTCTG
CAGAGCTGGCAGGGGCAGT
430
CTGCCCCTGCCAGCTCTGG
CCAGAGCTGGCAGGGGCAG
431
TGCCCCTGCCAGCTCTGGC
GCCAGAGCTGGCAGGGGCA
432
GCCCCTGCCAGCTCTGGCA
TGCCAGAGCTGGCAGGGGC
433
CCCCTGCCAGCTCTGGCAC
GTGCCAGAGCTGGCAGGGG
434
CCCTGCCAGCTCTGGCACT
AGTGCCAGAGCTGGCAGGG
435
CCTGCCAGCTCTGGCACTG
CAGTGCCAGAGCTGGCAGG
436
CTGCCAGCTCTGGCACTGC
GCAGTGCCAGAGCTGGCAG
437
TGCCAGCTCTGGCACTGCC
GGCAGTGCCAGAGCTGGCA
438
GCCAGCTCTGGCACTGCCC
GGGCAGTGCCAGAGCTGGC
439
CCAGCTCTGGCACTGCCCC
GGGGCAGTGCCAGAGCTGG
440
CAGCTCTGGCACTGCCCCC
GGGGGCAGTGCCAGAGCTG
441
AGCTCTGGCACTGCCCCCT
AGGGGGCAGTGCCAGAGCT
442
GCTCTGGCACTGCCCCCTC
GAGGGGGCAGTGCCAGAGC
443
CTCTGGCACTGCCCCCTCC
GGAGGGGGCAGTGCCAGAG
444
TCTGGCACTGCCCCCTCCC
GGGAGGGGGCAGTGCCAGA
445
CTGGCACTGCCCCCTCCCA
TGGGAGGGGGCAGTGCCAG
446
TGGCACTGCCCCCTCCCAG
CTGGGAGGGGGCAGTGCCA
447
GGCACTGCCCCCTCCCAGC
GCTGGGAGGGGGCAGTGCC
448
GCACTGCCCCCTCCCAGCC
GGCTGGGAGGGGGCAGTGC
449
CACTGCCCCCTCCCAGCCG
CGGCTGGGAGGGGGCAGTG
450
ACTGCCCCCTCCCAGCCGC
GCGGCTGGGAGGGGGCAGT
451
CTGCCCCCTCCCAGCCGCC
GGCGGCTGGGAGGGGGCAG
452
TGCCCCCTCCCAGCCGCCC
GGGCGGCTGGGAGGGGGCA
453
GCCCCCTCCCAGCCGCCCC
GGGGCGGCTGGGAGGGGGC
454
CCCCCTCCCAGCCGCCCCG
CGGGGCGGCTGGGAGGGGG
455
CCCCTCCCAGCCGCCCCGC
GCGGGGCGGCTGGGAGGGG
456
CCCTCCCAGCCGCCCCGCC
GGCGGGGCGGCTGGGAGGG
457
CCTCCCAGCCGCCCCGCCC
GGGCGGGGCGGCTGGGAGG
458
CTCCCAGCCGCCCCGCCCT
AGGGCGGGGCGGCTGGGAG
459
TCCCAGCCGCCCCGCCCTA
TAGGGCGGGGCGGCTGGGA
460
CCCAGCCGCCCCGCCCTAG
CTAGGGCGGGGCGGCTGGG
461
CCAGCCGCCCCGCCCTAGC
GCTAGGGCGGGGCGGCTGG
462
CAGCCGCCCCGCCCTAGCA
TGCTAGGGCGGGGCGGCTG
463
AGCCGCCCCGCCCTAGCAC
GTGCTAGGGCGGGGCGGCT
464
GCCGCCCCGCCCTAGCACC
GGTGCTAGGGCGGGGCGGC
465
CCGCCCCGCCCTAGCACCC
GGGTGCTAGGGCGGGGCGG
466
CGCCCCGCCCTAGCACCCT
AGGGTGCTAGGGCGGGGCG
467
GCCCCGCCCTAGCACCCTG
CAGGGTGCTAGGGCGGGGC
468
CCCCGCCCTAGCACCCTGG
CCAGGGTGCTAGGGCGGGG
469
CCCGCCCTAGCACCCTGGG
CCCAGGGTGCTAGGGCGGG
470
CCGCCCTAGCACCCTGGGG
CCCCAGGGTGCTAGGGCGG
471
CGCCCTAGCACCCTGGGGG
CCCCCAGGGTGCTAGGGCG
472
GCCCTAGCACCCTGGGGGG
CCCCCCAGGGTGCTAGGGC
473
CCCTAGCACCCTGGGGGGC
GCCCCCCAGGGTGCTAGGG
474
CCTAGCACCCTGGGGGGCA
TGCCCCCCAGGGTGCTAGG
475
CTAGCACCCTGGGGGGCAC
GTGCCCCCCAGGGTGCTAG
476
TAGCACCCTGGGGGGCACC
GGTGCCCCCCAGGGTGCTA
477
AGCACCCTGGGGGGCACCC
GGGTGCCCCCCAGGGTGCT
478
GCACCCTGGGGGGCACCCC
GGGGTGCCCCCCAGGGTGC
479
CACCCTGGGGGGCACCCCG
CGGGGTGCCCCCCAGGGTG
480
ACCCTGGGGGGCACCCCGC
GCGGGGTGCCCCCCAGGGT
481
CCCTGGGGGGCACCCCGCC
GGCGGGGTGCCCCCCAGGG
482
CCTGGGGGGCACCCCGCCC
GGGCGGGGTGCCCCCCAGG
483
CTGGGGGGCACCCCGCCCA
TGGGCGGGGTGCCCCCCAG
484
TGGGGGGCACCCCGCCCAA
TTGGGCGGGGTGCCCCCCA
485
GGGGGGCACCCCGCCCAAC
GTTGGGCGGGGTGCCCCCC
486
GGGGGCACCCCGCCCAACC
GGTTGGGCGGGGTGCCCCC
487
GGGGCACCCCGCCCAACCG
CGGTTGGGCGGGGTGCCCC
488
GGGCACCCCGCCCAACCGT
ACGGTTGGGCGGGGTGCCC
489
GGCACCCCGCCCAACCGTG
CACGGTTGGGCGGGGTGCC
490
GCACCCCGCCCAACCGTGG
CCACGGTTGGGCGGGGTGC
491
CACCCCGCCCAACCGTGGC
GCCACGGTTGGGCGGGGTG
492
ACCCCGCCCAACCGTGGCC
GGCCACGGTTGGGCGGGGT
493
CCCCGCCCAACCGTGGCCT
AGGCCACGGTTGGGCGGGG
494
CCCGCCCAACCGTGGCCTG
CAGGCCACGGTTGGGCGGG
495
CCGCCCAACCGTGGCCTGG
CCAGGCCACGGTTGGGCGG
496
CGCCCAACCGTGGCCTGGT
ACCAGGCCACGGTTGGGCG
497
GCCCAACCGTGGCCTGGTC
GACCAGGCCACGGTTGGGC
498
CCCAACCGTGGCCTGGTCC
GGACCAGGCCACGGTTGGG
499
CCAACCGTGGCCTGGTCCG
CGGACCAGGCCACGGTTGG
500
CAACCGTGGCCTGGTCCGG
CCGGACCAGGCCACGGTTG
501
AACCGTGGCCTGGTCCGGC
GCCGGACCAGGCCACGGTT
502
ACCGTGGCCTGGTCCGGCC
GGCCGGACCAGGCCACGGT
503
CCGTGGCCTGGTCCGGCCC
GGGCCGGACCAGGCCACGG
504
CGTGGCCTGGTCCGGCCCC
GGGGCCGGACCAGGCCACG
505
GTGGCCTGGTCCGGCCCCT
AGGGGCCGGACCAGGCCAC
506
TGGCCTGGTCCGGCCCCTC
GAGGGGCCGGACCAGGCCA
507
GGCCTGGTCCGGCCCCTCC
GGAGGGGCCGGACCAGGCC
508
GCCTGGTCCGGCCCCTCCC
GGGAGGGGCCGGACCAGGC
509
CCTGGTCCGGCCCCTCCCG
CGGGAGGGGCCGGACCAGG
510
CTGGTCCGGCCCCTCCCGC
GCGGGAGGGGCCGGACCAG
511
TGGTCCGGCCCCTCCCGCC
GGCGGGAGGGGCCGGACCA
512
GGTCCGGCCCCTCCCGCCC
GGGCGGGAGGGGCCGGACC
513
GTCCGGCCCCTCCCGCCCT
AGGGCGGGAGGGGCCGGAC
514
TCCGGCCCCTCCCGCCCTT
AAGGGCGGGAGGGGCCGGA
515
CCGGCCCCTCCCGCCCTTT
AAAGGGCGGGAGGGGCCGG
516
CGGCCCCTCCCGCCCTTTG
CAAAGGGCGGGAGGGGCCG
517
GGCCCCTCCCGCCCTTTGC
GCAAAGGGCGGGAGGGGCC
518
GCCCCTCCCGCCCTTTGCT
AGCAAAGGGCGGGAGGGGC
519
CCCCTCCCGCCCTTTGCTC
GAGCAAAGGGCGGGAGGGG
520
CCCTCCCGCCCTTTGCTCC
GGAGCAAAGGGCGGGAGGG
521
CCTCCCGCCCTTTGCTCCA
TGGAGCAAAGGGCGGGAGG
522
CTCCCGCCCTTTGCTCCAG
CTGGAGCAAAGGGCGGGAG
523
TCCCGCCCTTTGCTCCAGT
ACTGGAGCAAAGGGCGGGA
524
CCCGCCCTTTGCTCCAGTT
AACTGGAGCAAAGGGCGGG
525
CCGCCCTTTGCTCCAGTTC
GAACTGGAGCAAAGGGCGG
526
CGCCCTTTGCTCCAGTTCC
GGAACTGGAGCAAAGGGCG
527
GCCCTTTGCTCCAGTTCCC
GGGAACTGGAGCAAAGGGC
528
CCCTTTGCTCCAGTTCCCG
CGGGAACTGGAGCAAAGGG
529
CCTTTGCTCCAGTTCCCGG
CCGGGAACTGGAGCAAAGG
530
CTTTGCTCCAGTTCCCGGG
CCCGGGAACTGGAGCAAAG
531
TTTGCTCCAGTTCCCGGGC
GCCCGGGAACTGGAGCAAA
532
TTGCTCCAGTTCCCGGGCT
AGCCCGGGAACTGGAGCAA
533
TGCTCCAGTTCCCGGGCTT
AAGCCCGGGAACTGGAGCA
534
GCTCCAGTTCCCGGGCTTG
CAAGCCCGGGAACTGGAGC
535
CTCCAGTTCCCGGGCTTGG
CCAAGCCCGGGAACTGGAG
536
TCCAGTTCCCGGGCTTGGC
GCCAAGCCCGGGAACTGGA
537
CCAGTTCCCGGGCTTGGCA
TGCCAAGCCCGGGAACTGG
538
CAGTTCCCGGGCTTGGCAC
GTGCCAAGCCCGGGAACTG
539
AGTTCCCGGGCTTGGCACC
GGTGCCAAGCCCGGGAACT
540
GTTCCCGGGCTTGGCACCT
AGGTGCCAAGCCCGGGAAC
541
TTCCCGGGCTTGGCACCTA
TAGGTGCCAAGCCCGGGAA
542
TCCCGGGCTTGGCACCTAT
ATAGGTGCCAAGCCCGGGA
543
CCCGGGCTTGGCACCTATA
TATAGGTGCCAAGCCCGGG
544
CCGGGCTTGGCACCTATAG
CTATAGGTGCCAAGCCCGG
545
CGGGCTTGGCACCTATAGT
ACTATAGGTGCCAAGCCCG
546
GGGCTTGGCACCTATAGTG
CACTATAGGTGCCAAGCCC
547
GGCTTGGCACCTATAGTGG
CCACTATAGGTGCCAAGCC
548
GCTTGGCACCTATAGTGGG
CCCACTATAGGTGCCAAGC
549
CTTGGCACCTATAGTGGGG
CCCCACTATAGGTGCCAAG
550
TTGGCACCTATAGTGGGGG
CCCCCACTATAGGTGCCAA
551
TGGCACCTATAGTGGGGGT
ACCCCCACTATAGGTGCCA
552
GGCACCTATAGTGGGGGTG
CACCCCCACTATAGGTGCC
553
GCACCTATAGTGGGGGTGC
GCACCCCCACTATAGGTGC
554
CACCTATAGTGGGGGTGCC
GGCACCCCCACTATAGGTG
555
ACCTATAGTGGGGGTGCCG
CGGCACCCCCACTATAGGT
556
CCTATAGTGGGGGTGCCGC
GCGGCACCCCCACTATAGG
557
CTATAGTGGGGGTGCCGCC
GGCGGCACCCCCACTATAG
558
TATAGTGGGGGTGCCGCCC
GGGCGGCACCCCCACTATA
559
ATAGTGGGGGTGCCGCCCG
CGGGCGGCACCCCCACTAT
560
TAGTGGGGGTGCCGCCCGC
GCGGGCGGCACCCCCACTA
561
AGTGGGGGTGCCGCCCGCC
GGCGGGCGGCACCCCCACT
562
GTGGGGGTGCCGCCCGCCT
AGGCGGGCGGCACCCCCAC
563
TGGGGGTGCCGCCCGCCTG
CAGGCGGGCGGCACCCCCA
564
GGGGGTGCCGCCCGCCTGC
GCAGGCGGGCGGCACCCCC
565
GGGGTGCCGCCCGCCTGCC
GGCAGGCGGGCGGCACCCC
566
GGGTGCCGCCCGCCTGCCA
TGGCAGGCGGGCGGCACCC
567
GGTGCCGCCCGCCTGCCAG
CTGGCAGGCGGGCGGCACC
568
GTGCCGCCCGCCTGCCAGG
CCTGGCAGGCGGGCGGCAC
569
TGCCGCCCGCCTGCCAGGC
GCCTGGCAGGCGGGCGGCA
570
GCCGCCCGCCTGCCAGGCT
AGCCTGGCAGGCGGGCGGC
571
CCGCCCGCCTGCCAGGCTC
GAGCCTGGCAGGCGGGCGG
572
CGCCCGCCTGCCAGGCTCC
GGAGCCTGGCAGGCGGGCG
573
GCCCGCCTGCCAGGCTCCG
CGGAGCCTGGCAGGCGGGC
574
CCCGCCTGCCAGGCTCCGG
CCGGAGCCTGGCAGGCGGG
575
CCGCCTGCCAGGCTCCGGG
CCCGGAGCCTGGCAGGCGG
576
CGCCTGCCAGGCTCCGGGG
CCCCGGAGCCTGGCAGGCG
577
GCCTGCCAGGCTCCGGGGC
GCCCCGGAGCCTGGCAGGC
578
CCTGCCAGGCTCCGGGGCC
GGCCCCGGAGCCTGGCAGG
579
CTGCCAGGCTCCGGGGCCG
CGGCCCCGGAGCCTGGCAG
580
TGCCAGGCTCCGGGGCCGG
CCGGCCCCGGAGCCTGGCA
581
GCCAGGCTCCGGGGCCGGG
CCCGGCCCCGGAGCCTGGC
582
CCAGGCTCCGGGGCCGGGC
GCCCGGCCCCGGAGCCTGG
583
CAGGCTCCGGGGCCGGGCC
GGCCCGGCCCCGGAGCCTG
584
AGGCTCCGGGGCCGGGCCC
GGGCCCGGCCCCGGAGCCT
585
GGCTCCGGGGCCGGGCCCA
TGGGCCCGGCCCCGGAGCC
586
GCTCCGGGGCCGGGCCCAC
GTGGGCCCGGCCCCGGAGC
587
CTCCGGGGCCGGGCCCACG
CGTGGGCCCGGCCCCGGAG
588
TCCGGGGCCGGGCCCACGG
CCGTGGGCCCGGCCCCGGA
589
CCGGGGCCGGGCCCACGGG
CCCGTGGGCCCGGCCCCGG
590
CGGGGCCGGGCCCACGGGA
TCCCGTGGGCCCGGCCCCG
591
GGGGCCGGGCCCACGGGAG
CTCCCGTGGGCCCGGCCCC
592
GGGCCGGGCCCACGGGAGG
CCTCCCGTGGGCCCGGCCC
593
GGCCGGGCCCACGGGAGGG
CCCTCCCGTGGGCCCGGCC
594
GCCGGGCCCACGGGAGGGT
ACCCTCCCGTGGGCCCGGC
595
CCGGGCCCACGGGAGGGTG
CACCCTCCCGTGGGCCCGG
596
CGGGCCCACGGGAGGGTGG
CCACCCTCCCGTGGGCCCG
597
GGGCCCACGGGAGGGTGGG
CCCACCCTCCCGTGGGCCC
598
GGCCCACGGGAGGGTGGGG
CCCCACCCTCCCGTGGGCC
599
GCCCACGGGAGGGTGGGGC
GCCCCACCCTCCCGTGGGC
600
CCCACGGGAGGGTGGGGCG
CGCCCCACCCTCCCGTGGG
601
CCACGGGAGGGTGGGGCGG
CCGCCCCACCCTCCCGTGG
602
CACGGGAGGGTGGGGCGGC
GCCGCCCCACCCTCCCGTG
603
ACGGGAGGGTGGGGCGGCT
AGCCGCCCCACCCTCCCGT
604
CGGGAGGGTGGGGCGGCTG
CAGCCGCCCCACCCTCCCG
605
GGGAGGGTGGGGCGGCTGG
CCAGCCGCCCCACCCTCCC
606
GGAGGGTGGGGCGGCTGGG
CCCAGCCGCCCCACCCTCC
607
GAGGGTGGGGCGGCTGGGA
TCCCAGCCGCCCCACCCTC
608
AGGGTGGGGCGGCTGGGAA
TTCCCAGCCGCCCCACCCT
609
GGGTGGGGCGGCTGGGAAG
CTTCCCAGCCGCCCCACCC
610
GGTGGGGCGGCTGGGAAGC
GCTTCCCAGCCGCCCCACC
611
GTGGGGCGGCTGGGAAGCT
AGCTTCCCAGCCGCCCCAC
612
TGGGGCGGCTGGGAAGCTG
CAGCTTCCCAGCCGCCCCA
613
GGGGCGGCTGGGAAGCTGG
CCAGCTTCCCAGCCGCCCC
614
GGGCGGCTGGGAAGCTGGC
GCCAGCTTCCCAGCCGCCC
615
GGCGGCTGGGAAGCTGGCA
TGCCAGCTTCCCAGCCGCC
616
GCGGCTGGGAAGCTGGCAC
GTGCCAGCTTCCCAGCCGC
617
CGGCTGGGAAGCTGGCACG
CGTGCCAGCTTCCCAGCCG
618
GGCTGGGAAGCTGGCACGC
GCGTGCCAGCTTCCCAGCC
619
GCTGGGAAGCTGGCACGCT
AGCGTGCCAGCTTCCCAGC
620
CTGGGAAGCTGGCACGCTG
CAGCGTGCCAGCTTCCCAG
621
TGGGAAGCTGGCACGCTGC
GCAGCGTGCCAGCTTCCCA
622
GGGAAGCTGGCACGCTGCC
GGCAGCGTGCCAGCTTCCC
623
GGAAGCTGGCACGCTGCCC
GGGCAGCGTGCCAGCTTCC
624
GAAGCTGGCACGCTGCCCC
GGGGCAGCGTGCCAGCTTC
625
AAGCTGGCACGCTGCCCCG
CGGGGCAGCGTGCCAGCTT
626
AGCTGGCACGCTGCCCCGG
CCGGGGCAGCGTGCCAGCT
627
GCTGGCACGCTGCCCCGGG
CCCGGGGCAGCGTGCCAGC
628
CTGGCACGCTGCCCCGGGG
CCCCGGGGCAGCGTGCCAG
629
TGGCACGCTGCCCCGGGGG
CCCCCGGGGCAGCGTGCCA
630
GGCACGCTGCCCCGGGGGA
TCCCCCGGGGCAGCGTGCC
631
GCACGCTGCCCCGGGGGAG
CTCCCCCGGGGCAGCGTGC
632
CACGCTGCCCCGGGGGAGC
GCTCCCCCGGGGCAGCGTG
633
ACGCTGCCCCGGGGGAGCC
GGCTCCCCCGGGGCAGCGT
634
CGCTGCCCCGGGGGAGCCT
AGGCTCCCCCGGGGCAGCG
635
GCTGCCCCGGGGGAGCCTC
GAGGCTCCCCCGGGGCAGC
636
CTGCCCCGGGGGAGCCTCT
AGAGGCTCCCCCGGGGCAG
637
TGCCCCGGGGGAGCCTCTC
GAGAGGCTCCCCCGGGGCA
638
GCCCCGGGGGAGCCTCTCT
AGAGAGGCTCCCCCGGGGC
639
CCCCGGGGGAGCCTCTCTC
GAGAGAGGCTCCCCCGGGG
640
CCCGGGGGAGCCTCTCTCG
CGAGAGAGGCTCCCCCGGG
641
CCGGGGGAGCCTCTCTCGG
CCGAGAGAGGCTCCCCCGG
642
CGGGGGAGCCTCTCTCGGC
GCCGAGAGAGGCTCCCCCG
643
GGGGGAGCCTCTCTCGGCA
TGCCGAGAGAGGCTCCCCC
644
GGGGAGCCTCTCTCGGCAG
CTGCCGAGAGAGGCTCCCC
645
GGGAGCCTCTCTCGGCAGG
CCTGCCGAGAGAGGCTCCC
646
GGAGCCTCTCTCGGCAGGC
GCCTGCCGAGAGAGGCTCC
647
GAGCCTCTCTCGGCAGGCG
CGCCTGCCGAGAGAGGCTC
648
AGCCTCTCTCGGCAGGCGC
GCGCCTGCCGAGAGAGGCT
649
GCCTCTCTCGGCAGGCGCC
GGCGCCTGCCGAGAGAGGC
650
CCTCTCTCGGCAGGCGCCC
GGGCGCCTGCCGAGAGAGG
651
CTCTCTCGGCAGGCGCCCG
CGGGCGCCTGCCGAGAGAG
652
TCTCTCGGCAGGCGCCCGG
CCGGGCGCCTGCCGAGAGA
653
CTCTCGGCAGGCGCCCGGG
CCCGGGCGCCTGCCGAGAG
654
TCTCGGCAGGCGCCCGGGT
ACCCGGGCGCCTGCCGAGA
655
CTCGGCAGGCGCCCGGGTG
CACCCGGGCGCCTGCCGAG
656
TCGGCAGGCGCCCGGGTGC
GCACCCGGGCGCCTGCCGA
657
CGGCAGGCGCCCGGGTGCC
GGCACCCGGGCGCCTGCCG
658
GGCAGGCGCCCGGGTGCCG
CGGCACCCGGGCGCCTGCC
659
GCAGGCGCCCGGGTGCCGC
GCGGCACCCGGGCGCCTGC
660
CAGGCGCCCGGGTGCCGCG
CGCGGCACCCGGGCGCCTG
661
AGGCGCCCGGGTGCCGCGG
CCGCGGCACCCGGGCGCCT
662
GGCGCCCGGGTGCCGCGGG
CCCGCGGCACCCGGGCGCC
663
GCGCCCGGGTGCCGCGGGG
CCCCGCGGCACCCGGGCGC
664
CGCCCGGGTGCCGCGGGGG
CCCCCGCGGCACCCGGGCG
665
GCCCGGGTGCCGCGGGGGG
CCCCCCGCGGCACCCGGGC
666
CCCGGGTGCCGCGGGGGGG
CCCCCCCGCGGCACCCGGG
667
CCGGGTGCCGCGGGGGGGA
TCCCCCCCGCGGCACCCGG
668
CGGGTGCCGCGGGGGGGAG
CTCCCCCCCGCGGCACCCG
669
GGGTGCCGCGGGGGGGAGG
CCTCCCCCCCGCGGCACCC
670
GGTGCCGCGGGGGGGAGGG
CCCTCCCCCCCGCGGCACC
671
GTGCCGCGGGGGGGAGGGG
CCCCTCCCCCCCGCGGCAC
672
TGCCGCGGGGGGGAGGGGG
CCCCCTCCCCCCCGCGGCA
673
GCCGCGGGGGGGAGGGGGA
TCCCCCTCCCCCCCGCGGC
674
CCGCGGGGGGGAGGGGGAA
TTCCCCCTCCCCCCCGCGG
675
CGCGGGGGGGAGGGGGAAC
GTTCCCCCTCCCCCCCGCG
676
GCGGGGGGGAGGGGGAACA
TGTTCCCCCTCCCCCCCGC
677
CGGGGGGGAGGGGGAACAA
TTGTTCCCCCTCCCCCCCG
678
GGGGGGGAGGGGGAACAAA
TTTGTTCCCCCTCCCCCCC
679
GGGGGGAGGGGGAACAAAG
CTTTGTTCCCCCTCCCCCC
680
GGGGGAGGGGGAACAAAGG
CCTTTGTTCCCCCTCCCCC
681
GGGGAGGGGGAACAAAGGG
CCCTTTGTTCCCCCTCCCC
682
GGGAGGGGGAACAAAGGGC
GCCCTTTGTTCCCCCTCCC
683
GGAGGGGGAACAAAGGGCT
AGCCCTTTGTTCCCCCTCC
684
GAGGGGGAACAAAGGGCTC
GAGCCCTTTGTTCCCCCTC
685
AGGGGGAACAAAGGGCTCA
TGAGCCCTTTGTTCCCCCT
686
GGGGGAACAAAGGGCTCAT
ATGAGCCCTTTGTTCCCCC
687
GGGGAACAAAGGGCTCATT
AATGAGCCCTTTGTTCCCC
688
GGGAACAAAGGGCTCATTC
GAATGAGCCCTTTGTTCCC
689
GGAACAAAGGGCTCATTCT
AGAATGAGCCCTTTGTTCC
690
GAACAAAGGGCTCATTCTC
GAGAATGAGCCCTTTGTTC
691
AACAAAGGGCTCATTCTCC
GGAGAATGAGCCCTTTGTT
692
ACAAAGGGCTCATTCTCCC
GGGAGAATGAGCCCTTTGT
693
CAAAGGGCTCATTCTCCCC
GGGGAGAATGAGCCCTTTG
694
AAAGGGCTCATTCTCCCCG
CGGGGAGAATGAGCCCTTT
695
AAGGGCTCATTCTCCCCGT
ACGGGGAGAATGAGCCCTT
696
AGGGCTCATTCTCCCCGTG
CACGGGGAGAATGAGCCCT
697
GGGCTCATTCTCCCCGTGC
GCACGGGGAGAATGAGCCC
698
GGCTCATTCTCCCCGTGCG
CGCACGGGGAGAATGAGCC
699
GCTCATTCTCCCCGTGCGC
GCGCACGGGGAGAATGAGC
700
CTCATTCTCCCCGTGCGCA
TGCGCACGGGGAGAATGAG
701
TCATTCTCCCCGTGCGCAG
CTGCGCACGGGGAGAATGA
702
CATTCTCCCCGTGCGCAGC
GCTGCGCACGGGGAGAATG
703
ATTCTCCCCGTGCGCAGCC
GGCTGCGCACGGGGAGAAT
704
TTCTCCCCGTGCGCAGCCG
CGGCTGCGCACGGGGAGAA
705
TCTCCCCGTGCGCAGCCGG
CCGGCTGCGCACGGGGAGA
706
CTCCCCGTGCGCAGCCGGT
ACCGGCTGCGCACGGGGAG
707
TCCCCGTGCGCAGCCGGTG
CACCGGCTGCGCACGGGGA
708
CCCCGTGCGCAGCCGGTGG
CCACCGGCTGCGCACGGGG
709
CCCGTGCGCAGCCGGTGGC
GCCACCGGCTGCGCACGGG
710
CCGTGCGCAGCCGGTGGCA
TGCCACCGGCTGCGCACGG
711
CGTGCGCAGCCGGTGGCAT
ATGCCACCGGCTGCGCACG
712
GTGCGCAGCCGGTGGCATC
GATGCCACCGGCTGCGCAC
713
TGCGCAGCCGGTGGCATCG
CGATGCCACCGGCTGCGCA
714
GCGCAGCCGGTGGCATCGC
GCGATGCCACCGGCTGCGC
715
CGCAGCCGGTGGCATCGCC
GGCGATGCCACCGGCTGCG
716
GCAGCCGGTGGCATCGCCG
CGGCGATGCCACCGGCTGC
717
CAGCCGGTGGCATCGCCGG
CCGGCGATGCCACCGGCTG
718
AGCCGGTGGCATCGCCGGG
CCCGGCGATGCCACCGGCT
719
GCCGGTGGCATCGCCGGGG
CCCCGGCGATGCCACCGGC
720
CCGGTGGCATCGCCGGGGC
GCCCCGGCGATGCCACCGG
721
CGGTGGCATCGCCGGGGCG
CGCCCCGGCGATGCCACCG
722
GGTGGCATCGCCGGGGCGT
ACGCCCCGGCGATGCCACC
723
GTGGCATCGCCGGGGCGTT
AACGCCCCGGCGATGCCAC
724
TGGCATCGCCGGGGCGTTG
CAACGCCCCGGCGATGCCA
725
GGCATCGCCGGGGCGTTGG
CCAACGCCCCGGCGATGCC
726
GCATCGCCGGGGCGTTGGC
GCCAACGCCCCGGCGATGC
727
CATCGCCGGGGCGTTGGCG
CGCCAACGCCCCGGCGATG
728
ATCGCCGGGGCGTTGGCGG
CCGCCAACGCCCCGGCGAT
729
TCGCCGGGGCGTTGGCGGA
TCCGCCAACGCCCCGGCGA
730
CGCCGGGGCGTTGGCGGAA
TTCCGCCAACGCCCCGGCG
731
GCCGGGGCGTTGGCGGAAG
CTTCCGCCAACGCCCCGGC
732
CCGGGGCGTTGGCGGAAGC
GCTTCCGCCAACGCCCCGG
733
CGGGGCGTTGGCGGAAGCC
GGCTTCCGCCAACGCCCCG
734
GGGGCGTTGGCGGAAGCCC
GGGCTTCCGCCAACGCCCC
735
GGGCGTTGGCGGAAGCCCC
GGGGCTTCCGCCAACGCCC
736
GGCGTTGGCGGAAGCCCCC
GGGGGCTTCCGCCAACGCC
737
GCGTTGGCGGAAGCCCCCG
CGGGGGCTTCCGCCAACGC
738
CGTTGGCGGAAGCCCCCGG
CCGGGGGCTTCCGCCAACG
739
GTTGGCGGAAGCCCCCGGG
CCCGGGGGCTTCCGCCAAC
740
TTGGCGGAAGCCCCCGGGG
CCCCGGGGGCTTCCGCCAA
741
TGGCGGAAGCCCCCGGGGC
GCCCCGGGGGCTTCCGCCA
742
GGCGGAAGCCCCCGGGGCC
GGCCCCGGGGGCTTCCGCC
743
GCGGAAGCCCCCGGGGCCC
GGGCCCCGGGGGCTTCCGC
744
CGGAAGCCCCCGGGGCCCG
CGGGCCCCGGGGGCTTCCG
745
GGAAGCCCCCGGGGCCCGG
CCGGGCCCCGGGGGCTTCC
746
GAAGCCCCCGGGGCCCGGG
CCCGGGCCCCGGGGGCTTC
747
AAGCCCCCGGGGCCCGGGA
TCCCGGGCCCCGGGGGCTT
748
AGCCCCCGGGGCCCGGGAG
CTCCCGGGCCCCGGGGGCT
749
GCCCCCGGGGCCCGGGAGG
CCTCCCGGGCCCCGGGGGC
750
CCCCCGGGGCCCGGGAGGG
CCCTCCCGGGCCCCGGGGG
751
CCCCGGGGCCCGGGAGGGG
CCCCTCCCGGGCCCCGGGG
752
CCCGGGGCCCGGGAGGGGG
CCCCCTCCCGGGCCCCGGG
753
CCGGGGCCCGGGAGGGGGC
GCCCCCTCCCGGGCCCCGG
754
CGGGGCCCGGGAGGGGGCA
TGCCCCCTCCCGGGCCCCG
755
GGGGCCCGGGAGGGGGCAG
CTGCCCCCTCCCGGGCCCC
756
GGGCCCGGGAGGGGGCAGG
CCTGCCCCCTCCCGGGCCC
757
GGCCCGGGAGGGGGCAGGC
GCCTGCCCCCTCCCGGGCC
758
GCCCGGGAGGGGGCAGGCC
GGCCTGCCCCCTCCCGGGC
759
CCCGGGAGGGGGCAGGCCC
GGGCCTGCCCCCTCCCGGG
760
CCGGGAGGGGGCAGGCCCA
TGGGCCTGCCCCCTCCCGG
761
CGGGAGGGGGCAGGCCCAG
CTGGGCCTGCCCCCTCCCG
762
GGGAGGGGGCAGGCCCAGG
CCTGGGCCTGCCCCCTCCC
763
GGAGGGGGCAGGCCCAGGC
GCCTGGGCCTGCCCCCTCC
764
GAGGGGGCAGGCCCAGGCG
CGCCTGGGCCTGCCCCCTC
765
AGGGGGCAGGCCCAGGCGC
GCGCCTGGGCCTGCCCCCT
766
GGGGGCAGGCCCAGGCGCG
CGCGCCTGGGCCTGCCCCC
767
GGGGCAGGCCCAGGCGCGG
CCGCGCCTGGGCCTGCCCC
768
GGGCAGGCCCAGGCGCGGC
GCCGCGCCTGGGCCTGCCC
769
GGCAGGCCCAGGCGCGGCC
GGCCGCGCCTGGGCCTGCC
770
GCAGGCCCAGGCGCGGCCG
CGGCCGCGCCTGGGCCTGC
771
CAGGCCCAGGCGCGGCCGC
GCGGCCGCGCCTGGGCCTG
772
AGGCCCAGGCGCGGCCGCC
GGCGGCCGCGCCTGGGCCT
773
GGCCCAGGCGCGGCCGCCG
CGGCGGCCGCGCCTGGGCC
774
GCCCAGGCGCGGCCGCCGA
TCGGCGGCCGCGCCTGGGC
775
CCCAGGCGCGGCCGCCGAA
TTCGGCGGCCGCGCCTGGG
776
CCAGGCGCGGCCGCCGAAT
ATTCGGCGGCCGCGCCTGG
777
CAGGCGCGGCCGCCGAATC
GATTCGGCGGCCGCGCCTG
778
AGGCGCGGCCGCCGAATCA
TGATTCGGCGGCCGCGCCT
779
GGCGCGGCCGCCGAATCAC
GTGATTCGGCGGCCGCGCC
780
GCGCGGCCGCCGAATCACG
CGTGATTCGGCGGCCGCGC
781
CGCGGCCGCCGAATCACGG
CCGTGATTCGGCGGCCGCG
782
GCGGCCGCCGAATCACGGG
CCCGTGATTCGGCGGCCGC
783
CGGCCGCCGAATCACGGGC
GCCCGTGATTCGGCGGCCG
784
GGCCGCCGAATCACGGGCT
AGCCCGTGATTCGGCGGCC
785
GCCGCCGAATCACGGGCTC
GAGCCCGTGATTCGGCGGC
786
CCGCCGAATCACGGGCTCC
GGAGCCCGTGATTCGGCGG
787
CGCCGAATCACGGGCTCCT
AGGAGCCCGTGATTCGGCG
788
GCCGAATCACGGGCTCCTG
CAGGAGCCCGTGATTCGGC
789
CCGAATCACGGGCTCCTGT
ACAGGAGCCCGTGATTCGG
790
CGAATCACGGGCTCCTGTT
AACAGGAGCCCGTGATTCG
791
GAATCACGGGCTCCTGTTT
AAACAGGAGCCCGTGATTC
792
AATCACGGGCTCCTGTTTC
GAAACAGGAGCCCGTGATT
793
ATCACGGGCTCCTGTTTCC
GGAAACAGGAGCCCGTGAT
794
TCACGGGCTCCTGTTTCCC
GGGAAACAGGAGCCCGTGA
795
CACGGGCTCCTGTTTCCCG
CGGGAAACAGGAGCCCGTG
796
ACGGGCTCCTGTTTCCCGC
GCGGGAAACAGGAGCCCGT
797
CGGGCTCCTGTTTCCCGCA
TGCGGGAAACAGGAGCCCG
798
GGGCTCCTGTTTCCCGCAG
CTGCGGGAAACAGGAGCCC
799
GGCTCCTGTTTCCCGCAGG
CCTGCGGGAAACAGGAGCC
800
GCTCCTGTTTCCCGCAGGG
CCCTGCGGGAAACAGGAGC
801
CTCCTGTTTCCCGCAGGGT
ACCCTGCGGGAAACAGGAG
802
TCCTGTTTCCCGCAGGGTG
CACCCTGCGGGAAACAGGA
803
CCTGTTTCCCGCAGGGTGC
GCACCCTGCGGGAAACAGG
804
CTGTTTCCCGCAGGGTGCT
AGCACCCTGCGGGAAACAG
805
TGTTTCCCGCAGGGTGCTG
CAGCACCCTGCGGGAAACA
806
GTTTCCCGCAGGGTGCTGG
CCAGCACCCTGCGGGAAAC
807
TTTCCCGCAGGGTGCTGGA
TCCAGCACCCTGCGGGAAA
808
TTCCCGCAGGGTGCTGGAG
CTCCAGCACCCTGCGGGAA
809
TCCCGCAGGGTGCTGGAGG
CCTCCAGCACCCTGCGGGA
810
CCCGCAGGGTGCTGGAGGA
TCCTCCAGCACCCTGCGGG
811
CCGCAGGGTGCTGGAGGAG
CTCCTCCAGCACCCTGCGG
812
CGCAGGGTGCTGGAGGAGG
CCTCCTCCAGCACCCTGCG
813
GCAGGGTGCTGGAGGAGGA
TCCTCCTCCAGCACCCTGC
814
CAGGGTGCTGGAGGAGGAA
TTCCTCCTCCAGCACCCTG
815
AGGGTGCTGGAGGAGGAAA
TTTCCTCCTCCAGCACCCT
816
GGGTGCTGGAGGAGGAAAC
GTTTCCTCCTCCAGCACCC
817
GGTGCTGGAGGAGGAAACC
GGTTTCCTCCTCCAGCACC
818
GTGCTGGAGGAGGAAACCG
CGGTTTCCTCCTCCAGCAC
819
TGCTGGAGGAGGAAACCGG
CCGGTTTCCTCCTCCAGCA
820
GCTGGAGGAGGAAACCGGC
GCCGGTTTCCTCCTCCAGC
821
CTGGAGGAGGAAACCGGCG
CGCCGGTTTCCTCCTCCAG
822
TGGAGGAGGAAACCGGCGG
CCGCCGGTTTCCTCCTCCA
823
GGAGGAGGAAACCGGCGGA
TCCGCCGGTTTCCTCCTCC
824
GAGGAGGAAACCGGCGGAG
CTCCGCCGGTTTCCTCCTC
825
AGGAGGAAACCGGCGGAGC
GCTCCGCCGGTTTCCTCCT
826
GGAGGAAACCGGCGGAGCA
TGCTCCGCCGGTTTCCTCC
827
GAGGAAACCGGCGGAGCAG
CTGCTCCGCCGGTTTCCTC
828
AGGAAACCGGCGGAGCAGC
GCTGCTCCGCCGGTTTCCT
829
GGAAACCGGCGGAGCAGCT
AGCTGCTCCGCCGGTTTCC
830
GAAACCGGCGGAGCAGCTT
AAGCTGCTCCGCCGGTTTC
831
AAACCGGCGGAGCAGCTTC
GAAGCTGCTCCGCCGGTTT
832
AACCGGCGGAGCAGCTTCC
GGAAGCTGCTCCGCCGGTT
833
ACCGGCGGAGCAGCTTCCC
GGGAAGCTGCTCCGCCGGT
834
CCGGCGGAGCAGCTTCCCC
GGGGAAGCTGCTCCGCCGG
835
CGGCGGAGCAGCTTCCCCA
TGGGGAAGCTGCTCCGCCG
836
GGCGGAGCAGCTTCCCCAC
GTGGGGAAGCTGCTCCGCC
837
GCGGAGCAGCTTCCCCACT
AGTGGGGAAGCTGCTCCGC
838
CGGAGCAGCTTCCCCACTC
GAGTGGGGAAGCTGCTCCG
839
GGAGCAGCTTCCCCACTCT
AGAGTGGGGAAGCTGCTCC
840
GAGCAGCTTCCCCACTCTC
GAGAGTGGGGAAGCTGCTC
841
AGCAGCTTCCCCACTCTCA
TGAGAGTGGGGAAGCTGCT
842
GCAGCTTCCCCACTCTCAG
CTGAGAGTGGGGAAGCTGC
843
CAGCTTCCCCACTCTCAGT
ACTGAGAGTGGGGAAGCTG
844
AGCTTCCCCACTCTCAGTT
AACTGAGAGTGGGGAAGCT
845
GCTTCCCCACTCTCAGTTG
CAACTGAGAGTGGGGAAGC
846
CTTCCCCACTCTCAGTTGC
GCAACTGAGAGTGGGGAAG
847
TTCCCCACTCTCAGTTGCG
CGCAACTGAGAGTGGGGAA
848
TCCCCACTCTCAGTTGCGC
GCGCAACTGAGAGTGGGGA
849
CCCCACTCTCAGTTGCGCT
AGCGCAACTGAGAGTGGGG
850
CCCACTCTCAGTTGCGCTT
AAGCGCAACTGAGAGTGGG
851
CCACTCTCAGTTGCGCTTC
GAAGCGCAACTGAGAGTGG
852
CACTCTCAGTTGCGCTTCT
AGAAGCGCAACTGAGAGTG
853
ACTCTCAGTTGCGCTTCTG
CAGAAGCGCAACTGAGAGT
854
CTCTCAGTTGCGCTTCTGG
CCAGAAGCGCAACTGAGAG
855
TCTCAGTTGCGCTTCTGGC
GCCAGAAGCGCAACTGAGA
856
CTCAGTTGCGCTTCTGGCG
CGCCAGAAGCGCAACTGAG
857
TCAGTTGCGCTTCTGGCGA
TCGCCAGAAGCGCAACTGA
858
CAGTTGCGCTTCTGGCGAT
ATCGCCAGAAGCGCAACTG
859
AGTTGCGCTTCTGGCGATG
CATCGCCAGAAGCGCAACT
860
GTTGCGCTTCTGGCGATGG
CCATCGCCAGAAGCGCAAC
861
TTGCGCTTCTGGCGATGGC
GCCATCGCCAGAAGCGCAA
862
TGCGCTTCTGGCGATGGCG
CGCCATCGCCAGAAGCGCA
863
GCGCTTCTGGCGATGGCGA
TCGCCATCGCCAGAAGCGC
864
CGCTTCTGGCGATGGCGAT
ATCGCCATCGCCAGAAGCG
865
GCTTCTGGCGATGGCGATC
GATCGCCATCGCCAGAAGC
866
CTTCTGGCGATGGCGATCA
TGATCGCCATCGCCAGAAG
867
TTCTGGCGATGGCGATCAG
CTGATCGCCATCGCCAGAA
868
TCTGGCGATGGCGATCAGA
TCTGATCGCCATCGCCAGA
869
CTGGCGATGGCGATCAGAG
CTCTGATCGCCATCGCCAG
870
TGGCGATGGCGATCAGAGG
CCTCTGATCGCCATCGCCA
871
GGCGATGGCGATCAGAGGT
ACCTCTGATCGCCATCGCC
872
GCGATGGCGATCAGAGGTC
GACCTCTGATCGCCATCGC
873
CGATGGCGATCAGAGGTCC
GGACCTCTGATCGCCATCG
874
GATGGCGATCAGAGGTCCT
AGGACCTCTGATCGCCATC
875
ATGGCGATCAGAGGTCCTG
CAGGACCTCTGATCGCCAT
876
TGGCGATCAGAGGTCCTGC
GCAGGACCTCTGATCGCCA
877
GGCGATCAGAGGTCCTGCT
AGCAGGACCTCTGATCGCC
878
GCGATCAGAGGTCCTGCTG
CAGCAGGACCTCTGATCGC
879
CGATCAGAGGTCCTGCTGC
GCAGCAGGACCTCTGATCG
880
GATCAGAGGTCCTGCTGCG
CGCAGCAGGACCTCTGATC
881
ATCAGAGGTCCTGCTGCGC
GCGCAGCAGGACCTCTGAT
882
TCAGAGGTCCTGCTGCGCT
AGCGCAGCAGGACCTCTGA
883
CAGAGGTCCTGCTGCGCTC
GAGCGCAGCAGGACCTCTG
884
AGAGGTCCTGCTGCGCTCT
AGAGCGCAGCAGGACCTCT
885
GAGGTCCTGCTGCGCTCTC
GAGAGCGCAGCAGGACCTC
886
AGGTCCTGCTGCGCTCTCC
GGAGAGCGCAGCAGGACCT
887
GGTCCTGCTGCGCTCTCCG
CGGAGAGCGCAGCAGGACC
888
GTCCTGCTGCGCTCTCCGC
GCGGAGAGCGCAGCAGGAC
889
TCCTGCTGCGCTCTCCGCC
GGCGGAGAGCGCAGCAGGA
890
CCTGCTGCGCTCTCCGCCG
CGGCGGAGAGCGCAGCAGG
891
CTGCTGCGCTCTCCGCCGC
GCGGCGGAGAGCGCAGCAG
892
TGCTGCGCTCTCCGCCGCG
CGCGGCGGAGAGCGCAGCA
893
GCTGCGCTCTCCGCCGCGC
GCGCGGCGGAGAGCGCAGC
894
CTGCGCTCTCCGCCGCGCT
AGCGCGGCGGAGAGCGCAG
895
TGCGCTCTCCGCCGCGCTC
GAGCGCGGCGGAGAGCGCA
896
GCGCTCTCCGCCGCGCTCT
AGAGCGCGGCGGAGAGCGC
897
CGCTCTCCGCCGCGCTCTA
TAGAGCGCGGCGGAGAGCG
898
GCTCTCCGCCGCGCTCTAC
GTAGAGCGCGGCGGAGAGC
899
CTCTCCGCCGCGCTCTACC
GGTAGAGCGCGGCGGAGAG
900
TCTCCGCCGCGCTCTACCT
AGGTAGAGCGCGGCGGAGA
901
CTCCGCCGCGCTCTACCTC
GAGGTAGAGCGCGGCGGAG
902
TCCGCCGCGCTCTACCTCC
GGAGGTAGAGCGCGGCGGA
903
CCGCCGCGCTCTACCTCCA
TGGAGGTAGAGCGCGGCGG
904
CGCCGCGCTCTACCTCCAT
ATGGAGGTAGAGCGCGGCG
905
GCCGCGCTCTACCTCCATT
AATGGAGGTAGAGCGCGGC
906
CCGCGCTCTACCTCCATTA
TAATGGAGGTAGAGCGCGG
907
CGCGCTCTACCTCCATTAG
CTAATGGAGGTAGAGCGCG
908
GCGCTCTACCTCCATTAGC
GCTAATGGAGGTAGAGCGC
909
CGCTCTACCTCCATTAGCC
GGCTAATGGAGGTAGAGCG
910
GCTCTACCTCCATTAGCCG
CGGCTAATGGAGGTAGAGC
911
CTCTACCTCCATTAGCCGC
GCGGCTAATGGAGGTAGAG
912
TCTACCTCCATTAGCCGCG
CGCGGCTAATGGAGGTAGA
913
CTACCTCCATTAGCCGCGC
GCGCGGCTAATGGAGGTAG
914
TACCTCCATTAGCCGCGCT
AGCGCGGCTAATGGAGGTA
915
ACCTCCATTAGCCGCGCTG
CAGCGCGGCTAATGGAGGT
916
CCTCCATTAGCCGCGCTGC
GCAGCGCGGCTAATGGAGG
917
CTCCATTAGCCGCGCTGCG
CGCAGCGCGGCTAATGGAG
918
TCCATTAGCCGCGCTGCGC
GCGCAGCGCGGCTAATGGA
919
CCATTAGCCGCGCTGCGCG
CGCGCAGCGCGGCTAATGG
920
CATTAGCCGCGCTGCGCGG
CCGCGCAGCGCGGCTAATG
921
ATTAGCCGCGCTGCGCGGT
ACCGCGCAGCGCGGCTAAT
922
TTAGCCGCGCTGCGCGGTG
CACCGCGCAGCGCGGCTAA
923
TAGCCGCGCTGCGCGGTGC
GCACCGCGCAGCGCGGCTA
924
AGCCGCGCTGCGCGGTGCT
AGCACCGCGCAGCGCGGCT
925
GCCGCGCTGCGCGGTGCTG
CAGCACCGCGCAGCGCGGC
926
CCGCGCTGCGCGGTGCTGC
GCAGCACCGCGCAGCGCGG
927
CGCGCTGCGCGGTGCTGCG
CGCAGCACCGCGCAGCGCG
928
GCGCTGCGCGGTGCTGCGC
GCGCAGCACCGCGCAGCGC
929
CGCTGCGCGGTGCTGCGCC
GGCGCAGCACCGCGCAGCG
930
GCTGCGCGGTGCTGCGCCC
GGGCGCAGCACCGCGCAGC
931
CTGCGCGGTGCTGCGCCCT
AGGGCGCAGCACCGCGCAG
932
TGCGCGGTGCTGCGCCCTC
GAGGGCGCAGCACCGCGCA
933
GCGCGGTGCTGCGCCCTCG
CGAGGGCGCAGCACCGCGC
934
CGCGGTGCTGCGCCCTCGC
GCGAGGGCGCAGCACCGCG
935
GCGGTGCTGCGCCCTCGCC
GGCGAGGGCGCAGCACCGC
936
CGGTGCTGCGCCCTCGCCG
CGGCGAGGGCGCAGCACCG
937
GGTGCTGCGCCCTCGCCGG
CCGGCGAGGGCGCAGCACC
938
GTGCTGCGCCCTCGCCGGT
ACCGGCGAGGGCGCAGCAC
939
TGCTGCGCCCTCGCCGGTG
CACCGGCGAGGGCGCAGCA
940
GCTGCGCCCTCGCCGGTGC
GCACCGGCGAGGGCGCAGC
941
CTGCGCCCTCGCCGGTGCC
GGCACCGGCGAGGGCGCAG
942
TGCGCCCTCGCCGGTGCCT
AGGCACCGGCGAGGGCGCA
943
GCGCCCTCGCCGGTGCCTC
GAGGCACCGGCGAGGGCGC
944
CGCCCTCGCCGGTGCCTCT
AGAGGCACCGGCGAGGGCG
945
GCCCTCGCCGGTGCCTCTC
GAGAGGCACCGGCGAGGGC
946
CCCTCGCCGGTGCCTCTCT
AGAGAGGCACCGGCGAGGG
947
CCTCGCCGGTGCCTCTCTC
GAGAGAGGCACCGGCGAGG
948
CTCGCCGGTGCCTCTCTCC
GGAGAGAGGCACCGGCGAG
949
TCGCCGGTGCCTCTCTCCT
AGGAGAGAGGCACCGGCGA
950
CGCCGGTGCCTCTCTCCTG
CAGGAGAGAGGCACCGGCG
951
GCCGGTGCCTCTCTCCTGG
CCAGGAGAGAGGCACCGGC
952
CCGGTGCCTCTCTCCTGGG
CCCAGGAGAGAGGCACCGG
953
CGGTGCCTCTCTCCTGGGT
ACCCAGGAGAGAGGCACCG
954
GGTGCCTCTCTCCTGGGTC
GACCCAGGAGAGAGGCACC
955
GTGCCTCTCTCCTGGGTCC
GGACCCAGGAGAGAGGCAC
956
TGCCTCTCTCCTGGGTCCC
GGGACCCAGGAGAGAGGCA
957
GCCTCTCTCCTGGGTCCCA
TGGGACCCAGGAGAGAGGC
958
CCTCTCTCCTGGGTCCCAG
CTGGGACCCAGGAGAGAGG
959
CTCTCTCCTGGGTCCCAGG
CCTGGGACCCAGGAGAGAG
960
TCTCTCCTGGGTCCCAGGA
TCCTGGGACCCAGGAGAGA
961
CTCTCCTGGGTCCCAGGAT
ATCCTGGGACCCAGGAGAG
962
TCTCCTGGGTCCCAGGATC
GATCCTGGGACCCAGGAGA
963
CTCCTGGGTCCCAGGATCG
CGATCCTGGGACCCAGGAG
964
TCCTGGGTCCCAGGATCGG
CCGATCCTGGGACCCAGGA
965
CCTGGGTCCCAGGATCGGC
GCCGATCCTGGGACCCAGG
966
CTGGGTCCCAGGATCGGCC
GGCCGATCCTGGGACCCAG
967
TGGGTCCCAGGATCGGCCC
GGGCCGATCCTGGGACCCA
968
GGGTCCCAGGATCGGCCCC
GGGGCCGATCCTGGGACCC
969
GGTCCCAGGATCGGCCCCC
GGGGGCCGATCCTGGGACC
970
GTCCCAGGATCGGCCCCCA
TGGGGGCCGATCCTGGGAC
971
TCCCAGGATCGGCCCCCAC
GTGGGGGCCGATCCTGGGA
972
CCCAGGATCGGCCCCCACC
GGTGGGGGCCGATCCTGGG
973
CCAGGATCGGCCCCCACCA
TGGTGGGGGCCGATCCTGG
974
CAGGATCGGCCCCCACCAT
ATGGTGGGGGCCGATCCTG
975
AGGATCGGCCCCCACCATC
GATGGTGGGGGCCGATCCT
976
GGATCGGCCCCCACCATCC
GGATGGTGGGGGCCGATCC
977
GATCGGCCCCCACCATCCA
TGGATGGTGGGGGCCGATC
978
ATCGGCCCCCACCATCCAG
CTGGATGGTGGGGGCCGAT
979
TCGGCCCCCACCATCCAGG
CCTGGATGGTGGGGGCCGA
980
CGGCCCCCACCATCCAGGC
GCCTGGATGGTGGGGGCCG
981
GGCCCCCACCATCCAGGCA
TGCCTGGATGGTGGGGGCC
982
GCCCCCACCATCCAGGCAC
GTGCCTGGATGGTGGGGGC
983
CCCCCACCATCCAGGCACG
CGTGCCTGGATGGTGGGGG
984
CCCCACCATCCAGGCACGA
TCGTGCCTGGATGGTGGGG
985
CCCACCATCCAGGCACGAC
GTCGTGCCTGGATGGTGGG
986
CCACCATCCAGGCACGACC
GGTCGTGCCTGGATGGTGG
987
CACCATCCAGGCACGACCC
GGGTCGTGCCTGGATGGTG
988
ACCATCCAGGCACGACCCC
GGGGTCGTGCCTGGATGGT
989
CCATCCAGGCACGACCCCC
GGGGGTCGTGCCTGGATGG
990
CATCCAGGCACGACCCCCT
AGGGGGTCGTGCCTGGATG
991
ATCCAGGCACGACCCCCTT
AAGGGGGTCGTGCCTGGAT
992
TCCAGGCACGACCCCCTTC
GAAGGGGGTCGTGCCTGGA
993
CCAGGCACGACCCCCTTCC
GGAAGGGGGTCGTGCCTGG
994
CAGGCACGACCCCCTTCCC
GGGAAGGGGGTCGTGCCTG
995
AGGCACGACCCCCTTCCCC
GGGGAAGGGGGTCGTGCCT
996
GGCACGACCCCCTTCCCCG
CGGGGAAGGGGGTCGTGCC
997
GCACGACCCCCTTCCCCGG
CCGGGGAAGGGGGTCGTGC
998
CACGACCCCCTTCCCCGGC
GCCGGGGAAGGGGGTCGTG
999
ACGACCCCCTTCCCCGGCC
GGCCGGGGAAGGGGGTCGT
1000
CGACCCCCTTCCCCGGCCC
GGGCCGGGGAAGGGGGTCG
1001
GACCCCCTTCCCCGGCCCC
GGGGCCGGGGAAGGGGGTC
1002
ACCCCCTTCCCCGGCCCCT
AGGGGCCGGGGAAGGGGGT
1003
CCCCCTTCCCCGGCCCCTC
GAGGGGCCGGGGAAGGGGG
1004
CCCCTTCCCCGGCCCCTCG
CGAGGGGCCGGGGAAGGGG
1005
CCCTTCCCCGGCCCCTCGG
CCGAGGGGCCGGGGAAGGG
1006
CCTTCCCCGGCCCCTCGGC
GCCGAGGGGCCGGGGAAGG
1007
CTTCCCCGGCCCCTCGGCC
GGCCGAGGGGCCGGGGAAG
1008
TTCCCCGGCCCCTCGGCCT
AGGCCGAGGGGCCGGGGAA
1009
TCCCCGGCCCCTCGGCCTT
AAGGCCGAGGGGCCGGGGA
1010
CCCCGGCCCCTCGGCCTTT
AAAGGCCGAGGGGCCGGGG
1011
CCCGGCCCCTCGGCCTTTC
GAAAGGCCGAGGGGCCGGG
1012
CCGGCCCCTCGGCCTTTCC
GGAAAGGCCGAGGGGCCGG
1013
CGGCCCCTCGGCCTTTCCC
GGGAAAGGCCGAGGGGCCG
1014
GGCCCCTCGGCCTTTCCCC
GGGGAAAGGCCGAGGGGCC
1015
GCCCCTCGGCCTTTCCCCC
GGGGGAAAGGCCGAGGGGC
1016
CCCCTCGGCCTTTCCCCCA
TGGGGGAAAGGCCGAGGGG
1017
CCCTCGGCCTTTCCCCCAA
TTGGGGGAAAGGCCGAGGG
1018
CCTCGGCCTTTCCCCCAAC
GTTGGGGGAAAGGCCGAGG
1019
CTCGGCCTTTCCCCCAACT
AGTTGGGGGAAAGGCCGAG
1020
TCGGCCTTTCCCCCAACTC
GAGTTGGGGGAAAGGCCGA
1021
CGGCCTTTCCCCCAACTCG
CGAGTTGGGGGAAAGGCCG
1022
GGCCTTTCCCCCAACTCGG
CCGAGTTGGGGGAAAGGCC
1023
GCCTTTCCCCCAACTCGGC
GCCGAGTTGGGGGAAAGGC
1024
CCTTTCCCCCAACTCGGCC
GGCCGAGTTGGGGGAAAGG
1025
CTTTCCCCCAACTCGGCCA
TGGCCGAGTTGGGGGAAAG
1026
TTTCCCCCAACTCGGCCAT
ATGGCCGAGTTGGGGGAAA
1027
TTCCCCCAACTCGGCCATC
GATGGCCGAGTTGGGGGAA
1028
TCCCCCAACTCGGCCATCT
AGATGGCCGAGTTGGGGGA
1029
CCCCCAACTCGGCCATCTC
GAGATGGCCGAGTTGGGGG
1030
CCCCAACTCGGCCATCTCC
GGAGATGGCCGAGTTGGGG
1031
CCCAACTCGGCCATCTCCG
CGGAGATGGCCGAGTTGGG
1032
CCAACTCGGCCATCTCCGA
TCGGAGATGGCCGAGTTGG
1033
CAACTCGGCCATCTCCGAC
GTCGGAGATGGCCGAGTTG
1034
AACTCGGCCATCTCCGACC
GGTCGGAGATGGCCGAGTT
1035
ACTCGGCCATCTCCGACCC
GGGTCGGAGATGGCCGAGT
1036
CTCGGCCATCTCCGACCCG
CGGGTCGGAGATGGCCGAG
1037
TCGGCCATCTCCGACCCGG
CCGGGTCGGAGATGGCCGA
1038
CGGCCATCTCCGACCCGGG
CCCGGGTCGGAGATGGCCG
1039
GGCCATCTCCGACCCGGGG
CCCCGGGTCGGAGATGGCC
1040
GCCATCTCCGACCCGGGGC
GCCCCGGGTCGGAGATGGC
1041
CCATCTCCGACCCGGGGCG
CGCCCCGGGTCGGAGATGG
1042
CATCTCCGACCCGGGGCGC
GCGCCCCGGGTCGGAGATG
1043
ATCTCCGACCCGGGGCGCG
CGCGCCCCGGGTCGGAGAT
1044
TCTCCGACCCGGGGCGCGT
ACGCGCCCCGGGTCGGAGA
1045
CTCCGACCCGGGGCGCGTG
CACGCGCCCCGGGTCGGAG
1046
TCCGACCCGGGGCGCGTGT
ACACGCGCCCCGGGTCGGA
1047
CCGACCCGGGGCGCGTGTT
AACACGCGCCCCGGGTCGG
1048
CGACCCGGGGCGCGTGTTC
GAACACGCGCCCCGGGTCG
1049
GACCCGGGGCGCGTGTTCC
GGAACACGCGCCCCGGGTC
1050
ACCCGGGGCGCGTGTTCCC
GGGAACACGCGCCCCGGGT
1051
CCCGGGGCGCGTGTTCCCC
GGGGAACACGCGCCCCGGG
1052
CCGGGGCGCGTGTTCCCCC
GGGGGAACACGCGCCCCGG
1053
CGGGGCGCGTGTTCCCCCC
GGGGGGAACACGCGCCCCG
1054
GGGGCGCGTGTTCCCCCCG
CGGGGGGAACACGCGCCCC
1055
GGGCGCGTGTTCCCCCCGG
CCGGGGGGAACACGCGCCC
1056
GGCGCGTGTTCCCCCCGGC
GCCGGGGGGAACACGCGCC
1057
GCGCGTGTTCCCCCCGGCC
GGCCGGGGGGAACACGCGC
1058
CGCGTGTTCCCCCCGGCCC
GGGCCGGGGGGAACACGCG
1059
GCGTGTTCCCCCCGGCCCG
CGGGCCGGGGGGAACACGC
1060
CGTGTTCCCCCCGGCCCGG
CCGGGCCGGGGGGAACACG
1061
GTGTTCCCCCCGGCCCGGC
GCCGGGCCGGGGGGAACAC
1062
TGTTCCCCCCGGCCCGGCG
CGCCGGGCCGGGGGGAACA
1063
GTTCCCCCCGGCCCGGCGC
GCGCCGGGCCGGGGGGAAC
1064
TTCCCCCCGGCCCGGCGCC
GGCGCCGGGCCGGGGGGAA
1065
TCCCCCCGGCCCGGCGCCT
AGGCGCCGGGCCGGGGGGA
1066
CCCCCCGGCCCGGCGCCTT
AAGGCGCCGGGCCGGGGGG
1067
CCCCCGGCCCGGCGCCTTC
GAAGGCGCCGGGCCGGGGG
1068
CCCCGGCCCGGCGCCTTCT
AGAAGGCGCCGGGCCGGGG
1069
CCCGGCCCGGCGCCTTCTC
GAGAAGGCGCCGGGCCGGG
1070
CCGGCCCGGCGCCTTCTCT
AGAGAAGGCGCCGGGCCGG
1071
CGGCCCGGCGCCTTCTCTC
GAGAGAAGGCGCCGGGCCG
1072
GGCCCGGCGCCTTCTCTCC
GGAGAGAAGGCGCCGGGCC
1073
GCCCGGCGCCTTCTCTCCC
GGGAGAGAAGGCGCCGGGC
1074
CCCGGCGCCTTCTCTCCCT
AGGGAGAGAAGGCGCCGGG
1075
CCGGCGCCTTCTCTCCCTC
GAGGGAGAGAAGGCGCCGG
1076
CGGCGCCTTCTCTCCCTCC
GGAGGGAGAGAAGGCGCCG
1077
GGCGCCTTCTCTCCCTCCG
CGGAGGGAGAGAAGGCGCC
1078
GCGCCTTCTCTCCCTCCGG
CCGGAGGGAGAGAAGGCGC
1079
CGCCTTCTCTCCCTCCGGG
CCCGGAGGGAGAGAAGGCG
1080
GCCTTCTCTCCCTCCGGGG
CCCCGGAGGGAGAGAAGGC
1081
CCTTCTCTCCCTCCGGGGG
CCCCCGGAGGGAGAGAAGG
1082
CTTCTCTCCCTCCGGGGGC
GCCCCCGGAGGGAGAGAAG
1083
TTCTCTCCCTCCGGGGGCA
TGCCCCCGGAGGGAGAGAA
1084
TCTCTCCCTCCGGGGGCAC
GTGCCCCCGGAGGGAGAGA
1085
CTCTCCCTCCGGGGGCACC
GGTGCCCCCGGAGGGAGAG
1086
TCTCCCTCCGGGGGCACCC
GGGTGCCCCCGGAGGGAGA
1087
CTCCCTCCGGGGGCACCCG
CGGGTGCCCCCGGAGGGAG
1088
TCCCTCCGGGGGCACCCGC
GCGGGTGCCCCCGGAGGGA
1089
CCCTCCGGGGGCACCCGCT
AGCGGGTGCCCCCGGAGGG
1090
CCTCCGGGGGCACCCGCTC
GAGCGGGTGCCCCCGGAGG
1091
CTCCGGGGGCACCCGCTCC
GGAGCGGGTGCCCCCGGAG
1092
TCCGGGGGCACCCGCTCCC
GGGAGCGGGTGCCCCCGGA
1093
CCGGGGGCACCCGCTCCCT
AGGGAGCGGGTGCCCCCGG
1094
CGGGGGCACCCGCTCCCTA
TAGGGAGCGGGTGCCCCCG
1095
GGGGGCACCCGCTCCCTAG
CTAGGGAGCGGGTGCCCCC
1096
GGGGCACCCGCTCCCTAGC
GCTAGGGAGCGGGTGCCCC
1097
GGGCACCCGCTCCCTAGCC
GGCTAGGGAGCGGGTGCCC
1098
GGCACCCGCTCCCTAGCCC
GGGCTAGGGAGCGGGTGCC
1099
GCACCCGCTCCCTAGCCCC
GGGGCTAGGGAGCGGGTGC
1100
CACCCGCTCCCTAGCCCCG
CGGGGCTAGGGAGCGGGTG
1101
ACCCGCTCCCTAGCCCCGG
CCGGGGCTAGGGAGCGGGT
1102
CCCGCTCCCTAGCCCCGGC
GCCGGGGCTAGGGAGCGGG
1103
CCGCTCCCTAGCCCCGGCC
GGCCGGGGCTAGGGAGCGG
1104
CGCTCCCTAGCCCCGGCCC
GGGCCGGGGCTAGGGAGCG
1105
GCTCCCTAGCCCCGGCCCG
CGGGCCGGGGCTAGGGAGC
1106
CTCCCTAGCCCCGGCCCGG
CCGGGCCGGGGCTAGGGAG
1107
TCCCTAGCCCCGGCCCGGC
GCCGGGCCGGGGCTAGGGA
1108
CCCTAGCCCCGGCCCGGCC
GGCCGGGCCGGGGCTAGGG
1109
CCTAGCCCCGGCCCGGCCC
GGGCCGGGCCGGGGCTAGG
1110
CTAGCCCCGGCCCGGCCCT
AGGGCCGGGCCGGGGCTAG
1111
TAGCCCCGGCCCGGCCCTC
GAGGGCCGGGCCGGGGCTA
1112
AGCCCCGGCCCGGCCCTCC
GGAGGGCCGGGCCGGGGCT
1113
GCCCCGGCCCGGCCCTCCC
GGGAGGGCCGGGCCGGGGC
1114
CCCCGGCCCGGCCCTCCCC
GGGGAGGGCCGGGCCGGGG
1115
CCCGGCCCGGCCCTCCCCG
CGGGGAGGGCCGGGCCGGG
1116
CCGGCCCGGCCCTCCCCGC
GCGGGGAGGGCCGGGCCGG
1117
CGGCCCGGCCCTCCCCGCG
CGCGGGGAGGGCCGGGCCG
1118
GGCCCGGCCCTCCCCGCGG
CCGCGGGGAGGGCCGGGCC
1119
GCCCGGCCCTCCCCGCGGC
GCCGCGGGGAGGGCCGGGC
1120
CCCGGCCCTCCCCGCGGCG
CGCCGCGGGGAGGGCCGGG
1121
CCGGCCCTCCCCGCGGCGC
GCGCCGCGGGGAGGGCCGG
1122
CGGCCCTCCCCGCGGCGCA
TGCGCCGCGGGGAGGGCCG
1123
GGCCCTCCCCGCGGCGCAG
CTGCGCCGCGGGGAGGGCC
1124
GCCCTCCCCGCGGCGCAGC
GCTGCGCCGCGGGGAGGGC
1125
CCCTCCCCGCGGCGCAGCA
TGCTGCGCCGCGGGGAGGG
1126
CCTCCCCGCGGCGCAGCAC
GTGCTGCGCCGCGGGGAGG
1127
CTCCCCGCGGCGCAGCACG
CGTGCTGCGCCGCGGGGAG
1128
TCCCCGCGGCGCAGCACGG
CCGTGCTGCGCCGCGGGGA
1129
CCCCGCGGCGCAGCACGGA
TCCGTGCTGCGCCGCGGGG
1130
CCCGCGGCGCAGCACGGAG
CTCCGTGCTGCGCCGCGGG
1131
CCGCGGCGCAGCACGGAGT
ACTCCGTGCTGCGCCGCGG
1132
CGCGGCGCAGCACGGAGTC
GACTCCGTGCTGCGCCGCG
1133
GCGGCGCAGCACGGAGTCT
AGACTCCGTGCTGCGCCGC
1134
CGGCGCAGCACGGAGTCTC
GAGACTCCGTGCTGCGCCG
1135
GGCGCAGCACGGAGTCTCG
CGAGACTCCGTGCTGCGCC
1136
GCGCAGCACGGAGTCTCGG
CCGAGACTCCGTGCTGCGC
1137
CGCAGCACGGAGTCTCGGC
GCCGAGACTCCGTGCTGCG
1138
GCAGCACGGAGTCTCGGCG
CGCCGAGACTCCGTGCTGC
1139
CAGCACGGAGTCTCGGCGT
ACGCCGAGACTCCGTGCTG
1140
AGCACGGAGTCTCGGCGTC
GACGCCGAGACTCCGTGCT
1141
GCACGGAGTCTCGGCGTCC
GGACGCCGAGACTCCGTGC
1142
CACGGAGTCTCGGCGTCCC
GGGACGCCGAGACTCCGTG
1143
ACGGAGTCTCGGCGTCCCA
TGGGACGCCGAGACTCCGT
1144
CGGAGTCTCGGCGTCCCAT
ATGGGACGCCGAGACTCCG
1145
GGAGTCTCGGCGTCCCATG
CATGGGACGCCGAGACTCC
1146
GAGTCTCGGCGTCCCATGG
CCATGGGACGCCGAGACTC
1147
AGTCTCGGCGTCCCATGGC
GCCATGGGACGCCGAGACT
1148
GTCTCGGCGTCCCATGGCG
CGCCATGGGACGCCGAGAC
1149
TCTCGGCGTCCCATGGCGC
GCGCCATGGGACGCCGAGA
1150
CTCGGCGTCCCATGGCGCA
TGCGCCATGGGACGCCGAG
1151
TCGGCGTCCCATGGCGCAA
TTGCGCCATGGGACGCCGA
1152
CGGCGTCCCATGGCGCAAC
GTTGCGCCATGGGACGCCG
1153
GGCGTCCCATGGCGCAACC
GGTTGCGCCATGGGACGCC
1154
GCGTCCCATGGCGCAACCT
AGGTTGCGCCATGGGACGC
1155
CGTCCCATGGCGCAACCTA
TAGGTTGCGCCATGGGACG
1156
GTCCCATGGCGCAACCTAC
GTAGGTTGCGCCATGGGAC
1157
TCCCATGGCGCAACCTACG
CGTAGGTTGCGCCATGGGA
1158
CCCATGGCGCAACCTACGG
CCGTAGGTTGCGCCATGGG
1159
CCATGGCGCAACCTACGGC
GCCGTAGGTTGCGCCATGG
1160
CATGGCGCAACCTACGGCC
GGCCGTAGGTTGCGCCATG
1161
ATGGCGCAACCTACGGCCT
AGGCCGTAGGTTGCGCCAT
1162
TGGCGCAACCTACGGCCTC
GAGGCCGTAGGTTGCGCCA
1163
GGCGCAACCTACGGCCTCG
CGAGGCCGTAGGTTGCGCC
1164
GCGCAACCTACGGCCTCGG
CCGAGGCCGTAGGTTGCGC
1165
CGCAACCTACGGCCTCGGC
GCCGAGGCCGTAGGTTGCG
1166
GCAACCTACGGCCTCGGCC
GGCCGAGGCCGTAGGTTGC
1167
CAACCTACGGCCTCGGCCC
GGGCCGAGGCCGTAGGTTG
1168
AACCTACGGCCTCGGCCCA
TGGGCCGAGGCCGTAGGTT
1169
ACCTACGGCCTCGGCCCAG
CTGGGCCGAGGCCGTAGGT
1170
CCTACGGCCTCGGCCCAGA
TCTGGGCCGAGGCCGTAGG
1171
CTACGGCCTCGGCCCAGAA
TTCTGGGCCGAGGCCGTAG
1172
TACGGCCTCGGCCCAGAAG
CTTCTGGGCCGAGGCCGTA
1173
ACGGCCTCGGCCCAGAAGC
GCTTCTGGGCCGAGGCCGT
1174
CGGCCTCGGCCCAGAAGCT
AGCTTCTGGGCCGAGGCCG
1175
GGCCTCGGCCCAGAAGCTG
CAGCTTCTGGGCCGAGGCC
1176
GCCTCGGCCCAGAAGCTGG
CCAGCTTCTGGGCCGAGGC
1177
CCTCGGCCCAGAAGCTGGT
ACCAGCTTCTGGGCCGAGG
1178
CTCGGCCCAGAAGCTGGTG
CACCAGCTTCTGGGCCGAG
1179
TCGGCCCAGAAGCTGGTGC
GCACCAGCTTCTGGGCCGA
1180
CGGCCCAGAAGCTGGTGCG
CGCACCAGCTTCTGGGCCG
1181
GGCCCAGAAGCTGGTGCGG
CCGCACCAGCTTCTGGGCC
1182
GCCCAGAAGCTGGTGCGGC
GCCGCACCAGCTTCTGGGC
1183
CCCAGAAGCTGGTGCGGCC
GGCCGCACCAGCTTCTGGG
1184
CCAGAAGCTGGTGCGGCCG
CGGCCGCACCAGCTTCTGG
1185
CAGAAGCTGGTGCGGCCGA
TCGGCCGCACCAGCTTCTG
1186
AGAAGCTGGTGCGGCCGAT
ATCGGCCGCACCAGCTTCT
1187
GAAGCTGGTGCGGCCGATC
GATCGGCCGCACCAGCTTC
1188
AAGCTGGTGCGGCCGATCC
GGATCGGCCGCACCAGCTT
1189
AGCTGGTGCGGCCGATCCG
CGGATCGGCCGCACCAGCT
1190
GCTGGTGCGGCCGATCCGC
GCGGATCGGCCGCACCAGC
1191
CTGGTGCGGCCGATCCGCG
CGCGGATCGGCCGCACCAG
1192
TGGTGCGGCCGATCCGCGC
GCGCGGATCGGCCGCACCA
1193
GGTGCGGCCGATCCGCGCC
GGCGCGGATCGGCCGCACC
1194
GTGCGGCCGATCCGCGCCG
CGGCGCGGATCGGCCGCAC
1195
TGCGGCCGATCCGCGCCGT
ACGGCGCGGATCGGCCGCA
1196
GCGGCCGATCCGCGCCGTG
CACGGCGCGGATCGGCCGC
1197
CGGCCGATCCGCGCCGTGT
ACACGGCGCGGATCGGCCG
1198
GGCCGATCCGCGCCGTGTG
CACACGGCGCGGATCGGCC
1199
GCCGATCCGCGCCGTGTGC
GCACACGGCGCGGATCGGC
1200
CCGATCCGCGCCGTGTGCC
GGCACACGGCGCGGATCGG
1201
CGATCCGCGCCGTGTGCCG
CGGCACACGGCGCGGATCG
1202
GATCCGCGCCGTGTGCCGC
GCGGCACACGGCGCGGATC
1203
ATCCGCGCCGTGTGCCGCA
TGCGGCACACGGCGCGGAT
1204
TCCGCGCCGTGTGCCGCAT
ATGCGGCACACGGCGCGGA
1205
CCGCGCCGTGTGCCGCATC
GATGCGGCACACGGCGCGG
1206
CGCGCCGTGTGCCGCATCC
GGATGCGGCACACGGCGCG
1207
GCGCCGTGTGCCGCATCCT
AGGATGCGGCACACGGCGC
1208
CGCCGTGTGCCGCATCCTG
CAGGATGCGGCACACGGCG
1209
GCCGTGTGCCGCATCCTGC
GCAGGATGCGGCACACGGC
1210
CCGTGTGCCGCATCCTGCA
TGCAGGATGCGGCACACGG
1211
CGTGTGCCGCATCCTGCAG
CTGCAGGATGCGGCACACG
1212
GTGTGCCGCATCCTGCAGA
TCTGCAGGATGCGGCACAC
1213
TGTGCCGCATCCTGCAGAT
ATCTGCAGGATGCGGCACA
1214
GTGCCGCATCCTGCAGATC
GATCTGCAGGATGCGGCAC
1215
TGCCGCATCCTGCAGATCC
GGATCTGCAGGATGCGGCA
1216
GCCGCATCCTGCAGATCCC
GGGATCTGCAGGATGCGGC
1217
CCGCATCCTGCAGATCCCG
CGGGATCTGCAGGATGCGG
1218
CGCATCCTGCAGATCCCGG
CCGGGATCTGCAGGATGCG
1219
GCATCCTGCAGATCCCGGA
TCCGGGATCTGCAGGATGC
1220
CATCCTGCAGATCCCGGAG
CTCCGGGATCTGCAGGATG
1221
ATCCTGCAGATCCCGGAGT
ACTCCGGGATCTGCAGGAT
1222
TCCTGCAGATCCCGGAGTC
GACTCCGGGATCTGCAGGA
1223
CCTGCAGATCCCGGAGTCC
GGACTCCGGGATCTGCAGG
1224
CTGCAGATCCCGGAGTCCG
CGGACTCCGGGATCTGCAG
1225
TGCAGATCCCGGAGTCCGA
TCGGACTCCGGGATCTGCA
1226
GCAGATCCCGGAGTCCGAC
GTCGGACTCCGGGATCTGC
1227
CAGATCCCGGAGTCCGACC
GGTCGGACTCCGGGATCTG
1228
AGATCCCGGAGTCCGACCC
GGGTCGGACTCCGGGATCT
1229
GATCCCGGAGTCCGACCCC
GGGGTCGGACTCCGGGATC
1230
ATCCCGGAGTCCGACCCCT
AGGGGTCGGACTCCGGGAT
1231
TCCCGGAGTCCGACCCCTC
GAGGGGTCGGACTCCGGGA
1232
CCCGGAGTCCGACCCCTCC
GGAGGGGTCGGACTCCGGG
1233
CCGGAGTCCGACCCCTCCA
TGGAGGGGTCGGACTCCGG
1234
CGGAGTCCGACCCCTCCAA
TTGGAGGGGTCGGACTCCG
1235
GGAGTCCGACCCCTCCAAC
GTTGGAGGGGTCGGACTCC
1236
GAGTCCGACCCCTCCAACC
GGTTGGAGGGGTCGGACTC
1237
AGTCCGACCCCTCCAACCT
AGGTTGGAGGGGTCGGACT
1238
GTCCGACCCCTCCAACCTG
CAGGTTGGAGGGGTCGGAC
1239
TCCGACCCCTCCAACCTGC
GCAGGTTGGAGGGGTCGGA
1240
CCGACCCCTCCAACCTGCG
CGCAGGTTGGAGGGGTCGG
1241
CGACCCCTCCAACCTGCGG
CCGCAGGTTGGAGGGGTCG
1242
GACCCCTCCAACCTGCGGC
GCCGCAGGTTGGAGGGGTC
1243
ACCCCTCCAACCTGCGGCC
GGCCGCAGGTTGGAGGGGT
1244
CCCCTCCAACCTGCGGCCC
GGGCCGCAGGTTGGAGGGG
1245
CCCTCCAACCTGCGGCCCT
AGGGCCGCAGGTTGGAGGG
1246
CCTCCAACCTGCGGCCCTA
TAGGGCCGCAGGTTGGAGG
1247
CTCCAACCTGCGGCCCTAG
CTAGGGCCGCAGGTTGGAG
1248
TCCAACCTGCGGCCCTAGA
TCTAGGGCCGCAGGTTGGA
1249
CCAACCTGCGGCCCTAGAG
CTCTAGGGCCGCAGGTTGG
1250
CAACCTGCGGCCCTAGAGC
GCTCTAGGGCCGCAGGTTG
1251
AACCTGCGGCCCTAGAGCG
CGCTCTAGGGCCGCAGGTT
1252
ACCTGCGGCCCTAGAGCGC
GCGCTCTAGGGCCGCAGGT
1253
CCTGCGGCCCTAGAGCGCC
GGCGCTCTAGGGCCGCAGG
1254
CTGCGGCCCTAGAGCGCCC
GGGCGCTCTAGGGCCGCAG
1255
TGCGGCCCTAGAGCGCCCC
GGGGCGCTCTAGGGCCGCA
1256
GCGGCCCTAGAGCGCCCCC
GGGGGCGCTCTAGGGCCGC
1257
CGGCCCTAGAGCGCCCCCG
CGGGGGCGCTCTAGGGCCG
1258
GGCCCTAGAGCGCCCCCGC
GCGGGGGCGCTCTAGGGCC
1259
GCCCTAGAGCGCCCCCGCC
GGCGGGGGCGCTCTAGGGC
1260
CCCTAGAGCGCCCCCGCCG
CGGCGGGGGCGCTCTAGGG
1261
CCTAGAGCGCCCCCGCCGC
GCGGCGGGGGCGCTCTAGG
1262
CTAGAGCGCCCCCGCCGCC
GGCGGCGGGGGCGCTCTAG
1263
TAGAGCGCCCCCGCCGCCC
GGGCGGCGGGGGCGCTCTA
1264
AGAGCGCCCCCGCCGCCCC
GGGGCGGCGGGGGCGCTCT
1265
GAGCGCCCCCGCCGCCCCG
CGGGGCGGCGGGGGCGCTC
1266
AGCGCCCCCGCCGCCCCGG
CCGGGGCGGCGGGGGCGCT
1267
GCGCCCCCGCCGCCCCGGG
CCCGGGGCGGCGGGGGCGC
1268
CGCCCCCGCCGCCCCGGGG
CCCCGGGGCGGCGGGGGCG
1269
GCCCCCGCCGCCCCGGGGG
CCCCCGGGGCGGCGGGGGC
1270
CCCCCGCCGCCCCGGGGGA
TCCCCCGGGGCGGCGGGGG
1271
CCCCGCCGCCCCGGGGGAA
TTCCCCCGGGGCGGCGGGG
1272
CCCGCCGCCCCGGGGGAAG
CTTCCCCCGGGGCGGCGGG
1273
CCGCCGCCCCGGGGGAAGG
CCTTCCCCCGGGGCGGCGG
1274
CGCCGCCCCGGGGGAAGGA
TCCTTCCCCCGGGGCGGCG
1275
GCCGCCCCGGGGGAAGGAG
CTCCTTCCCCCGGGGCGGC
1276
CCGCCCCGGGGGAAGGAGA
TCTCCTTCCCCCGGGGCGG
1277
CGCCCCGGGGGAAGGAGAG
CTCTCCTTCCCCCGGGGCG
1278
GCCCCGGGGGAAGGAGAGC
GCTCTCCTTCCCCCGGGGC
1279
CCCCGGGGGAAGGAGAGCG
CGCTCTCCTTCCCCCGGGG
1280
CCCGGGGGAAGGAGAGCGC
GCGCTCTCCTTCCCCCGGG
1281
CCGGGGGAAGGAGAGCGCG
CGCGCTCTCCTTCCCCCGG
1282
CGGGGGAAGGAGAGCGCGA
TCGCGCTCTCCTTCCCCCG
1283
GGGGGAAGGAGAGCGCGAG
CTCGCGCTCTCCTTCCCCC
1284
GGGGAAGGAGAGCGCGAGC
GCTCGCGCTCTCCTTCCCC
1285
GGGAAGGAGAGCGCGAGCG
CGCTCGCGCTCTCCTTCCC
1286
GGAAGGAGAGCGCGAGCGC
GCGCTCGCGCTCTCCTTCC
1287
GAAGGAGAGCGCGAGCGCG
CGCGCTCGCGCTCTCCTTC
1288
AAGGAGAGCGCGAGCGCGC
GCGCGCTCGCGCTCTCCTT
1289
AGGAGAGCGCGAGCGCGCT
AGCGCGCTCGCGCTCTCCT
1290
GGAGAGCGCGAGCGCGCTG
CAGCGCGCTCGCGCTCTCC
1291
GAGAGCGCGAGCGCGCTGA
TCAGCGCGCTCGCGCTCTC
1292
AGAGCGCGAGCGCGCTGAG
CTCAGCGCGCTCGCGCTCT
1293
GAGCGCGAGCGCGCTGAGC
GCTCAGCGCGCTCGCGCTC
1294
AGCGCGAGCGCGCTGAGCA
TGCTCAGCGCGCTCGCGCT
1295
GCGCGAGCGCGCTGAGCAG
CTGCTCAGCGCGCTCGCGC
1296
CGCGAGCGCGCTGAGCAGA
TCTGCTCAGCGCGCTCGCG
1297
GCGAGCGCGCTGAGCAGAC
GTCTGCTCAGCGCGCTCGC
1298
CGAGCGCGCTGAGCAGACA
TGTCTGCTCAGCGCGCTCG
1299
GAGCGCGCTGAGCAGACAG
CTGTCTGCTCAGCGCGCTC
1300
AGCGCGCTGAGCAGACAGA
TCTGTCTGCTCAGCGCGCT
1301
GCGCGCTGAGCAGACAGAG
CTCTGTCTGCTCAGCGCGC
1302
CGCGCTGAGCAGACAGAGC
GCTCTGTCTGCTCAGCGCG
1303
GCGCTGAGCAGACAGAGCG
CGCTCTGTCTGCTCAGCGC
1304
CGCTGAGCAGACAGAGCGG
CCGCTCTGTCTGCTCAGCG
1305
GCTGAGCAGACAGAGCGGG
CCCGCTCTGTCTGCTCAGC
1306
CTGAGCAGACAGAGCGGGA
TCCCGCTCTGTCTGCTCAG
1307
TGAGCAGACAGAGCGGGAG
CTCCCGCTCTGTCTGCTCA
1308
GAGCAGACAGAGCGGGAGA
TCTCCCGCTCTGTCTGCTC
1309
AGCAGACAGAGCGGGAGAA
TTCTCCCGCTCTGTCTGCT
1310
GCAGACAGAGCGGGAGAAC
GTTCTCCCGCTCTGTCTGC
1311
CAGACAGAGCGGGAGAACG
CGTTCTCCCGCTCTGTCTG
1312
AGACAGAGCGGGAGAACGC
GCGTTCTCCCGCTCTGTCT
1313
GACAGAGCGGGAGAACGCG
CGCGTTCTCCCGCTCTGTC
1314
ACAGAGCGGGAGAACGCGT
ACGCGTTCTCCCGCTCTGT
1315
CAGAGCGGGAGAACGCGTC
GACGCGTTCTCCCGCTCTG
1316
AGAGCGGGAGAACGCGTCC
GGACGCGTTCTCCCGCTCT
1317
GAGCGGGAGAACGCGTCCT
AGGACGCGTTCTCCCGCTC
1318
AGCGGGAGAACGCGTCCTC
GAGGACGCGTTCTCCCGCT
1319
GCGGGAGAACGCGTCCTCG
CGAGGACGCGTTCTCCCGC
1320
CGGGAGAACGCGTCCTCGC
GCGAGGACGCGTTCTCCCG
1321
GGGAGAACGCGTCCTCGCC
GGCGAGGACGCGTTCTCCC
1322
GGAGAACGCGTCCTCGCCC
GGGCGAGGACGCGTTCTCC
1323
GAGAACGCGTCCTCGCCCG
CGGGCGAGGACGCGTTCTC
1324
AGAACGCGTCCTCGCCCGC
GCGGGCGAGGACGCGTTCT
1325
GAACGCGTCCTCGCCCGCC
GGCGGGCGAGGACGCGTTC
1326
AACGCGTCCTCGCCCGCCG
CGGCGGGCGAGGACGCGTT
1327
ACGCGTCCTCGCCCGCCGG
CCGGCGGGCGAGGACGCGT
1328
CGCGTCCTCGCCCGCCGGC
GCCGGCGGGCGAGGACGCG
1329
GCGTCCTCGCCCGCCGGCC
GGCCGGCGGGCGAGGACGC
1330
CGTCCTCGCCCGCCGGCCG
CGGCCGGCGGGCGAGGACG
1331
GTCCTCGCCCGCCGGCCGG
CCGGCCGGCGGGCGAGGAC
1332
TCCTCGCCCGCCGGCCGGG
CCCGGCCGGCGGGCGAGGA
1333
CCTCGCCCGCCGGCCGGGA
TCCCGGCCGGCGGGCGAGG
1334
CTCGCCCGCCGGCCGGGAG
CTCCCGGCCGGCGGGCGAG
1335
TCGCCCGCCGGCCGGGAGG
CCTCCCGGCCGGCGGGCGA
1336
CGCCCGCCGGCCGGGAGGC
GCCTCCCGGCCGGCGGGCG
1337
GCCCGCCGGCCGGGAGGCC
GGCCTCCCGGCCGGCGGGC
1338
CCCGCCGGCCGGGAGGCCC
GGGCCTCCCGGCCGGCGGG
1339
CCGCCGGCCGGGAGGCCCC
GGGGCCTCCCGGCCGGCGG
1340
CGCCGGCCGGGAGGCCCCG
CGGGGCCTCCCGGCCGGCG
1341
GCCGGCCGGGAGGCCCCGG
CCGGGGCCTCCCGGCCGGC
1342
CCGGCCGGGAGGCCCCGGA
TCCGGGGCCTCCCGGCCGG
1343
CGGCCGGGAGGCCCCGGAG
CTCCGGGGCCTCCCGGCCG
1344
GGCCGGGAGGCCCCGGAGC
GCTCCGGGGCCTCCCGGCC
1345
GCCGGGAGGCCCCGGAGCT
AGCTCCGGGGCCTCCCGGC
1346
CCGGGAGGCCCCGGAGCTG
CAGCTCCGGGGCCTCCCGG
1347
CGGGAGGCCCCGGAGCTGG
CCAGCTCCGGGGCCTCCCG
1348
GGGAGGCCCCGGAGCTGGC
GCCAGCTCCGGGGCCTCCC
1349
GGAGGCCCCGGAGCTGGCC
GGCCAGCTCCGGGGCCTCC
1350
GAGGCCCCGGAGCTGGCCC
GGGCCAGCTCCGGGGCCTC
1351
AGGCCCCGGAGCTGGCCCA
TGGGCCAGCTCCGGGGCCT
1352
GGCCCCGGAGCTGGCCCAT
ATGGGCCAGCTCCGGGGCC
1353
GCCCCGGAGCTGGCCCATG
CATGGGCCAGCTCCGGGGC
1354
CCCCGGAGCTGGCCCATGG
CCATGGGCCAGCTCCGGGG
1355
CCCGGAGCTGGCCCATGGG
CCCATGGGCCAGCTCCGGG
1356
CCGGAGCTGGCCCATGGGG
CCCCATGGGCCAGCTCCGG
1357
CGGAGCTGGCCCATGGGGA
TCCCCATGGGCCAGCTCCG
1358
GGAGCTGGCCCATGGGGAG
CTCCCCATGGGCCAGCTCC
1359
GAGCTGGCCCATGGGGAGC
GCTCCCCATGGGCCAGCTC
1360
AGCTGGCCCATGGGGAGCA
TGCTCCCCATGGGCCAGCT
1361
GCTGGCCCATGGGGAGCAG
CTGCTCCCCATGGGCCAGC
1362
CTGGCCCATGGGGAGCAGG
CCTGCTCCCCATGGGCCAG
1363
TGGCCCATGGGGAGCAGGC
GCCTGCTCCCCATGGGCCA
1364
GGCCCATGGGGAGCAGGCG
CGCCTGCTCCCCATGGGCC
1365
GCCCATGGGGAGCAGGCGC
GCGCCTGCTCCCCATGGGC
1366
CCCATGGGGAGCAGGCGCC
GGCGCCTGCTCCCCATGGG
1367
CCATGGGGAGCAGGCGCCC
GGGCGCCTGCTCCCCATGG
1368
CATGGGGAGCAGGCGCCCG
CGGGCGCCTGCTCCCCATG
1369
ATGGGGAGCAGGCGCCCGG
CCGGGCGCCTGCTCCCCAT
1370
TGGGGAGCAGGCGCCCGGT
ACCGGGCGCCTGCTCCCCA
1371
GGGGAGCAGGCGCCCGGTG
CACCGGGCGCCTGCTCCCC
1372
GGGAGCAGGCGCCCGGTGC
GCACCGGGCGCCTGCTCCC
1373
GGAGCAGGCGCCCGGTGCC
GGCACCGGGCGCCTGCTCC
1374
GAGCAGGCGCCCGGTGCCG
CGGCACCGGGCGCCTGCTC
1375
AGCAGGCGCCCGGTGCCGG
CCGGCACCGGGCGCCTGCT
1376
GCAGGCGCCCGGTGCCGGC
GCCGGCACCGGGCGCCTGC
1377
CAGGCGCCCGGTGCCGGCC
GGCCGGCACCGGGCGCCTG
1378
AGGCGCCCGGTGCCGGCCA
TGGCCGGCACCGGGCGCCT
1379
GGCGCCCGGTGCCGGCCAC
GTGGCCGGCACCGGGCGCC
1380
GCGCCCGGTGCCGGCCACG
CGTGGCCGGCACCGGGCGC
1381
CGCCCGGTGCCGGCCACGA
TCGTGGCCGGCACCGGGCG
1382
GCCCGGTGCCGGCCACGAC
GTCGTGGCCGGCACCGGGC
1383
CCCGGTGCCGGCCACGACG
CGTCGTGGCCGGCACCGGG
1384
CCGGTGCCGGCCACGACGA
TCGTCGTGGCCGGCACCGG
1385
CGGTGCCGGCCACGACGAC
GTCGTCGTGGCCGGCACCG
1386
GGTGCCGGCCACGACGACC
GGTCGTCGTGGCCGGCACC
1387
GTGCCGGCCACGACGACCG
CGGTCGTCGTGGCCGGCAC
1388
TGCCGGCCACGACGACCGC
GCGGTCGTCGTGGCCGGCA
1389
GCCGGCCACGACGACCGCC
GGCGGTCGTCGTGGCCGGC
1390
CCGGCCACGACGACCGCCA
TGGCGGTCGTCGTGGCCGG
1391
CGGCCACGACGACCGCCAC
GTGGCGGTCGTCGTGGCCG
1392
GGCCACGACGACCGCCACC
GGTGGCGGTCGTCGTGGCC
1393
GCCACGACGACCGCCACCG
CGGTGGCGGTCGTCGTGGC
1394
CCACGACGACCGCCACCGC
GCGGTGGCGGTCGTCGTGG
1395
CACGACGACCGCCACCGCC
GGCGGTGGCGGTCGTCGTG
1396
ACGACGACCGCCACCGCCC
GGGCGGTGGCGGTCGTCGT
1397
CGACGACCGCCACCGCCCG
CGGGCGGTGGCGGTCGTCG
1398
GACGACCGCCACCGCCCGC
GCGGGCGGTGGCGGTCGTC
1399
ACGACCGCCACCGCCCGCG
CGCGGGCGGTGGCGGTCGT
1400
CGACCGCCACCGCCCGCGC
GCGCGGGCGGTGGCGGTCG
1401
GACCGCCACCGCCCGCGCC
GGCGCGGGCGGTGGCGGTC
1402
ACCGCCACCGCCCGCGCCG
CGGCGCGGGCGGTGGCGGT
1403
CCGCCACCGCCCGCGCCGC
GCGGCGCGGGCGGTGGCGG
1404
CGCCACCGCCCGCGCCGCG
CGCGGCGCGGGCGGTGGCG
1405
GCCACCGCCCGCGCCGCGA
TCGCGGCGCGGGCGGTGGC
1406
CCACCGCCCGCGCCGCGAC
GTCGCGGCGCGGGCGGTGG
1407
CACCGCCCGCGCCGCGACC
GGTCGCGGCGCGGGCGGTG
1408
ACCGCCCGCGCCGCGACCG
CGGTCGCGGCGCGGGCGGT
1409
CCGCCCGCGCCGCGACCGG
CCGGTCGCGGCGCGGGCGG
1410
CGCCCGCGCCGCGACCGGC
GCCGGTCGCGGCGCGGGCG
1411
GCCCGCGCCGCGACCGGCC
GGCCGGTCGCGGCGCGGGC
1412
CCCGCGCCGCGACCGGCCG
CGGCCGGTCGCGGCGCGGG
1413
CCGCGCCGCGACCGGCCGG
CCGGCCGGTCGCGGCGCGG
1414
CGCGCCGCGACCGGCCGGT
ACCGGCCGGTCGCGGCGCG
1415
GCGCCGCGACCGGCCGGTG
CACCGGCCGGTCGCGGCGC
1416
CGCCGCGACCGGCCGGTGA
TCACCGGCCGGTCGCGGCG
1417
GCCGCGACCGGCCGGTGAA
TTCACCGGCCGGTCGCGGC
1418
CCGCGACCGGCCGGTGAAG
CTTCACCGGCCGGTCGCGG
1419
CGCGACCGGCCGGTGAAGC
GCTTCACCGGCCGGTCGCG
1420
GCGACCGGCCGGTGAAGCC
GGCTTCACCGGCCGGTCGC
1421
CGACCGGCCGGTGAAGCCC
GGGCTTCACCGGCCGGTCG
1422
GACCGGCCGGTGAAGCCCA
TGGGCTTCACCGGCCGGTC
1423
ACCGGCCGGTGAAGCCCAG
CTGGGCTTCACCGGCCGGT
1424
CCGGCCGGTGAAGCCCAGG
CCTGGGCTTCACCGGCCGG
1425
CGGCCGGTGAAGCCCAGGG
CCCTGGGCTTCACCGGCCG
1426
GGCCGGTGAAGCCCAGGGA
TCCCTGGGCTTCACCGGCC
1427
GCCGGTGAAGCCCAGGGAC
GTCCCTGGGCTTCACCGGC
1428
CCGGTGAAGCCCAGGGACC
GGTCCCTGGGCTTCACCGG
1429
CGGTGAAGCCCAGGGACCC
GGGTCCCTGGGCTTCACCG
1430
GGTGAAGCCCAGGGACCCC
GGGGTCCCTGGGCTTCACC
1431
GTGAAGCCCAGGGACCCCC
GGGGGTCCCTGGGCTTCAC
1432
TGAAGCCCAGGGACCCCCC
GGGGGGTCCCTGGGCTTCA
1433
GAAGCCCAGGGACCCCCCT
AGGGGGGTCCCTGGGCTTC
1434
AAGCCCAGGGACCCCCCTC
GAGGGGGGTCCCTGGGCTT
1435
AGCCCAGGGACCCCCCTCT
AGAGGGGGGTCCCTGGGCT
1436
GCCCAGGGACCCCCCTCTG
CAGAGGGGGGTCCCTGGGC
1437
CCCAGGGACCCCCCTCTGG
CCAGAGGGGGGTCCCTGGG
1438
CCAGGGACCCCCCTCTGGG
CCCAGAGGGGGGTCCCTGG
1439
CAGGGACCCCCCTCTGGGA
TCCCAGAGGGGGGTCCCTG
1440
AGGGACCCCCCTCTGGGAG
CTCCCAGAGGGGGGTCCCT
1441
GGGACCCCCCTCTGGGAGA
TCTCCCAGAGGGGGGTCCC
1442
GGACCCCCCTCTGGGAGAG
CTCTCCCAGAGGGGGGTCC
1443
GACCCCCCTCTGGGAGAGC
GCTCTCCCAGAGGGGGGTC
1444
ACCCCCCTCTGGGAGAGCC
GGCTCTCCCAGAGGGGGGT
1445
CCCCCCTCTGGGAGAGCCC
GGGCTCTCCCAGAGGGGGG
1446
CCCCCTCTGGGAGAGCCCC
GGGGCTCTCCCAGAGGGGG
1447
CCCCTCTGGGAGAGCCCCA
TGGGGCTCTCCCAGAGGGG
1448
CCCTCTGGGAGAGCCCCAT
ATGGGGCTCTCCCAGAGGG
1449
CCTCTGGGAGAGCCCCATG
CATGGGGCTCTCCCAGAGG
1450
CTCTGGGAGAGCCCCATGA
TCATGGGGCTCTCCCAGAG
1451
TCTGGGAGAGCCCCATGAG
CTCATGGGGCTCTCCCAGA
1452
CTGGGAGAGCCCCATGAGG
CCTCATGGGGCTCTCCCAG
1453
TGGGAGAGCCCCATGAGGG
CCCTCATGGGGCTCTCCCA
1454
GGGAGAGCCCCATGAGGGC
GCCCTCATGGGGCTCTCCC
1455
GGAGAGCCCCATGAGGGCA
TGCCCTCATGGGGCTCTCC
1456
GAGAGCCCCATGAGGGCAG
CTGCCCTCATGGGGCTCTC
1457
AGAGCCCCATGAGGGCAGG
CCTGCCCTCATGGGGCTCT
1458
GAGCCCCATGAGGGCAGGA
TCCTGCCCTCATGGGGCTC
1459
AGCCCCATGAGGGCAGGAG
CTCCTGCCCTCATGGGGCT
1460
GCCCCATGAGGGCAGGAGA
TCTCCTGCCCTCATGGGGC
1461
CCCCATGAGGGCAGGAGAG
CTCTCCTGCCCTCATGGGG
1462
CCCATGAGGGCAGGAGAGT
ACTCTCCTGCCCTCATGGG
1463
CCATGAGGGCAGGAGAGTG
CACTCTCCTGCCCTCATGG
1464
CATGAGGGCAGGAGAGTGA
TCACTCTCCTGCCCTCATG
1465
ATGAGGGCAGGAGAGTGAT
ATCACTCTCCTGCCCTCAT
1466
TGAGGGCAGGAGAGTGATG
CATCACTCTCCTGCCCTCA
1467
GAGGGCAGGAGAGTGATGG
CCATCACTCTCCTGCCCTC
1468
AGGGCAGGAGAGTGATGGA
TCCATCACTCTCCTGCCCT
1469
GGGCAGGAGAGTGATGGAG
CTCCATCACTCTCCTGCCC
1470
GGCAGGAGAGTGATGGAGA
TCTCCATCACTCTCCTGCC
1471
GCAGGAGAGTGATGGAGAG
CTCTCCATCACTCTCCTGC
1472
CAGGAGAGTGATGGAGAGT
ACTCTCCATCACTCTCCTG
1473
AGGAGAGTGATGGAGAGTA
TACTCTCCATCACTCTCCT
1474
GGAGAGTGATGGAGAGTAC
GTACTCTCCATCACTCTCC
1475
GAGAGTGATGGAGAGTACG
CGTACTCTCCATCACTCTC
1476
AGAGTGATGGAGAGTACGC
GCGTACTCTCCATCACTCT
1477
GAGTGATGGAGAGTACGCC
GGCGTACTCTCCATCACTC
1478
AGTGATGGAGAGTACGCCC
GGGCGTACTCTCCATCACT
1479
GTGATGGAGAGTACGCCCA
TGGGCGTACTCTCCATCAC
1480
TGATGGAGAGTACGCCCAG
CTGGGCGTACTCTCCATCA
1481
GATGGAGAGTACGCCCAGC
GCTGGGCGTACTCTCCATC
1482
ATGGAGAGTACGCCCAGCT
AGCTGGGCGTACTCTCCAT
1483
TGGAGAGTACGCCCAGCTT
AAGCTGGGCGTACTCTCCA
1484
GGAGAGTACGCCCAGCTTC
GAAGCTGGGCGTACTCTCC
1485
GAGAGTACGCCCAGCTTCC
GGAAGCTGGGCGTACTCTC
1486
AGAGTACGCCCAGCTTCCT
AGGAAGCTGGGCGTACTCT
1487
GAGTACGCCCAGCTTCCTG
CAGGAAGCTGGGCGTACTC
1488
AGTACGCCCAGCTTCCTGA
TCAGGAAGCTGGGCGTACT
1489
GTACGCCCAGCTTCCTGAA
TTCAGGAAGCTGGGCGTAC
1490
TACGCCCAGCTTCCTGAAG
CTTCAGGAAGCTGGGCGTA
1491
ACGCCCAGCTTCCTGAAGG
CCTTCAGGAAGCTGGGCGT
1492
CGCCCAGCTTCCTGAAGGG
CCCTTCAGGAAGCTGGGCG
1493
GCCCAGCTTCCTGAAGGGC
GCCCTTCAGGAAGCTGGGC
1494
CCCAGCTTCCTGAAGGGCA
TGCCCTTCAGGAAGCTGGG
1495
CCAGCTTCCTGAAGGGCAC
GTGCCCTTCAGGAAGCTGG
1496
CAGCTTCCTGAAGGGCACC
GGTGCCCTTCAGGAAGCTG
1497
AGCTTCCTGAAGGGCACCC
GGGTGCCCTTCAGGAAGCT
1498
GCTTCCTGAAGGGCACCCC
GGGGTGCCCTTCAGGAAGC
1499
CTTCCTGAAGGGCACCCCA
TGGGGTGCCCTTCAGGAAG
1500
TTCCTGAAGGGCACCCCAA
TTGGGGTGCCCTTCAGGAA
1501
TCCTGAAGGGCACCCCAAC
GTTGGGGTGCCCTTCAGGA
1502
CCTGAAGGGCACCCCAACC
GGTTGGGGTGCCCTTCAGG
1503
CTGAAGGGCACCCCAACCT
AGGTTGGGGTGCCCTTCAG
1504
TGAAGGGCACCCCAACCTG
CAGGTTGGGGTGCCCTTCA
1505
GAAGGGCACCCCAACCTGG
CCAGGTTGGGGTGCCCTTC
1506
AAGGGCACCCCAACCTGGG
CCCAGGTTGGGGTGCCCTT
1507
AGGGCACCCCAACCTGGGA
TCCCAGGTTGGGGTGCCCT
1508
GGGCACCCCAACCTGGGAG
CTCCCAGGTTGGGGTGCCC
1509
GGCACCCCAACCTGGGAGA
TCTCCCAGGTTGGGGTGCC
1510
GCACCCCAACCTGGGAGAA
TTCTCCCAGGTTGGGGTGC
1511
CACCCCAACCTGGGAGAAG
CTTCTCCCAGGTTGGGGTG
1512
ACCCCAACCTGGGAGAAGA
TCTTCTCCCAGGTTGGGGT
1513
CCCCAACCTGGGAGAAGAC
GTCTTCTCCCAGGTTGGGG
1514
CCCAACCTGGGAGAAGACG
CGTCTTCTCCCAGGTTGGG
1515
CCAACCTGGGAGAAGACGG
CCGTCTTCTCCCAGGTTGG
1516
CAACCTGGGAGAAGACGGC
GCCGTCTTCTCCCAGGTTG
1517
AACCTGGGAGAAGACGGCC
GGCCGTCTTCTCCCAGGTT
1518
ACCTGGGAGAAGACGGCCC
GGGCCGTCTTCTCCCAGGT
1519
CCTGGGAGAAGACGGCCCC
GGGGCCGTCTTCTCCCAGG
1520
CTGGGAGAAGACGGCCCCA
TGGGGCCGTCTTCTCCCAG
1521
TGGGAGAAGACGGCCCCAG
CTGGGGCCGTCTTCTCCCA
1522
GGGAGAAGACGGCCCCAGA
TCTGGGGCCGTCTTCTCCC
1523
GGAGAAGACGGCCCCAGAG
CTCTGGGGCCGTCTTCTCC
1524
GAGAAGACGGCCCCAGAGA
TCTCTGGGGCCGTCTTCTC
1525
AGAAGACGGCCCCAGAGAA
TTCTCTGGGGCCGTCTTCT
1526
GAAGACGGCCCCAGAGAAC
GTTCTCTGGGGCCGTCTTC
1527
AAGACGGCCCCAGAGAACG
CGTTCTCTGGGGCCGTCTT
1528
AGACGGCCCCAGAGAACGG
CCGTTCTCTGGGGCCGTCT
1529
GACGGCCCCAGAGAACGGC
GCCGTTCTCTGGGGCCGTC
1530
ACGGCCCCAGAGAACGGCA
TGCCGTTCTCTGGGGCCGT
1531
CGGCCCCAGAGAACGGCAT
ATGCCGTTCTCTGGGGCCG
1532
GGCCCCAGAGAACGGCATC
GATGCCGTTCTCTGGGGCC
1533
GCCCCAGAGAACGGCATCG
CGATGCCGTTCTCTGGGGC
1534
CCCCAGAGAACGGCATCGT
ACGATGCCGTTCTCTGGGG
1535
CCCAGAGAACGGCATCGTG
CACGATGCCGTTCTCTGGG
1536
CCAGAGAACGGCATCGTGA
TCACGATGCCGTTCTCTGG
1537
CAGAGAACGGCATCGTGAG
CTCACGATGCCGTTCTCTG
1538
AGAGAACGGCATCGTGAGA
TCTCACGATGCCGTTCTCT
1539
GAGAACGGCATCGTGAGAC
GTCTCACGATGCCGTTCTC
1540
AGAACGGCATCGTGAGACA
TGTCTCACGATGCCGTTCT
1541
GAACGGCATCGTGAGACAG
CTGTCTCACGATGCCGTTC
1542
AACGGCATCGTGAGACAGG
CCTGTCTCACGATGCCGTT
1543
ACGGCATCGTGAGACAGGA
TCCTGTCTCACGATGCCGT
1544
CGGCATCGTGAGACAGGAG
CTCCTGTCTCACGATGCCG
1545
GGCATCGTGAGACAGGAGC
GCTCCTGTCTCACGATGCC
1546
GCATCGTGAGACAGGAGCC
GGCTCCTGTCTCACGATGC
1547
CATCGTGAGACAGGAGCCC
GGGCTCCTGTCTCACGATG
1548
ATCGTGAGACAGGAGCCCG
CGGGCTCCTGTCTCACGAT
1549
TCGTGAGACAGGAGCCCGG
CCGGGCTCCTGTCTCACGA
1550
CGTGAGACAGGAGCCCGGC
GCCGGGCTCCTGTCTCACG
1551
GTGAGACAGGAGCCCGGCA
TGCCGGGCTCCTGTCTCAC
1552
TGAGACAGGAGCCCGGCAG
CTGCCGGGCTCCTGTCTCA
1553
GAGACAGGAGCCCGGCAGC
GCTGCCGGGCTCCTGTCTC
1554
AGACAGGAGCCCGGCAGCC
GGCTGCCGGGCTCCTGTCT
1555
GACAGGAGCCCGGCAGCCC
GGGCTGCCGGGCTCCTGTC
1556
ACAGGAGCCCGGCAGCCCG
CGGGCTGCCGGGCTCCTGT
1557
CAGGAGCCCGGCAGCCCGC
GCGGGCTGCCGGGCTCCTG
1558
AGGAGCCCGGCAGCCCGCC
GGCGGGCTGCCGGGCTCCT
1559
GGAGCCCGGCAGCCCGCCT
AGGCGGGCTGCCGGGCTCC
1560
GAGCCCGGCAGCCCGCCTC
GAGGCGGGCTGCCGGGCTC
1561
AGCCCGGCAGCCCGCCTCG
CGAGGCGGGCTGCCGGGCT
1562
GCCCGGCAGCCCGCCTCGA
TCGAGGCGGGCTGCCGGGC
1563
CCCGGCAGCCCGCCTCGAG
CTCGAGGCGGGCTGCCGGG
1564
CCGGCAGCCCGCCTCGAGA
TCTCGAGGCGGGCTGCCGG
1565
CGGCAGCCCGCCTCGAGAT
ATCTCGAGGCGGGCTGCCG
1566
GGCAGCCCGCCTCGAGATG
CATCTCGAGGCGGGCTGCC
1567
GCAGCCCGCCTCGAGATGG
CCATCTCGAGGCGGGCTGC
1568
CAGCCCGCCTCGAGATGGA
TCCATCTCGAGGCGGGCTG
1569
AGCCCGCCTCGAGATGGAC
GTCCATCTCGAGGCGGGCT
1570
GCCCGCCTCGAGATGGACT
AGTCCATCTCGAGGCGGGC
1571
CCCGCCTCGAGATGGACTG
CAGTCCATCTCGAGGCGGG
1572
CCGCCTCGAGATGGACTGC
GCAGTCCATCTCGAGGCGG
1573
CGCCTCGAGATGGACTGCA
TGCAGTCCATCTCGAGGCG
1574
GCCTCGAGATGGACTGCAC
GTGCAGTCCATCTCGAGGC
1575
CCTCGAGATGGACTGCACC
GGTGCAGTCCATCTCGAGG
1576
CTCGAGATGGACTGCACCA
TGGTGCAGTCCATCTCGAG
1577
TCGAGATGGACTGCACCAT
ATGGTGCAGTCCATCTCGA
1578
CGAGATGGACTGCACCATG
CATGGTGCAGTCCATCTCG
1579
GAGATGGACTGCACCATGG
CCATGGTGCAGTCCATCTC
1580
AGATGGACTGCACCATGGG
CCCATGGTGCAGTCCATCT
1581
GATGGACTGCACCATGGGC
GCCCATGGTGCAGTCCATC
1582
ATGGACTGCACCATGGGCC
GGCCCATGGTGCAGTCCAT
1583
TGGACTGCACCATGGGCCG
CGGCCCATGGTGCAGTCCA
1584
GGACTGCACCATGGGCCGC
GCGGCCCATGGTGCAGTCC
1585
GACTGCACCATGGGCCGCT
AGCGGCCCATGGTGCAGTC
1586
ACTGCACCATGGGCCGCTG
CAGCGGCCCATGGTGCAGT
1587
CTGCACCATGGGCCGCTGT
ACAGCGGCCCATGGTGCAG
1588
TGCACCATGGGCCGCTGTG
CACAGCGGCCCATGGTGCA
1589
GCACCATGGGCCGCTGTGC
GCACAGCGGCCCATGGTGC
1590
CACCATGGGCCGCTGTGCC
GGCACAGCGGCCCATGGTG
1591
ACCATGGGCCGCTGTGCCT
AGGCACAGCGGCCCATGGT
1592
CCATGGGCCGCTGTGCCTG
CAGGCACAGCGGCCCATGG
1593
CATGGGCCGCTGTGCCTGG
CCAGGCACAGCGGCCCATG
1594
ATGGGCCGCTGTGCCTGGG
CCCAGGCACAGCGGCCCAT
1595
TGGGCCGCTGTGCCTGGGA
TCCCAGGCACAGCGGCCCA
1596
GGGCCGCTGTGCCTGGGAG
CTCCCAGGCACAGCGGCCC
1597
GGCCGCTGTGCCTGGGAGA
TCTCCCAGGCACAGCGGCC
1598
GCCGCTGTGCCTGGGAGAG
CTCTCCCAGGCACAGCGGC
1599
CCGCTGTGCCTGGGAGAGC
GCTCTCCCAGGCACAGCGG
1600
CGCTGTGCCTGGGAGAGCC
GGCTCTCCCAGGCACAGCG
1601
GCTGTGCCTGGGAGAGCCT
AGGCTCTCCCAGGCACAGC
1602
CTGTGCCTGGGAGAGCCTG
CAGGCTCTCCCAGGCACAG
1603
TGTGCCTGGGAGAGCCTGC
GCAGGCTCTCCCAGGCACA
1604
GTGCCTGGGAGAGCCTGCT
AGCAGGCTCTCCCAGGCAC
1605
TGCCTGGGAGAGCCTGCTC
GAGCAGGCTCTCCCAGGCA
1606
GCCTGGGAGAGCCTGCTCC
GGAGCAGGCTCTCCCAGGC
1607
CCTGGGAGAGCCTGCTCCC
GGGAGCAGGCTCTCCCAGG
1608
CTGGGAGAGCCTGCTCCCT
AGGGAGCAGGCTCTCCCAG
1609
TGGGAGAGCCTGCTCCCTT
AAGGGAGCAGGCTCTCCCA
1610
GGGAGAGCCTGCTCCCTTT
AAAGGGAGCAGGCTCTCCC
1611
GGAGAGCCTGCTCCCTTTT
AAAAGGGAGCAGGCTCTCC
1612
GAGAGCCTGCTCCCTTTTG
CAAAAGGGAGCAGGCTCTC
1613
AGAGCCTGCTCCCTTTTGG
CCAAAAGGGAGCAGGCTCT
1614
GAGCCTGCTCCCTTTTGGA
TCCAAAAGGGAGCAGGCTC
1615
AGCCTGCTCCCTTTTGGAG
CTCCAAAAGGGAGCAGGCT
1616
GCCTGCTCCCTTTTGGAGG
CCTCCAAAAGGGAGCAGGC
1617
CCTGCTCCCTTTTGGAGGG
CCCTCCAAAAGGGAGCAGG
1618
CTGCTCCCTTTTGGAGGGG
CCCCTCCAAAAGGGAGCAG
1619
TGCTCCCTTTTGGAGGGGC
GCCCCTCCAAAAGGGAGCA
1620
GCTCCCTTTTGGAGGGGCG
CGCCCCTCCAAAAGGGAGC
1621
CTCCCTTTTGGAGGGGCGT
ACGCCCCTCCAAAAGGGAG
1622
TCCCTTTTGGAGGGGCGTC
GACGCCCCTCCAAAAGGGA
1623
CCCTTTTGGAGGGGCGTCC
GGACGCCCCTCCAAAAGGG
1624
CCTTTTGGAGGGGCGTCCT
AGGACGCCCCTCCAAAAGG
1625
CTTTTGGAGGGGCGTCCTG
CAGGACGCCCCTCCAAAAG
1626
TTTTGGAGGGGCGTCCTGA
TCAGGACGCCCCTCCAAAA
1627
TTTGGAGGGGCGTCCTGAG
CTCAGGACGCCCCTCCAAA
1628
TTGGAGGGGCGTCCTGAGC
GCTCAGGACGCCCCTCCAA
1629
TGGAGGGGCGTCCTGAGCA
TGCTCAGGACGCCCCTCCA
1630
GGAGGGGCGTCCTGAGCAC
GTGCTCAGGACGCCCCTCC
1631
GAGGGGCGTCCTGAGCACC
GGTGCTCAGGACGCCCCTC
1632
AGGGGCGTCCTGAGCACCC
GGGTGCTCAGGACGCCCCT
1633
GGGGCGTCCTGAGCACCCC
GGGGTGCTCAGGACGCCCC
1634
GGGCGTCCTGAGCACCCCA
TGGGGTGCTCAGGACGCCC
1635
GGCGTCCTGAGCACCCCAG
CTGGGGTGCTCAGGACGCC
1636
GCGTCCTGAGCACCCCAGA
TCTGGGGTGCTCAGGACGC
1637
CGTCCTGAGCACCCCAGAC
GTCTGGGGTGCTCAGGACG
1638
GTCCTGAGCACCCCAGACT
AGTCTGGGGTGCTCAGGAC
1639
TCCTGAGCACCCCAGACTC
GAGTCTGGGGTGCTCAGGA
1640
CCTGAGCACCCCAGACTCC
GGAGTCTGGGGTGCTCAGG
1641
CTGAGCACCCCAGACTCCT
AGGAGTCTGGGGTGCTCAG
1642
TGAGCACCCCAGACTCCTG
CAGGAGTCTGGGGTGCTCA
1643
GAGCACCCCAGACTCCTGG
CCAGGAGTCTGGGGTGCTC
1644
AGCACCCCAGACTCCTGGC
GCCAGGAGTCTGGGGTGCT
1645
GCACCCCAGACTCCTGGCT
AGCCAGGAGTCTGGGGTGC
1646
CACCCCAGACTCCTGGCTT
AAGCCAGGAGTCTGGGGTG
1647
ACCCCAGACTCCTGGCTTC
GAAGCCAGGAGTCTGGGGT
1648
CCCCAGACTCCTGGCTTCC
GGAAGCCAGGAGTCTGGGG
1649
CCCAGACTCCTGGCTTCCC
GGGAAGCCAGGAGTCTGGG
1650
CCAGACTCCTGGCTTCCCC
GGGGAAGCCAGGAGTCTGG
1651
CAGACTCCTGGCTTCCCCC
GGGGGAAGCCAGGAGTCTG
1652
AGACTCCTGGCTTCCCCCT
AGGGGGAAGCCAGGAGTCT
1653
GACTCCTGGCTTCCCCCTG
CAGGGGGAAGCCAGGAGTC
1654
ACTCCTGGCTTCCCCCTGG
CCAGGGGGAAGCCAGGAGT
1655
CTCCTGGCTTCCCCCTGGC
GCCAGGGGGAAGCCAGGAG
1656
TCCTGGCTTCCCCCTGGCT
AGCCAGGGGGAAGCCAGGA
1657
CCTGGCTTCCCCCTGGCTT
AAGCCAGGGGGAAGCCAGG
1658
CTGGCTTCCCCCTGGCTTC
GAAGCCAGGGGGAAGCCAG
1659
TGGCTTCCCCCTGGCTTCC
GGAAGCCAGGGGGAAGCCA
1660
GGCTTCCCCCTGGCTTCCC
GGGAAGCCAGGGGGAAGCC
1661
GCTTCCCCCTGGCTTCCCC
GGGGAAGCCAGGGGGAAGC
1662
CTTCCCCCTGGCTTCCCCC
GGGGGAAGCCAGGGGGAAG
1663
TTCCCCCTGGCTTCCCCCA
TGGGGGAAGCCAGGGGGAA
1664
TCCCCCTGGCTTCCCCCAG
CTGGGGGAAGCCAGGGGGA
1665
CCCCCTGGCTTCCCCCAGG
CCTGGGGGAAGCCAGGGGG
1666
CCCCTGGCTTCCCCCAGGG
CCCTGGGGGAAGCCAGGGG
1667
CCCTGGCTTCCCCCAGGGC
GCCCTGGGGGAAGCCAGGG
1668
CCTGGCTTCCCCCAGGGCC
GGCCCTGGGGGAAGCCAGG
1669
CTGGCTTCCCCCAGGGCCC
GGGCCCTGGGGGAAGCCAG
1670
TGGCTTCCCCCAGGGCCCC
GGGGCCCTGGGGGAAGCCA
1671
GGCTTCCCCCAGGGCCCCA
TGGGGCCCTGGGGGAAGCC
1672
GCTTCCCCCAGGGCCCCAA
TTGGGGCCCTGGGGGAAGC
1673
CTTCCCCCAGGGCCCCAAG
CTTGGGGCCCTGGGGGAAG
1674
TTCCCCCAGGGCCCCAAGG
CCTTGGGGCCCTGGGGGAA
1675
TCCCCCAGGGCCCCAAGGA
TCCTTGGGGCCCTGGGGGA
1676
CCCCCAGGGCCCCAAGGAC
GTCCTTGGGGCCCTGGGGG
1677
CCCCAGGGCCCCAAGGACA
TGTCCTTGGGGCCCTGGGG
1678
CCCAGGGCCCCAAGGACAT
ATGTCCTTGGGGCCCTGGG
1679
CCAGGGCCCCAAGGACATG
CATGTCCTTGGGGCCCTGG
1680
CAGGGCCCCAAGGACATGC
GCATGTCCTTGGGGCCCTG
1681
AGGGCCCCAAGGACATGCT
AGCATGTCCTTGGGGCCCT
1682
GGGCCCCAAGGACATGCTC
GAGCATGTCCTTGGGGCCC
1683
GGCCCCAAGGACATGCTCC
GGAGCATGTCCTTGGGGCC
1684
GCCCCAAGGACATGCTCCC
GGGAGCATGTCCTTGGGGC
1685
CCCCAAGGACATGCTCCCA
TGGGAGCATGTCCTTGGGG
1686
CCCAAGGACATGCTCCCAC
GTGGGAGCATGTCCTTGGG
1687
CCAAGGACATGCTCCCACT
AGTGGGAGCATGTCCTTGG
1688
CAAGGACATGCTCCCACTT
AAGTGGGAGCATGTCCTTG
1689
AAGGACATGCTCCCACTTG
CAAGTGGGAGCATGTCCTT
1690
AGGACATGCTCCCACTTGT
ACAAGTGGGAGCATGTCCT
1691
GGACATGCTCCCACTTGTG
CACAAGTGGGAGCATGTCC
1692
GACATGCTCCCACTTGTGG
CCACAAGTGGGAGCATGTC
1693
ACATGCTCCCACTTGTGGA
TCCACAAGTGGGAGCATGT
1694
CATGCTCCCACTTGTGGAG
CTCCACAAGTGGGAGCATG
1695
ATGCTCCCACTTGTGGAGG
CCTCCACAAGTGGGAGCAT
1696
TGCTCCCACTTGTGGAGGG
CCCTCCACAAGTGGGAGCA
1697
GCTCCCACTTGTGGAGGGC
GCCCTCCACAAGTGGGAGC
1698
CTCCCACTTGTGGAGGGCG
CGCCCTCCACAAGTGGGAG
1699
TCCCACTTGTGGAGGGCGA
TCGCCCTCCACAAGTGGGA
1700
CCCACTTGTGGAGGGCGAG
CTCGCCCTCCACAAGTGGG
1701
CCACTTGTGGAGGGCGAGG
CCTCGCCCTCCACAAGTGG
1702
CACTTGTGGAGGGCGAGGG
CCCTCGCCCTCCACAAGTG
1703
ACTTGTGGAGGGCGAGGGC
GCCCTCGCCCTCCACAAGT
1704
CTTGTGGAGGGCGAGGGCC
GGCCCTCGCCCTCCACAAG
1705
TTGTGGAGGGCGAGGGCCC
GGGCCCTCGCCCTCCACAA
1706
TGTGGAGGGCGAGGGCCCC
GGGGCCCTCGCCCTCCACA
1707
GTGGAGGGCGAGGGCCCCC
GGGGGCCCTCGCCCTCCAC
1708
TGGAGGGCGAGGGCCCCCA
TGGGGGCCCTCGCCCTCCA
1709
GGAGGGCGAGGGCCCCCAG
CTGGGGGCCCTCGCCCTCC
1710
GAGGGCGAGGGCCCCCAGA
TCTGGGGGCCCTCGCCCTC
1711
AGGGCGAGGGCCCCCAGAA
TTCTGGGGGCCCTCGCCCT
1712
GGGCGAGGGCCCCCAGAAT
ATTCTGGGGGCCCTCGCCC
1713
GGCGAGGGCCCCCAGAATG
CATTCTGGGGGCCCTCGCC
1714
GCGAGGGCCCCCAGAATGG
CCATTCTGGGGGCCCTCGC
1715
CGAGGGCCCCCAGAATGGG
CCCATTCTGGGGGCCCTCG
1716
GAGGGCCCCCAGAATGGGG
CCCCATTCTGGGGGCCCTC
1717
AGGGCCCCCAGAATGGGGA
TCCCCATTCTGGGGGCCCT
1718
GGGCCCCCAGAATGGGGAG
CTCCCCATTCTGGGGGCCC
1719
GGCCCCCAGAATGGGGAGA
TCTCCCCATTCTGGGGGCC
1720
GCCCCCAGAATGGGGAGAG
CTCTCCCCATTCTGGGGGC
1721
CCCCCAGAATGGGGAGAGG
CCTCTCCCCATTCTGGGGG
1722
CCCCAGAATGGGGAGAGGA
TCCTCTCCCCATTCTGGGG
1723
CCCAGAATGGGGAGAGGAA
TTCCTCTCCCCATTCTGGG
1724
CCAGAATGGGGAGAGGAAG
CTTCCTCTCCCCATTCTGG
1725
CAGAATGGGGAGAGGAAGG
CCTTCCTCTCCCCATTCTG
1726
AGAATGGGGAGAGGAAGGT
ACCTTCCTCTCCCCATTCT
1727
GAATGGGGAGAGGAAGGTC
GACCTTCCTCTCCCCATTC
1728
AATGGGGAGAGGAAGGTCA
TGACCTTCCTCTCCCCATT
1729
ATGGGGAGAGGAAGGTCAA
TTGACCTTCCTCTCCCCAT
1730
TGGGGAGAGGAAGGTCAAC
GTTGACCTTCCTCTCCCCA
1731
GGGGAGAGGAAGGTCAACT
AGTTGACCTTCCTCTCCCC
1732
GGGAGAGGAAGGTCAACTG
CAGTTGACCTTCCTCTCCC
1733
GGAGAGGAAGGTCAACTGG
CCAGTTGACCTTCCTCTCC
1734
GAGAGGAAGGTCAACTGGC
GCCAGTTGACCTTCCTCTC
1735
AGAGGAAGGTCAACTGGCT
AGCCAGTTGACCTTCCTCT
1736
GAGGAAGGTCAACTGGCTG
CAGCCAGTTGACCTTCCTC
1737
AGGAAGGTCAACTGGCTGG
CCAGCCAGTTGACCTTCCT
1738
GGAAGGTCAACTGGCTGGG
CCCAGCCAGTTGACCTTCC
1739
GAAGGTCAACTGGCTGGGC
GCCCAGCCAGTTGACCTTC
1740
AAGGTCAACTGGCTGGGCA
TGCCCAGCCAGTTGACCTT
1741
AGGTCAACTGGCTGGGCAG
CTGCCCAGCCAGTTGACCT
1742
GGTCAACTGGCTGGGCAGC
GCTGCCCAGCCAGTTGACC
1743
GTCAACTGGCTGGGCAGCA
TGCTGCCCAGCCAGTTGAC
1744
TCAACTGGCTGGGCAGCAA
TTGCTGCCCAGCCAGTTGA
1745
CAACTGGCTGGGCAGCAAA
TTTGCTGCCCAGCCAGTTG
1746
AACTGGCTGGGCAGCAAAG
CTTTGCTGCCCAGCCAGTT
1747
ACTGGCTGGGCAGCAAAGA
TCTTTGCTGCCCAGCCAGT
1748
CTGGCTGGGCAGCAAAGAG
CTCTTTGCTGCCCAGCCAG
1749
TGGCTGGGCAGCAAAGAGG
CCTCTTTGCTGCCCAGCCA
1750
GGCTGGGCAGCAAAGAGGG
CCCTCTTTGCTGCCCAGCC
1751
GCTGGGCAGCAAAGAGGGA
TCCCTCTTTGCTGCCCAGC
1752
CTGGGCAGCAAAGAGGGAC
GTCCCTCTTTGCTGCCCAG
1753
TGGGCAGCAAAGAGGGACT
AGTCCCTCTTTGCTGCCCA
1754
GGGCAGCAAAGAGGGACTG
CAGTCCCTCTTTGCTGCCC
1755
GGCAGCAAAGAGGGACTGC
GCAGTCCCTCTTTGCTGCC
1756
GCAGCAAAGAGGGACTGCG
CGCAGTCCCTCTTTGCTGC
1757
CAGCAAAGAGGGACTGCGC
GCGCAGTCCCTCTTTGCTG
1758
AGCAAAGAGGGACTGCGCT
AGCGCAGTCCCTCTTTGCT
1759
GCAAAGAGGGACTGCGCTG
CAGCGCAGTCCCTCTTTGC
1760
CAAAGAGGGACTGCGCTGG
CCAGCGCAGTCCCTCTTTG
1761
AAAGAGGGACTGCGCTGGA
TCCAGCGCAGTCCCTCTTT
1762
AAGAGGGACTGCGCTGGAA
TTCCAGCGCAGTCCCTCTT
1763
AGAGGGACTGCGCTGGAAG
CTTCCAGCGCAGTCCCTCT
1764
GAGGGACTGCGCTGGAAGG
CCTTCCAGCGCAGTCCCTC
1765
AGGGACTGCGCTGGAAGGA
TCCTTCCAGCGCAGTCCCT
1766
GGGACTGCGCTGGAAGGAG
CTCCTTCCAGCGCAGTCCC
1767
GGACTGCGCTGGAAGGAGG
CCTCCTTCCAGCGCAGTCC
1768
GACTGCGCTGGAAGGAGGC
GCCTCCTTCCAGCGCAGTC
1769
ACTGCGCTGGAAGGAGGCC
GGCCTCCTTCCAGCGCAGT
1770
CTGCGCTGGAAGGAGGCCA
TGGCCTCCTTCCAGCGCAG
1771
TGCGCTGGAAGGAGGCCAT
ATGGCCTCCTTCCAGCGCA
1772
GCGCTGGAAGGAGGCCATG
CATGGCCTCCTTCCAGCGC
1773
CGCTGGAAGGAGGCCATGC
GCATGGCCTCCTTCCAGCG
1774
GCTGGAAGGAGGCCATGCT
AGCATGGCCTCCTTCCAGC
1775
CTGGAAGGAGGCCATGCTT
AAGCATGGCCTCCTTCCAG
1776
TGGAAGGAGGCCATGCTTA
TAAGCATGGCCTCCTTCCA
1777
GGAAGGAGGCCATGCTTAC
GTAAGCATGGCCTCCTTCC
1778
GAAGGAGGCCATGCTTACC
GGTAAGCATGGCCTCCTTC
1779
AAGGAGGCCATGCTTACCC
GGGTAAGCATGGCCTCCTT
1780
AGGAGGCCATGCTTACCCA
TGGGTAAGCATGGCCTCCT
1781
GGAGGCCATGCTTACCCAT
ATGGGTAAGCATGGCCTCC
1782
GAGGCCATGCTTACCCATC
GATGGGTAAGCATGGCCTC
1783
AGGCCATGCTTACCCATCC
GGATGGGTAAGCATGGCCT
1784
GGCCATGCTTACCCATCCG
CGGATGGGTAAGCATGGCC
1785
GCCATGCTTACCCATCCGC
GCGGATGGGTAAGCATGGC
1786
CCATGCTTACCCATCCGCT
AGCGGATGGGTAAGCATGG
1787
CATGCTTACCCATCCGCTG
CAGCGGATGGGTAAGCATG
1788
ATGCTTACCCATCCGCTGG
CCAGCGGATGGGTAAGCAT
1789
TGCTTACCCATCCGCTGGC
GCCAGCGGATGGGTAAGCA
1790
GCTTACCCATCCGCTGGCA
TGCCAGCGGATGGGTAAGC
1791
CTTACCCATCCGCTGGCAT
ATGCCAGCGGATGGGTAAG
1792
TTACCCATCCGCTGGCATT
AATGCCAGCGGATGGGTAA
1793
TACCCATCCGCTGGCATTC
GAATGCCAGCGGATGGGTA
1794
ACCCATCCGCTGGCATTCT
AGAATGCCAGCGGATGGGT
1795
CCCATCCGCTGGCATTCTG
CAGAATGCCAGCGGATGGG
1796
CCATCCGCTGGCATTCTGC
GCAGAATGCCAGCGGATGG
1797
CATCCGCTGGCATTCTGCG
CGCAGAATGCCAGCGGATG
1798
ATCCGCTGGCATTCTGCGG
CCGCAGAATGCCAGCGGAT
1799
TCCGCTGGCATTCTGCGGG
CCCGCAGAATGCCAGCGGA
1800
CCGCTGGCATTCTGCGGGC
GCCCGCAGAATGCCAGCGG
1801
CGCTGGCATTCTGCGGGCC
GGCCCGCAGAATGCCAGCG
1802
GCTGGCATTCTGCGGGCCA
TGGCCCGCAGAATGCCAGC
1803
CTGGCATTCTGCGGGCCAG
CTGGCCCGCAGAATGCCAG
1804
TGGCATTCTGCGGGCCAGC
GCTGGCCCGCAGAATGCCA
1805
GGCATTCTGCGGGCCAGCG
CGCTGGCCCGCAGAATGCC
1806
GCATTCTGCGGGCCAGCGT
ACGCTGGCCCGCAGAATGC
1807
CATTCTGCGGGCCAGCGTG
CACGCTGGCCCGCAGAATG
1808
ATTCTGCGGGCCAGCGTGC
GCACGCTGGCCCGCAGAAT
1809
TTCTGCGGGCCAGCGTGCC
GGCACGCTGGCCCGCAGAA
1810
TCTGCGGGCCAGCGTGCCC
GGGCACGCTGGCCCGCAGA
1811
CTGCGGGCCAGCGTGCCCA
TGGGCACGCTGGCCCGCAG
1812
TGCGGGCCAGCGTGCCCAC
GTGGGCACGCTGGCCCGCA
1813
GCGGGCCAGCGTGCCCACC
GGTGGGCACGCTGGCCCGC
1814
CGGGCCAGCGTGCCCACCT
AGGTGGGCACGCTGGCCCG
1815
GGGCCAGCGTGCCCACCTC
GAGGTGGGCACGCTGGCCC
1816
GGCCAGCGTGCCCACCTCG
CGAGGTGGGCACGCTGGCC
1817
GCCAGCGTGCCCACCTCGC
GCGAGGTGGGCACGCTGGC
1818
CCAGCGTGCCCACCTCGCT
AGCGAGGTGGGCACGCTGG
1819
CAGCGTGCCCACCTCGCTG
CAGCGAGGTGGGCACGCTG
1820
AGCGTGCCCACCTCGCTGT
ACAGCGAGGTGGGCACGCT
1821
GCGTGCCCACCTCGCTGTG
CACAGCGAGGTGGGCACGC
1822
CGTGCCCACCTCGCTGTGG
CCACAGCGAGGTGGGCACG
1823
GTGCCCACCTCGCTGTGGC
GCCACAGCGAGGTGGGCAC
1824
TGCCCACCTCGCTGTGGCC
GGCCACAGCGAGGTGGGCA
1825
GCCCACCTCGCTGTGGCCC
GGGCCACAGCGAGGTGGGC
1826
CCCACCTCGCTGTGGCCCC
GGGGCCACAGCGAGGTGGG
1827
CCACCTCGCTGTGGCCCCC
GGGGGCCACAGCGAGGTGG
1828
CACCTCGCTGTGGCCCCCT
AGGGGGCCACAGCGAGGTG
1829
ACCTCGCTGTGGCCCCCTG
CAGGGGGCCACAGCGAGGT
1830
CCTCGCTGTGGCCCCCTGA
TCAGGGGGCCACAGCGAGG
1831
CTCGCTGTGGCCCCCTGAT
ATCAGGGGGCCACAGCGAG
1832
TCGCTGTGGCCCCCTGATG
CATCAGGGGGCCACAGCGA
1833
CGCTGTGGCCCCCTGATGC
GCATCAGGGGGCCACAGCG
1834
GCTGTGGCCCCCTGATGCC
GGCATCAGGGGGCCACAGC
1835
CTGTGGCCCCCTGATGCCT
AGGCATCAGGGGGCCACAG
1836
TGTGGCCCCCTGATGCCTG
CAGGCATCAGGGGGCCACA
1837
GTGGCCCCCTGATGCCTGA
TCAGGCATCAGGGGGCCAC
1838
TGGCCCCCTGATGCCTGAG
CTCAGGCATCAGGGGGCCA
1839
GGCCCCCTGATGCCTGAGC
GCTCAGGCATCAGGGGGCC
1840
GCCCCCTGATGCCTGAGCA
TGCTCAGGCATCAGGGGGC
1841
CCCCCTGATGCCTGAGCAT
ATGCTCAGGCATCAGGGGG
1842
CCCCTGATGCCTGAGCATA
TATGCTCAGGCATCAGGGG
1843
CCCTGATGCCTGAGCATAG
CTATGCTCAGGCATCAGGG
1844
CCTGATGCCTGAGCATAGT
ACTATGCTCAGGCATCAGG
1845
CTGATGCCTGAGCATAGTG
CACTATGCTCAGGCATCAG
1846
TGATGCCTGAGCATAGTGG
CCACTATGCTCAGGCATCA
1847
GATGCCTGAGCATAGTGGT
ACCACTATGCTCAGGCATC
1848
ATGCCTGAGCATAGTGGTG
CACCACTATGCTCAGGCAT
1849
TGCCTGAGCATAGTGGTGG
CCACCACTATGCTCAGGCA
1850
GCCTGAGCATAGTGGTGGC
GCCACCACTATGCTCAGGC
1851
CCTGAGCATAGTGGTGGCC
GGCCACCACTATGCTCAGG
1852
CTGAGCATAGTGGTGGCCA
TGGCCACCACTATGCTCAG
1853
TGAGCATAGTGGTGGCCAT
ATGGCCACCACTATGCTCA
1854
GAGCATAGTGGTGGCCATC
GATGGCCACCACTATGCTC
1855
AGCATAGTGGTGGCCATCT
AGATGGCCACCACTATGCT
1856
GCATAGTGGTGGCCATCTC
GAGATGGCCACCACTATGC
1857
CATAGTGGTGGCCATCTCA
TGAGATGGCCACCACTATG
1858
ATAGTGGTGGCCATCTCAA
TTGAGATGGCCACCACTAT
1859
TAGTGGTGGCCATCTCAAG
CTTGAGATGGCCACCACTA
1860
AGTGGTGGCCATCTCAAGA
TCTTGAGATGGCCACCACT
1861
GTGGTGGCCATCTCAAGAG
CTCTTGAGATGGCCACCAC
1862
TGGTGGCCATCTCAAGAGT
ACTCTTGAGATGGCCACCA
1863
GGTGGCCATCTCAAGAGTG
CACTCTTGAGATGGCCACC
1864
GTGGCCATCTCAAGAGTGA
TCACTCTTGAGATGGCCAC
1865
TGGCCATCTCAAGAGTGAC
GTCACTCTTGAGATGGCCA
1866
GGCCATCTCAAGAGTGACC
GGTCACTCTTGAGATGGCC
1867
GCCATCTCAAGAGTGACCC
GGGTCACTCTTGAGATGGC
1868
CCATCTCAAGAGTGACCCT
AGGGTCACTCTTGAGATGG
1869
CATCTCAAGAGTGACCCTG
CAGGGTCACTCTTGAGATG
1870
ATCTCAAGAGTGACCCTGT
ACAGGGTCACTCTTGAGAT
1871
TCTCAAGAGTGACCCTGTG
CACAGGGTCACTCTTGAGA
1872
CTCAAGAGTGACCCTGTGG
CCACAGGGTCACTCTTGAG
1873
TCAAGAGTGACCCTGTGGC
GCCACAGGGTCACTCTTGA
1874
CAAGAGTGACCCTGTGGCC
GGCCACAGGGTCACTCTTG
1875
AAGAGTGACCCTGTGGCCT
AGGCCACAGGGTCACTCTT
1876
AGAGTGACCCTGTGGCCTT
AAGGCCACAGGGTCACTCT
1877
GAGTGACCCTGTGGCCTTC
GAAGGCCACAGGGTCACTC
1878
AGTGACCCTGTGGCCTTCC
GGAAGGCCACAGGGTCACT
1879
GTGACCCTGTGGCCTTCCG
CGGAAGGCCACAGGGTCAC
1880
TGACCCTGTGGCCTTCCGG
CCGGAAGGCCACAGGGTCA
1881
GACCCTGTGGCCTTCCGGC
GCCGGAAGGCCACAGGGTC
1882
ACCCTGTGGCCTTCCGGCC
GGCCGGAAGGCCACAGGGT
1883
CCCTGTGGCCTTCCGGCCC
GGGCCGGAAGGCCACAGGG
1884
CCTGTGGCCTTCCGGCCCT
AGGGCCGGAAGGCCACAGG
1885
CTGTGGCCTTCCGGCCCTG
CAGGGCCGGAAGGCCACAG
1886
TGTGGCCTTCCGGCCCTGG
CCAGGGCCGGAAGGCCACA
1887
GTGGCCTTCCGGCCCTGGC
GCCAGGGCCGGAAGGCCAC
1888
TGGCCTTCCGGCCCTGGCA
TGCCAGGGCCGGAAGGCCA
1889
GGCCTTCCGGCCCTGGCAC
GTGCCAGGGCCGGAAGGCC
1890
GCCTTCCGGCCCTGGCACT
AGTGCCAGGGCCGGAAGGC
1891
CCTTCCGGCCCTGGCACTG
CAGTGCCAGGGCCGGAAGG
1892
CTTCCGGCCCTGGCACTGC
GCAGTGCCAGGGCCGGAAG
1893
TTCCGGCCCTGGCACTGCC
GGCAGTGCCAGGGCCGGAA
1894
TCCGGCCCTGGCACTGCCC
GGGCAGTGCCAGGGCCGGA
1895
CCGGCCCTGGCACTGCCCT
AGGGCAGTGCCAGGGCCGG
1896
CGGCCCTGGCACTGCCCTT
AAGGGCAGTGCCAGGGCCG
1897
GGCCCTGGCACTGCCCTTT
AAAGGGCAGTGCCAGGGCC
1898
GCCCTGGCACTGCCCTTTC
GAAAGGGCAGTGCCAGGGC
1899
CCCTGGCACTGCCCTTTCC
GGAAAGGGCAGTGCCAGGG
1900
CCTGGCACTGCCCTTTCCT
AGGAAAGGGCAGTGCCAGG
1901
CTGGCACTGCCCTTTCCTT
AAGGAAAGGGCAGTGCCAG
1902
TGGCACTGCCCTTTCCTTC
GAAGGAAAGGGCAGTGCCA
1903
GGCACTGCCCTTTCCTTCT
AGAAGGAAAGGGCAGTGCC
1904
GCACTGCCCTTTCCTTCTG
CAGAAGGAAAGGGCAGTGC
1905
CACTGCCCTTTCCTTCTGG
CCAGAAGGAAAGGGCAGTG
1906
ACTGCCCTTTCCTTCTGGA
TCCAGAAGGAAAGGGCAGT
1907
CTGCCCTTTCCTTCTGGAG
CTCCAGAAGGAAAGGGCAG
1908
TGCCCTTTCCTTCTGGAGA
TCTCCAGAAGGAAAGGGCA
1909
GCCCTTTCCTTCTGGAGAC
GTCTCCAGAAGGAAAGGGC
1910
CCCTTTCCTTCTGGAGACC
GGTCTCCAGAAGGAAAGGG
1911
CCTTTCCTTCTGGAGACCA
TGGTCTCCAGAAGGAAAGG
1912
CTTTCCTTCTGGAGACCAA
TTGGTCTCCAGAAGGAAAG
1913
TTTCCTTCTGGAGACCAAG
CTTGGTCTCCAGAAGGAAA
1914
TTCCTTCTGGAGACCAAGA
TCTTGGTCTCCAGAAGGAA
1915
TCCTTCTGGAGACCAAGAT
ATCTTGGTCTCCAGAAGGA
1916
CCTTCTGGAGACCAAGATC
GATCTTGGTCTCCAGAAGG
1917
CTTCTGGAGACCAAGATCC
GGATCTTGGTCTCCAGAAG
1918
TTCTGGAGACCAAGATCCT
AGGATCTTGGTCTCCAGAA
1919
TCTGGAGACCAAGATCCTG
CAGGATCTTGGTCTCCAGA
1920
CTGGAGACCAAGATCCTGG
CCAGGATCTTGGTCTCCAG
1921
TGGAGACCAAGATCCTGGA
TCCAGGATCTTGGTCTCCA
1922
GGAGACCAAGATCCTGGAG
CTCCAGGATCTTGGTCTCC
1923
GAGACCAAGATCCTGGAGC
GCTCCAGGATCTTGGTCTC
1924
AGACCAAGATCCTGGAGCG
CGCTCCAGGATCTTGGTCT
1925
GACCAAGATCCTGGAGCGA
TCGCTCCAGGATCTTGGTC
1926
ACCAAGATCCTGGAGCGAG
CTCGCTCCAGGATCTTGGT
1927
CCAAGATCCTGGAGCGAGC
GCTCGCTCCAGGATCTTGG
1928
CAAGATCCTGGAGCGAGCT
AGCTCGCTCCAGGATCTTG
1929
AAGATCCTGGAGCGAGCTC
GAGCTCGCTCCAGGATCTT
1930
AGATCCTGGAGCGAGCTCC
GGAGCTCGCTCCAGGATCT
1931
GATCCTGGAGCGAGCTCCC
GGGAGCTCGCTCCAGGATC
1932
ATCCTGGAGCGAGCTCCCT
AGGGAGCTCGCTCCAGGAT
1933
TCCTGGAGCGAGCTCCCTT
AAGGGAGCTCGCTCCAGGA
1934
CCTGGAGCGAGCTCCCTTC
GAAGGGAGCTCGCTCCAGG
1935
CTGGAGCGAGCTCCCTTCT
AGAAGGGAGCTCGCTCCAG
1936
TGGAGCGAGCTCCCTTCTG
CAGAAGGGAGCTCGCTCCA
1937
GGAGCGAGCTCCCTTCTGG
CCAGAAGGGAGCTCGCTCC
1938
GAGCGAGCTCCCTTCTGGG
CCCAGAAGGGAGCTCGCTC
1939
AGCGAGCTCCCTTCTGGGT
ACCCAGAAGGGAGCTCGCT
1940
GCGAGCTCCCTTCTGGGTG
CACCCAGAAGGGAGCTCGC
1941
CGAGCTCCCTTCTGGGTGC
GCACCCAGAAGGGAGCTCG
1942
GAGCTCCCTTCTGGGTGCC
GGCACCCAGAAGGGAGCTC
1943
AGCTCCCTTCTGGGTGCCC
GGGCACCCAGAAGGGAGCT
1944
GCTCCCTTCTGGGTGCCCA
TGGGCACCCAGAAGGGAGC
1945
CTCCCTTCTGGGTGCCCAC
GTGGGCACCCAGAAGGGAG
1946
TCCCTTCTGGGTGCCCACC
GGTGGGCACCCAGAAGGGA
1947
CCCTTCTGGGTGCCCACCT
AGGTGGGCACCCAGAAGGG
1948
CCTTCTGGGTGCCCACCTG
CAGGTGGGCACCCAGAAGG
1949
CTTCTGGGTGCCCACCTGC
GCAGGTGGGCACCCAGAAG
1950
TTCTGGGTGCCCACCTGCT
AGCAGGTGGGCACCCAGAA
1951
TCTGGGTGCCCACCTGCTT
AAGCAGGTGGGCACCCAGA
1952
CTGGGTGCCCACCTGCTTG
CAAGCAGGTGGGCACCCAG
1953
TGGGTGCCCACCTGCTTGC
GCAAGCAGGTGGGCACCCA
1954
GGGTGCCCACCTGCTTGCC
GGCAAGCAGGTGGGCACCC
1955
GGTGCCCACCTGCTTGCCA
TGGCAAGCAGGTGGGCACC
1956
GTGCCCACCTGCTTGCCAC
GTGGCAAGCAGGTGGGCAC
1957
TGCCCACCTGCTTGCCACC
GGTGGCAAGCAGGTGGGCA
1958
GCCCACCTGCTTGCCACCC
GGGTGGCAAGCAGGTGGGC
1959
CCCACCTGCTTGCCACCCT
AGGGTGGCAAGCAGGTGGG
1960
CCACCTGCTTGCCACCCTA
TAGGGTGGCAAGCAGGTGG
1961
CACCTGCTTGCCACCCTAC
GTAGGGTGGCAAGCAGGTG
1962
ACCTGCTTGCCACCCTACC
GGTAGGGTGGCAAGCAGGT
1963
CCTGCTTGCCACCCTACCT
AGGTAGGGTGGCAAGCAGG
1964
CTGCTTGCCACCCTACCTA
TAGGTAGGGTGGCAAGCAG
1965
TGCTTGCCACCCTACCTAG
CTAGGTAGGGTGGCAAGCA
1966
GCTTGCCACCCTACCTAGT
ACTAGGTAGGGTGGCAAGC
1967
CTTGCCACCCTACCTAGTG
CACTAGGTAGGGTGGCAAG
1968
TTGCCACCCTACCTAGTGT
ACACTAGGTAGGGTGGCAA
1969
TGCCACCCTACCTAGTGTC
GACACTAGGTAGGGTGGCA
1970
GCCACCCTACCTAGTGTCT
AGACACTAGGTAGGGTGGC
1971
CCACCCTACCTAGTGTCTG
CAGACACTAGGTAGGGTGG
1972
CACCCTACCTAGTGTCTGG
CCAGACACTAGGTAGGGTG
1973
ACCCTACCTAGTGTCTGGC
GCCAGACACTAGGTAGGGT
1974
CCCTACCTAGTGTCTGGCC
GGCCAGACACTAGGTAGGG
1975
CCTACCTAGTGTCTGGCCT
AGGCCAGACACTAGGTAGG
1976
CTACCTAGTGTCTGGCCTG
CAGGCCAGACACTAGGTAG
1977
TACCTAGTGTCTGGCCTGC
GCAGGCCAGACACTAGGTA
1978
ACCTAGTGTCTGGCCTGCC
GGCAGGCCAGACACTAGGT
1979
CCTAGTGTCTGGCCTGCCC
GGGCAGGCCAGACACTAGG
1980
CTAGTGTCTGGCCTGCCCC
GGGGCAGGCCAGACACTAG
1981
TAGTGTCTGGCCTGCCCCC
GGGGGCAGGCCAGACACTA
1982
AGTGTCTGGCCTGCCCCCA
TGGGGGCAGGCCAGACACT
1983
GTGTCTGGCCTGCCCCCAG
CTGGGGGCAGGCCAGACAC
1984
TGTCTGGCCTGCCCCCAGA
TCTGGGGGCAGGCCAGACA
1985
GTCTGGCCTGCCCCCAGAG
CTCTGGGGGCAGGCCAGAC
1986
TCTGGCCTGCCCCCAGAGC
GCTCTGGGGGCAGGCCAGA
1987
CTGGCCTGCCCCCAGAGCA
TGCTCTGGGGGCAGGCCAG
1988
TGGCCTGCCCCCAGAGCAT
ATGCTCTGGGGGCAGGCCA
1989
GGCCTGCCCCCAGAGCATC
GATGCTCTGGGGGCAGGCC
1990
GCCTGCCCCCAGAGCATCC
GGATGCTCTGGGGGCAGGC
1991
CCTGCCCCCAGAGCATCCA
TGGATGCTCTGGGGGCAGG
1992
CTGCCCCCAGAGCATCCAT
ATGGATGCTCTGGGGGCAG
1993
TGCCCCCAGAGCATCCATG
CATGGATGCTCTGGGGGCA
1994
GCCCCCAGAGCATCCATGT
ACATGGATGCTCTGGGGGC
1995
CCCCCAGAGCATCCATGTG
CACATGGATGCTCTGGGGG
1996
CCCCAGAGCATCCATGTGA
TCACATGGATGCTCTGGGG
1997
CCCAGAGCATCCATGTGAC
GTCACATGGATGCTCTGGG
1998
CCAGAGCATCCATGTGACT
AGTCACATGGATGCTCTGG
1999
CAGAGCATCCATGTGACTG
CAGTCACATGGATGCTCTG
2000
AGAGCATCCATGTGACTGG
CCAGTCACATGGATGCTCT
2001
GAGCATCCATGTGACTGGC
GCCAGTCACATGGATGCTC
2002
AGCATCCATGTGACTGGCC
GGCCAGTCACATGGATGCT
2003
GCATCCATGTGACTGGCCC
GGGCCAGTCACATGGATGC
2004
CATCCATGTGACTGGCCCC
GGGGCCAGTCACATGGATG
2005
ATCCATGTGACTGGCCCCT
AGGGGCCAGTCACATGGAT
2006
TCCATGTGACTGGCCCCTG
CAGGGGCCAGTCACATGGA
2007
CCATGTGACTGGCCCCTGA
TCAGGGGCCAGTCACATGG
2008
CATGTGACTGGCCCCTGAC
GTCAGGGGCCAGTCACATG
2009
ATGTGACTGGCCCCTGACC
GGTCAGGGGCCAGTCACAT
2010
TGTGACTGGCCCCTGACCC
GGGTCAGGGGCCAGTCACA
2011
GTGACTGGCCCCTGACCCC
GGGGTCAGGGGCCAGTCAC
2012
TGACTGGCCCCTGACCCCG
CGGGGTCAGGGGCCAGTCA
2013
GACTGGCCCCTGACCCCGC
GCGGGGTCAGGGGCCAGTC
2014
ACTGGCCCCTGACCCCGCA
TGCGGGGTCAGGGGCCAGT
2015
CTGGCCCCTGACCCCGCAC
GTGCGGGGTCAGGGGCCAG
2016
TGGCCCCTGACCCCGCACC
GGTGCGGGGTCAGGGGCCA
2017
GGCCCCTGACCCCGCACCC
GGGTGCGGGGTCAGGGGCC
2018
GCCCCTGACCCCGCACCCC
GGGGTGCGGGGTCAGGGGC
2019
CCCCTGACCCCGCACCCCT
AGGGGTGCGGGGTCAGGGG
2020
CCCTGACCCCGCACCCCTG
CAGGGGTGCGGGGTCAGGG
2021
CCTGACCCCGCACCCCTGG
CCAGGGGTGCGGGGTCAGG
2022
CTGACCCCGCACCCCTGGG
CCCAGGGGTGCGGGGTCAG
2023
TGACCCCGCACCCCTGGGT
ACCCAGGGGTGCGGGGTCA
2024
GACCCCGCACCCCTGGGTA
TACCCAGGGGTGCGGGGTC
2025
ACCCCGCACCCCTGGGTAT
ATACCCAGGGGTGCGGGGT
2026
CCCCGCACCCCTGGGTATA
TATACCCAGGGGTGCGGGG
2027
CCCGCACCCCTGGGTATAC
GTATACCCAGGGGTGCGGG
2028
CCGCACCCCTGGGTATACT
AGTATACCCAGGGGTGCGG
2029
CGCACCCCTGGGTATACTC
GAGTATACCCAGGGGTGCG
2030
GCACCCCTGGGTATACTCC
GGAGTATACCCAGGGGTGC
2031
CACCCCTGGGTATACTCCG
CGGAGTATACCCAGGGGTG
2032
ACCCCTGGGTATACTCCGG
CCGGAGTATACCCAGGGGT
2033
CCCCTGGGTATACTCCGGG
CCCGGAGTATACCCAGGGG
2034
CCCTGGGTATACTCCGGGG
CCCCGGAGTATACCCAGGG
2035
CCTGGGTATACTCCGGGGG
CCCCCGGAGTATACCCAGG
2036
CTGGGTATACTCCGGGGGC
GCCCCCGGAGTATACCCAG
2037
TGGGTATACTCCGGGGGCC
GGCCCCCGGAGTATACCCA
2038
GGGTATACTCCGGGGGCCA
TGGCCCCCGGAGTATACCC
2039
GGTATACTCCGGGGGCCAG
CTGGCCCCCGGAGTATACC
2040
GTATACTCCGGGGGCCAGC
GCTGGCCCCCGGAGTATAC
2041
TATACTCCGGGGGCCAGCC
GGCTGGCCCCCGGAGTATA
2042
ATACTCCGGGGGCCAGCCC
GGGCTGGCCCCCGGAGTAT
2043
TACTCCGGGGGCCAGCCCA
TGGGCTGGCCCCCGGAGTA
2044
ACTCCGGGGGCCAGCCCAA
TTGGGCTGGCCCCCGGAGT
2045
CTCCGGGGGCCAGCCCAAA
TTTGGGCTGGCCCCCGGAG
2046
TCCGGGGGCCAGCCCAAAG
CTTTGGGCTGGCCCCCGGA
2047
CCGGGGGCCAGCCCAAAGT
ACTTTGGGCTGGCCCCCGG
2048
CGGGGGCCAGCCCAAAGTG
CACTTTGGGCTGGCCCCCG
2049
GGGGGCCAGCCCAAAGTGC
GCACTTTGGGCTGGCCCCC
2050
GGGGCCAGCCCAAAGTGCC
GGCACTTTGGGCTGGCCCC
2051
GGGCCAGCCCAAAGTGCCC
GGGCACTTTGGGCTGGCCC
2052
GGCCAGCCCAAAGTGCCCT
AGGGCACTTTGGGCTGGCC
2053
GCCAGCCCAAAGTGCCCTC
GAGGGCACTTTGGGCTGGC
2054
CCAGCCCAAAGTGCCCTCT
AGAGGGCACTTTGGGCTGG
2055
CAGCCCAAAGTGCCCTCTG
CAGAGGGCACTTTGGGCTG
2056
AGCCCAAAGTGCCCTCTGC
GCAGAGGGCACTTTGGGCT
2057
GCCCAAAGTGCCCTCTGCC
GGCAGAGGGCACTTTGGGC
2058
CCCAAAGTGCCCTCTGCCT
AGGCAGAGGGCACTTTGGG
2059
CCAAAGTGCCCTCTGCCTT
AAGGCAGAGGGCACTTTGG
2060
CAAAGTGCCCTCTGCCTTC
GAAGGCAGAGGGCACTTTG
2061
AAAGTGCCCTCTGCCTTCA
TGAAGGCAGAGGGCACTTT
2062
AAGTGCCCTCTGCCTTCAG
CTGAAGGCAGAGGGCACTT
2063
AGTGCCCTCTGCCTTCAGC
GCTGAAGGCAGAGGGCACT
2064
GTGCCCTCTGCCTTCAGCT
AGCTGAAGGCAGAGGGCAC
2065
TGCCCTCTGCCTTCAGCTT
AAGCTGAAGGCAGAGGGCA
2066
GCCCTCTGCCTTCAGCTTA
TAAGCTGAAGGCAGAGGGC
2067
CCCTCTGCCTTCAGCTTAG
CTAAGCTGAAGGCAGAGGG
2068
CCTCTGCCTTCAGCTTAGG
CCTAAGCTGAAGGCAGAGG
2069
CTCTGCCTTCAGCTTAGGC
GCCTAAGCTGAAGGCAGAG
2070
TCTGCCTTCAGCTTAGGCA
TGCCTAAGCTGAAGGCAGA
2071
CTGCCTTCAGCTTAGGCAG
CTGCCTAAGCTGAAGGCAG
2072
TGCCTTCAGCTTAGGCAGC
GCTGCCTAAGCTGAAGGCA
2073
GCCTTCAGCTTAGGCAGCA
TGCTGCCTAAGCTGAAGGC
2074
CCTTCAGCTTAGGCAGCAA
TTGCTGCCTAAGCTGAAGG
2075
CTTCAGCTTAGGCAGCAAG
CTTGCTGCCTAAGCTGAAG
2076
TTCAGCTTAGGCAGCAAGG
CCTTGCTGCCTAAGCTGAA
2077
TCAGCTTAGGCAGCAAGGG
CCCTTGCTGCCTAAGCTGA
2078
CAGCTTAGGCAGCAAGGGC
GCCCTTGCTGCCTAAGCTG
2079
AGCTTAGGCAGCAAGGGCT
AGCCCTTGCTGCCTAAGCT
2080
GCTTAGGCAGCAAGGGCTT
AAGCCCTTGCTGCCTAAGC
2081
CTTAGGCAGCAAGGGCTTT
AAAGCCCTTGCTGCCTAAG
2082
TTAGGCAGCAAGGGCTTTT
AAAAGCCCTTGCTGCCTAA
2083
TAGGCAGCAAGGGCTTTTA
TAAAAGCCCTTGCTGCCTA
2084
AGGCAGCAAGGGCTTTTAC
GTAAAAGCCCTTGCTGCCT
2085
GGCAGCAAGGGCTTTTACT
AGTAAAAGCCCTTGCTGCC
2086
GCAGCAAGGGCTTTTACTA
TAGTAAAAGCCCTTGCTGC
2087
CAGCAAGGGCTTTTACTAC
GTAGTAAAAGCCCTTGCTG
2088
AGCAAGGGCTTTTACTACA
TGTAGTAAAAGCCCTTGCT
2089
GCAAGGGCTTTTACTACAA
TTGTAGTAAAAGCCCTTGC
2090
CAAGGGCTTTTACTACAAG
CTTGTAGTAAAAGCCCTTG
2091
AAGGGCTTTTACTACAAGG
CCTTGTAGTAAAAGCCCTT
2092
AGGGCTTTTACTACAAGGA
TCCTTGTAGTAAAAGCCCT
2093
GGGCTTTTACTACAAGGAT
ATCCTTGTAGTAAAAGCCC
2094
GGCTTTTACTACAAGGATC
GATCCTTGTAGTAAAAGCC
2095
GCTTTTACTACAAGGATCC
GGATCCTTGTAGTAAAAGC
2096
CTTTTACTACAAGGATCCG
CGGATCCTTGTAGTAAAAG
2097
TTTTACTACAAGGATCCGA
TCGGATCCTTGTAGTAAAA
2098
TTTACTACAAGGATCCGAG
CTCGGATCCTTGTAGTAAA
2099
TTACTACAAGGATCCGAGC
GCTCGGATCCTTGTAGTAA
2100
TACTACAAGGATCCGAGCA
TGCTCGGATCCTTGTAGTA
2101
ACTACAAGGATCCGAGCAT
ATGCTCGGATCCTTGTAGT
2102
CTACAAGGATCCGAGCATT
AATGCTCGGATCCTTGTAG
2103
TACAAGGATCCGAGCATTC
GAATGCTCGGATCCTTGTA
2104
ACAAGGATCCGAGCATTCC
GGAATGCTCGGATCCTTGT
2105
CAAGGATCCGAGCATTCCC
GGGAATGCTCGGATCCTTG
2106
AAGGATCCGAGCATTCCCA
TGGGAATGCTCGGATCCTT
2107
AGGATCCGAGCATTCCCAG
CTGGGAATGCTCGGATCCT
2108
GGATCCGAGCATTCCCAGG
CCTGGGAATGCTCGGATCC
2109
GATCCGAGCATTCCCAGGT
ACCTGGGAATGCTCGGATC
2110
ATCCGAGCATTCCCAGGTT
AACCTGGGAATGCTCGGAT
2111
TCCGAGCATTCCCAGGTTG
CAACCTGGGAATGCTCGGA
2112
CCGAGCATTCCCAGGTTGG
CCAACCTGGGAATGCTCGG
2113
CGAGCATTCCCAGGTTGGC
GCCAACCTGGGAATGCTCG
2114
GAGCATTCCCAGGTTGGCA
TGCCAACCTGGGAATGCTC
2115
AGCATTCCCAGGTTGGCAA
TTGCCAACCTGGGAATGCT
2116
GCATTCCCAGGTTGGCAAA
TTTGCCAACCTGGGAATGC
2117
CATTCCCAGGTTGGCAAAG
CTTTGCCAACCTGGGAATG
2118
ATTCCCAGGTTGGCAAAGG
CCTTTGCCAACCTGGGAAT
2119
TTCCCAGGTTGGCAAAGGA
TCCTTTGCCAACCTGGGAA
2120
TCCCAGGTTGGCAAAGGAG
CTCCTTTGCCAACCTGGGA
2121
CCCAGGTTGGCAAAGGAGC
GCTCCTTTGCCAACCTGGG
2122
CCAGGTTGGCAAAGGAGCC
GGCTCCTTTGCCAACCTGG
2123
CAGGTTGGCAAAGGAGCCC
GGGCTCCTTTGCCAACCTG
2124
AGGTTGGCAAAGGAGCCCT
AGGGCTCCTTTGCCAACCT
2125
GGTTGGCAAAGGAGCCCTT
AAGGGCTCCTTTGCCAACC
2126
GTTGGCAAAGGAGCCCTTG
CAAGGGCTCCTTTGCCAAC
2127
TTGGCAAAGGAGCCCTTGG
CCAAGGGCTCCTTTGCCAA
2128
TGGCAAAGGAGCCCTTGGC
GCCAAGGGCTCCTTTGCCA
2129
GGCAAAGGAGCCCTTGGCA
TGCCAAGGGCTCCTTTGCC
2130
GCAAAGGAGCCCTTGGCAG
CTGCCAAGGGCTCCTTTGC
2131
CAAAGGAGCCCTTGGCAGC
GCTGCCAAGGGCTCCTTTG
2132
AAAGGAGCCCTTGGCAGCT
AGCTGCCAAGGGCTCCTTT
2133
AAGGAGCCCTTGGCAGCTG
CAGCTGCCAAGGGCTCCTT
2134
AGGAGCCCTTGGCAGCTGC
GCAGCTGCCAAGGGCTCCT
2135
GGAGCCCTTGGCAGCTGCG
CGCAGCTGCCAAGGGCTCC
2136
GAGCCCTTGGCAGCTGCGG
CCGCAGCTGCCAAGGGCTC
2137
AGCCCTTGGCAGCTGCGGA
TCCGCAGCTGCCAAGGGCT
2138
GCCCTTGGCAGCTGCGGAA
TTCCGCAGCTGCCAAGGGC
2139
CCCTTGGCAGCTGCGGAAC
GTTCCGCAGCTGCCAAGGG
2140
CCTTGGCAGCTGCGGAACC
GGTTCCGCAGCTGCCAAGG
2141
CTTGGCAGCTGCGGAACCT
AGGTTCCGCAGCTGCCAAG
2142
TTGGCAGCTGCGGAACCTG
CAGGTTCCGCAGCTGCCAA
2143
TGGCAGCTGCGGAACCTGG
CCAGGTTCCGCAGCTGCCA
2144
GGCAGCTGCGGAACCTGGG
CCCAGGTTCCGCAGCTGCC
2145
GCAGCTGCGGAACCTGGGT
ACCCAGGTTCCGCAGCTGC
2146
CAGCTGCGGAACCTGGGTT
AACCCAGGTTCCGCAGCTG
2147
AGCTGCGGAACCTGGGTTG
CAACCCAGGTTCCGCAGCT
2148
GCTGCGGAACCTGGGTTGT
ACAACCCAGGTTCCGCAGC
2149
CTGCGGAACCTGGGTTGTT
AACAACCCAGGTTCCGCAG
2150
TGCGGAACCTGGGTTGTTT
AAACAACCCAGGTTCCGCA
2151
GCGGAACCTGGGTTGTTTG
CAAACAACCCAGGTTCCGC
2152
CGGAACCTGGGTTGTTTGG
CCAAACAACCCAGGTTCCG
2153
GGAACCTGGGTTGTTTGGC
GCCAAACAACCCAGGTTCC
2154
GAACCTGGGTTGTTTGGCT
AGCCAAACAACCCAGGTTC
2155
AACCTGGGTTGTTTGGCTT
AAGCCAAACAACCCAGGTT
2156
ACCTGGGTTGTTTGGCTTA
TAAGCCAAACAACCCAGGT
2157
CCTGGGTTGTTTGGCTTAA
TTAAGCCAAACAACCCAGG
2158
CTGGGTTGTTTGGCTTAAA
TTTAAGCCAAACAACCCAG
2159
TGGGTTGTTTGGCTTAAAC
GTTTAAGCCAAACAACCCA
2160
GGGTTGTTTGGCTTAAACT
AGTTTAAGCCAAACAACCC
2161
GGTTGTTTGGCTTAAACTC
GAGTTTAAGCCAAACAACC
2162
GTTGTTTGGCTTAAACTCT
AGAGTTTAAGCCAAACAAC
2163
TTGTTTGGCTTAAACTCTG
CAGAGTTTAAGCCAAACAA
2164
TGTTTGGCTTAAACTCTGG
CCAGAGTTTAAGCCAAACA
2165
GTTTGGCTTAAACTCTGGT
ACCAGAGTTTAAGCCAAAC
2166
TTTGGCTTAAACTCTGGTG
CACCAGAGTTTAAGCCAAA
2167
TTGGCTTAAACTCTGGTGG
CCACCAGAGTTTAAGCCAA
2168
TGGCTTAAACTCTGGTGGG
CCCACCAGAGTTTAAGCCA
2169
GGCTTAAACTCTGGTGGGC
GCCCACCAGAGTTTAAGCC
2170
GCTTAAACTCTGGTGGGCA
TGCCCACCAGAGTTTAAGC
2171
CTTAAACTCTGGTGGGCAC
GTGCCCACCAGAGTTTAAG
2172
TTAAACTCTGGTGGGCACC
GGTGCCCACCAGAGTTTAA
2173
TAAACTCTGGTGGGCACCT
AGGTGCCCACCAGAGTTTA
2174
AAACTCTGGTGGGCACCTG
CAGGTGCCCACCAGAGTTT
2175
AACTCTGGTGGGCACCTGC
GCAGGTGCCCACCAGAGTT
2176
ACTCTGGTGGGCACCTGCA
TGCAGGTGCCCACCAGAGT
2177
CTCTGGTGGGCACCTGCAG
CTGCAGGTGCCCACCAGAG
2178
TCTGGTGGGCACCTGCAGA
TCTGCAGGTGCCCACCAGA
2179
CTGGTGGGCACCTGCAGAG
CTCTGCAGGTGCCCACCAG
2180
TGGTGGGCACCTGCAGAGA
TCTCTGCAGGTGCCCACCA
2181
GGTGGGCACCTGCAGAGAG
CTCTCTGCAGGTGCCCACC
2182
GTGGGCACCTGCAGAGAGC
GCTCTCTGCAGGTGCCCAC
2183
TGGGCACCTGCAGAGAGCC
GGCTCTCTGCAGGTGCCCA
2184
GGGCACCTGCAGAGAGCCG
CGGCTCTCTGCAGGTGCCC
2185
GGCACCTGCAGAGAGCCGG
CCGGCTCTCTGCAGGTGCC
2186
GCACCTGCAGAGAGCCGGG
CCCGGCTCTCTGCAGGTGC
2187
CACCTGCAGAGAGCCGGGG
CCCCGGCTCTCTGCAGGTG
2188
ACCTGCAGAGAGCCGGGGA
TCCCCGGCTCTCTGCAGGT
2189
CCTGCAGAGAGCCGGGGAG
CTCCCCGGCTCTCTGCAGG
2190
CTGCAGAGAGCCGGGGAGG
CCTCCCCGGCTCTCTGCAG
2191
TGCAGAGAGCCGGGGAGGC
GCCTCCCCGGCTCTCTGCA
2192
GCAGAGAGCCGGGGAGGCC
GGCCTCCCCGGCTCTCTGC
2193
CAGAGAGCCGGGGAGGCCG
CGGCCTCCCCGGCTCTCTG
2194
AGAGAGCCGGGGAGGCCGA
TCGGCCTCCCCGGCTCTCT
2195
GAGAGCCGGGGAGGCCGAA
TTCGGCCTCCCCGGCTCTC
2196
AGAGCCGGGGAGGCCGAAC
GTTCGGCCTCCCCGGCTCT
2197
GAGCCGGGGAGGCCGAACG
CGTTCGGCCTCCCCGGCTC
2198
AGCCGGGGAGGCCGAACGC
GCGTTCGGCCTCCCCGGCT
2199
GCCGGGGAGGCCGAACGCC
GGCGTTCGGCCTCCCCGGC
2200
CCGGGGAGGCCGAACGCCC
GGGCGTTCGGCCTCCCCGG
2201
CGGGGAGGCCGAACGCCCT
AGGGCGTTCGGCCTCCCCG
2202
GGGGAGGCCGAACGCCCTT
AAGGGCGTTCGGCCTCCCC
2203
GGGAGGCCGAACGCCCTTC
GAAGGGCGTTCGGCCTCCC
2204
GGAGGCCGAACGCCCTTCA
TGAAGGGCGTTCGGCCTCC
2205
GAGGCCGAACGCCCTTCAC
GTGAAGGGCGTTCGGCCTC
2206
AGGCCGAACGCCCTTCACT
AGTGAAGGGCGTTCGGCCT
2207
GGCCGAACGCCCTTCACTG
CAGTGAAGGGCGTTCGGCC
2208
GCCGAACGCCCTTCACTGC
GCAGTGAAGGGCGTTCGGC
2209
CCGAACGCCCTTCACTGCA
TGCAGTGAAGGGCGTTCGG
2210
CGAACGCCCTTCACTGCAC
GTGCAGTGAAGGGCGTTCG
2211
GAACGCCCTTCACTGCACC
GGTGCAGTGAAGGGCGTTC
2212
AACGCCCTTCACTGCACCA
TGGTGCAGTGAAGGGCGTT
2213
ACGCCCTTCACTGCACCAG
CTGGTGCAGTGAAGGGCGT
2214
CGCCCTTCACTGCACCAGA
TCTGGTGCAGTGAAGGGCG
2215
GCCCTTCACTGCACCAGAG
CTCTGGTGCAGTGAAGGGC
2216
CCCTTCACTGCACCAGAGG
CCTCTGGTGCAGTGAAGGG
2217
CCTTCACTGCACCAGAGGG
CCCTCTGGTGCAGTGAAGG
2218
CTTCACTGCACCAGAGGGA
TCCCTCTGGTGCAGTGAAG
2219
TTCACTGCACCAGAGGGAT
ATCCCTCTGGTGCAGTGAA
2220
TCACTGCACCAGAGGGATG
CATCCCTCTGGTGCAGTGA
2221
CACTGCACCAGAGGGATGG
CCATCCCTCTGGTGCAGTG
2222
ACTGCACCAGAGGGATGGA
TCCATCCCTCTGGTGCAGT
2223
CTGCACCAGAGGGATGGAG
CTCCATCCCTCTGGTGCAG
2224
TGCACCAGAGGGATGGAGA
TCTCCATCCCTCTGGTGCA
2225
GCACCAGAGGGATGGAGAG
CTCTCCATCCCTCTGGTGC
2226
CACCAGAGGGATGGAGAGA
TCTCTCCATCCCTCTGGTG
2227
ACCAGAGGGATGGAGAGAT
ATCTCTCCATCCCTCTGGT
2228
CCAGAGGGATGGAGAGATG
CATCTCTCCATCCCTCTGG
2229
CAGAGGGATGGAGAGATGG
CCATCTCTCCATCCCTCTG
2230
AGAGGGATGGAGAGATGGG
CCCATCTCTCCATCCCTCT
2231
GAGGGATGGAGAGATGGGA
TCCCATCTCTCCATCCCTC
2232
AGGGATGGAGAGATGGGAG
CTCCCATCTCTCCATCCCT
2233
GGGATGGAGAGATGGGAGC
GCTCCCATCTCTCCATCCC
2234
GGATGGAGAGATGGGAGCT
AGCTCCCATCTCTCCATCC
2235
GATGGAGAGATGGGAGCTG
CAGCTCCCATCTCTCCATC
2236
ATGGAGAGATGGGAGCTGG
CCAGCTCCCATCTCTCCAT
2237
TGGAGAGATGGGAGCTGGC
GCCAGCTCCCATCTCTCCA
2238
GGAGAGATGGGAGCTGGCC
GGCCAGCTCCCATCTCTCC
2239
GAGAGATGGGAGCTGGCCG
CGGCCAGCTCCCATCTCTC
2240
AGAGATGGGAGCTGGCCGG
CCGGCCAGCTCCCATCTCT
2241
GAGATGGGAGCTGGCCGGC
GCCGGCCAGCTCCCATCTC
2242
AGATGGGAGCTGGCCGGCA
TGCCGGCCAGCTCCCATCT
2243
GATGGGAGCTGGCCGGCAG
CTGCCGGCCAGCTCCCATC
2244
ATGGGAGCTGGCCGGCAGC
GCTGCCGGCCAGCTCCCAT
2245
TGGGAGCTGGCCGGCAGCA
TGCTGCCGGCCAGCTCCCA
2246
GGGAGCTGGCCGGCAGCAG
CTGCTGCCGGCCAGCTCCC
2247
GGAGCTGGCCGGCAGCAGA
TCTGCTGCCGGCCAGCTCC
2248
GAGCTGGCCGGCAGCAGAA
TTCTGCTGCCGGCCAGCTC
2249
AGCTGGCCGGCAGCAGAAT
ATTCTGCTGCCGGCCAGCT
2250
GCTGGCCGGCAGCAGAATC
GATTCTGCTGCCGGCCAGC
2251
CTGGCCGGCAGCAGAATCC
GGATTCTGCTGCCGGCCAG
2252
TGGCCGGCAGCAGAATCCT
AGGATTCTGCTGCCGGCCA
2253
GGCCGGCAGCAGAATCCTT
AAGGATTCTGCTGCCGGCC
2254
GCCGGCAGCAGAATCCTTG
CAAGGATTCTGCTGCCGGC
2255
CCGGCAGCAGAATCCTTGC
GCAAGGATTCTGCTGCCGG
2256
CGGCAGCAGAATCCTTGCC
GGCAAGGATTCTGCTGCCG
2257
GGCAGCAGAATCCTTGCCC
GGGCAAGGATTCTGCTGCC
2258
GCAGCAGAATCCTTGCCCG
CGGGCAAGGATTCTGCTGC
2259
CAGCAGAATCCTTGCCCGC
GCGGGCAAGGATTCTGCTG
2260
AGCAGAATCCTTGCCCGCT
AGCGGGCAAGGATTCTGCT
2261
GCAGAATCCTTGCCCGCTC
GAGCGGGCAAGGATTCTGC
2262
CAGAATCCTTGCCCGCTCT
AGAGCGGGCAAGGATTCTG
2263
AGAATCCTTGCCCGCTCTT
AAGAGCGGGCAAGGATTCT
2264
GAATCCTTGCCCGCTCTTC
GAAGAGCGGGCAAGGATTC
2265
AATCCTTGCCCGCTCTTCC
GGAAGAGCGGGCAAGGATT
2266
ATCCTTGCCCGCTCTTCCT
AGGAAGAGCGGGCAAGGAT
2267
TCCTTGCCCGCTCTTCCTG
CAGGAAGAGCGGGCAAGGA
2268
CCTTGCCCGCTCTTCCTGG
CCAGGAAGAGCGGGCAAGG
2269
CTTGCCCGCTCTTCCTGGG
CCCAGGAAGAGCGGGCAAG
2270
TTGCCCGCTCTTCCTGGGG
CCCCAGGAAGAGCGGGCAA
2271
TGCCCGCTCTTCCTGGGGC
GCCCCAGGAAGAGCGGGCA
2272
GCCCGCTCTTCCTGGGGCA
TGCCCCAGGAAGAGCGGGC
2273
CCCGCTCTTCCTGGGGCAG
CTGCCCCAGGAAGAGCGGG
2274
CCGCTCTTCCTGGGGCAGC
GCTGCCCCAGGAAGAGCGG
2275
CGCTCTTCCTGGGGCAGCC
GGCTGCCCCAGGAAGAGCG
2276
GCTCTTCCTGGGGCAGCCA
TGGCTGCCCCAGGAAGAGC
2277
CTCTTCCTGGGGCAGCCAG
CTGGCTGCCCCAGGAAGAG
2278
TCTTCCTGGGGCAGCCAGA
TCTGGCTGCCCCAGGAAGA
2279
CTTCCTGGGGCAGCCAGAC
GTCTGGCTGCCCCAGGAAG
2280
TTCCTGGGGCAGCCAGACA
TGTCTGGCTGCCCCAGGAA
2281
TCCTGGGGCAGCCAGACAC
GTGTCTGGCTGCCCCAGGA
2282
CCTGGGGCAGCCAGACACT
AGTGTCTGGCTGCCCCAGG
2283
CTGGGGCAGCCAGACACTG
CAGTGTCTGGCTGCCCCAG
2284
TGGGGCAGCCAGACACTGT
ACAGTGTCTGGCTGCCCCA
2285
GGGGCAGCCAGACACTGTG
CACAGTGTCTGGCTGCCCC
2286
GGGCAGCCAGACACTGTGC
GCACAGTGTCTGGCTGCCC
2287
GGCAGCCAGACACTGTGCC
GGCACAGTGTCTGGCTGCC
2288
GCAGCCAGACACTGTGCCC
GGGCACAGTGTCTGGCTGC
2289
CAGCCAGACACTGTGCCCT
AGGGCACAGTGTCTGGCTG
2290
AGCCAGACACTGTGCCCTG
CAGGGCACAGTGTCTGGCT
2291
GCCAGACACTGTGCCCTGG
CCAGGGCACAGTGTCTGGC
2292
CCAGACACTGTGCCCTGGA
TCCAGGGCACAGTGTCTGG
2293
CAGACACTGTGCCCTGGAC
GTCCAGGGCACAGTGTCTG
2294
AGACACTGTGCCCTGGACC
GGTCCAGGGCACAGTGTCT
2295
GACACTGTGCCCTGGACCT
AGGTCCAGGGCACAGTGTC
2296
ACACTGTGCCCTGGACCTC
GAGGTCCAGGGCACAGTGT
2297
CACTGTGCCCTGGACCTCC
GGAGGTCCAGGGCACAGTG
2298
ACTGTGCCCTGGACCTCCT
AGGAGGTCCAGGGCACAGT
2299
CTGTGCCCTGGACCTCCTG
CAGGAGGTCCAGGGCACAG
2300
TGTGCCCTGGACCTCCTGG
CCAGGAGGTCCAGGGCACA
2301
GTGCCCTGGACCTCCTGGC
GCCAGGAGGTCCAGGGCAC
2302
TGCCCTGGACCTCCTGGCC
GGCCAGGAGGTCCAGGGCA
2303
GCCCTGGACCTCCTGGCCC
GGGCCAGGAGGTCCAGGGC
2304
CCCTGGACCTCCTGGCCCG
CGGGCCAGGAGGTCCAGGG
2305
CCTGGACCTCCTGGCCCGC
GCGGGCCAGGAGGTCCAGG
2306
CTGGACCTCCTGGCCCGCT
AGCGGGCCAGGAGGTCCAG
2307
TGGACCTCCTGGCCCGCTT
AAGCGGGCCAGGAGGTCCA
2308
GGACCTCCTGGCCCGCTTG
CAAGCGGGCCAGGAGGTCC
2309
GACCTCCTGGCCCGCTTGT
ACAAGCGGGCCAGGAGGTC
2310
ACCTCCTGGCCCGCTTGTC
GACAAGCGGGCCAGGAGGT
2311
CCTCCTGGCCCGCTTGTCC
GGACAAGCGGGCCAGGAGG
2312
CTCCTGGCCCGCTTGTCCC
GGGACAAGCGGGCCAGGAG
2313
TCCTGGCCCGCTTGTCCCC
GGGGACAAGCGGGCCAGGA
2314
CCTGGCCCGCTTGTCCCCC
GGGGGACAAGCGGGCCAGG
2315
CTGGCCCGCTTGTCCCCCA
TGGGGGACAAGCGGGCCAG
2316
TGGCCCGCTTGTCCCCCAG
CTGGGGGACAAGCGGGCCA
2317
GGCCCGCTTGTCCCCCAGG
CCTGGGGGACAAGCGGGCC
2318
GCCCGCTTGTCCCCCAGGC
GCCTGGGGGACAAGCGGGC
2319
CCCGCTTGTCCCCCAGGCC
GGCCTGGGGGACAAGCGGG
2320
CCGCTTGTCCCCCAGGCCT
AGGCCTGGGGGACAAGCGG
2321
CGCTTGTCCCCCAGGCCTT
AAGGCCTGGGGGACAAGCG
2322
GCTTGTCCCCCAGGCCTTG
CAAGGCCTGGGGGACAAGC
2323
CTTGTCCCCCAGGCCTTGT
ACAAGGCCTGGGGGACAAG
2324
TTGTCCCCCAGGCCTTGTT
AACAAGGCCTGGGGGACAA
2325
TGTCCCCCAGGCCTTGTTC
GAACAAGGCCTGGGGGACA
2326
GTCCCCCAGGCCTTGTTCA
TGAACAAGGCCTGGGGGAC
2327
TCCCCCAGGCCTTGTTCAT
ATGAACAAGGCCTGGGGGA
2328
CCCCCAGGCCTTGTTCATA
TATGAACAAGGCCTGGGGG
2329
CCCCAGGCCTTGTTCATAC
GTATGAACAAGGCCTGGGG
2330
CCCAGGCCTTGTTCATACT
AGTATGAACAAGGCCTGGG
2331
CCAGGCCTTGTTCATACTC
GAGTATGAACAAGGCCTGG
2332
CAGGCCTTGTTCATACTCT
AGAGTATGAACAAGGCCTG
2333
AGGCCTTGTTCATACTCTT
AAGAGTATGAACAAGGCCT
2334
GGCCTTGTTCATACTCTTG
CAAGAGTATGAACAAGGCC
2335
GCCTTGTTCATACTCTTGG
CCAAGAGTATGAACAAGGC
2336
CCTTGTTCATACTCTTGGC
GCCAAGAGTATGAACAAGG
2337
CTTGTTCATACTCTTGGCA
TGCCAAGAGTATGAACAAG
2338
TTGTTCATACTCTTGGCAA
TTGCCAAGAGTATGAACAA
2339
TGTTCATACTCTTGGCAAC
GTTGCCAAGAGTATGAACA
2340
GTTCATACTCTTGGCAACG
CGTTGCCAAGAGTATGAAC
2341
TTCATACTCTTGGCAACGT
ACGTTGCCAAGAGTATGAA
2342
TCATACTCTTGGCAACGTC
GACGTTGCCAAGAGTATGA
2343
CATACTCTTGGCAACGTCT
AGACGTTGCCAAGAGTATG
2344
ATACTCTTGGCAACGTCTG
CAGACGTTGCCAAGAGTAT
2345
TACTCTTGGCAACGTCTGG
CCAGACGTTGCCAAGAGTA
2346
ACTCTTGGCAACGTCTGGG
CCCAGACGTTGCCAAGAGT
2347
CTCTTGGCAACGTCTGGGC
GCCCAGACGTTGCCAAGAG
2348
TCTTGGCAACGTCTGGGCT
AGCCCAGACGTTGCCAAGA
2349
CTTGGCAACGTCTGGGCTG
CAGCCCAGACGTTGCCAAG
2350
TTGGCAACGTCTGGGCTGG
CCAGCCCAGACGTTGCCAA
2351
TGGCAACGTCTGGGCTGGG
CCCAGCCCAGACGTTGCCA
2352
GGCAACGTCTGGGCTGGGC
GCCCAGCCCAGACGTTGCC
2353
GCAACGTCTGGGCTGGGCC
GGCCCAGCCCAGACGTTGC
2354
CAACGTCTGGGCTGGGCCA
TGGCCCAGCCCAGACGTTG
2355
AACGTCTGGGCTGGGCCAG
CTGGCCCAGCCCAGACGTT
2356
ACGTCTGGGCTGGGCCAGG
CCTGGCCCAGCCCAGACGT
2357
CGTCTGGGCTGGGCCAGGC
GCCTGGCCCAGCCCAGACG
2358
GTCTGGGCTGGGCCAGGCG
CGCCTGGCCCAGCCCAGAC
2359
TCTGGGCTGGGCCAGGCGA
TCGCCTGGCCCAGCCCAGA
2360
CTGGGCTGGGCCAGGCGAT
ATCGCCTGGCCCAGCCCAG
2361
TGGGCTGGGCCAGGCGATG
CATCGCCTGGCCCAGCCCA
2362
GGGCTGGGCCAGGCGATGG
CCATCGCCTGGCCCAGCCC
2363
GGCTGGGCCAGGCGATGGG
CCCATCGCCTGGCCCAGCC
2364
GCTGGGCCAGGCGATGGGA
TCCCATCGCCTGGCCCAGC
2365
CTGGGCCAGGCGATGGGAA
TTCCCATCGCCTGGCCCAG
2366
TGGGCCAGGCGATGGGAAC
GTTCCCATCGCCTGGCCCA
2367
GGGCCAGGCGATGGGAACC
GGTTCCCATCGCCTGGCCC
2368
GGCCAGGCGATGGGAACCT
AGGTTCCCATCGCCTGGCC
2369
GCCAGGCGATGGGAACCTT
AAGGTTCCCATCGCCTGGC
2370
CCAGGCGATGGGAACCTTG
CAAGGTTCCCATCGCCTGG
2371
CAGGCGATGGGAACCTTGG
CCAAGGTTCCCATCGCCTG
2372
AGGCGATGGGAACCTTGGG
CCCAAGGTTCCCATCGCCT
2373
GGCGATGGGAACCTTGGGT
ACCCAAGGTTCCCATCGCC
2374
GCGATGGGAACCTTGGGTA
TACCCAAGGTTCCCATCGC
2375
CGATGGGAACCTTGGGTAC
GTACCCAAGGTTCCCATCG
2376
GATGGGAACCTTGGGTACC
GGTACCCAAGGTTCCCATC
2377
ATGGGAACCTTGGGTACCA
TGGTACCCAAGGTTCCCAT
2378
TGGGAACCTTGGGTACCAG
CTGGTACCCAAGGTTCCCA
2379
GGGAACCTTGGGTACCAGC
GCTGGTACCCAAGGTTCCC
2380
GGAACCTTGGGTACCAGCT
AGCTGGTACCCAAGGTTCC
2381
GAACCTTGGGTACCAGCTG
CAGCTGGTACCCAAGGTTC
2382
AACCTTGGGTACCAGCTGG
CCAGCTGGTACCCAAGGTT
2383
ACCTTGGGTACCAGCTGGG
CCCAGCTGGTACCCAAGGT
2384
CCTTGGGTACCAGCTGGGG
CCCCAGCTGGTACCCAAGG
2385
CTTGGGTACCAGCTGGGGC
GCCCCAGCTGGTACCCAAG
2386
TTGGGTACCAGCTGGGGCC
GGCCCCAGCTGGTACCCAA
2387
TGGGTACCAGCTGGGGCCA
TGGCCCCAGCTGGTACCCA
2388
GGGTACCAGCTGGGGCCAC
GTGGCCCCAGCTGGTACCC
2389
GGTACCAGCTGGGGCCACC
GGTGGCCCCAGCTGGTACC
2390
GTACCAGCTGGGGCCACCA
TGGTGGCCCCAGCTGGTAC
2391
TACCAGCTGGGGCCACCAG
CTGGTGGCCCCAGCTGGTA
2392
ACCAGCTGGGGCCACCAGC
GCTGGTGGCCCCAGCTGGT
2393
CCAGCTGGGGCCACCAGCA
TGCTGGTGGCCCCAGCTGG
2394
CAGCTGGGGCCACCAGCAA
TTGCTGGTGGCCCCAGCTG
2395
AGCTGGGGCCACCAGCAAC
GTTGCTGGTGGCCCCAGCT
2396
GCTGGGGCCACCAGCAACA
TGTTGCTGGTGGCCCCAGC
2397
CTGGGGCCACCAGCAACAC
GTGTTGCTGGTGGCCCCAG
2398
TGGGGCCACCAGCAACACC
GGTGTTGCTGGTGGCCCCA
2399
GGGGCCACCAGCAACACCA
TGGTGTTGCTGGTGGCCCC
2400
GGGCCACCAGCAACACCAA
TTGGTGTTGCTGGTGGCCC
2401
GGCCACCAGCAACACCAAG
CTTGGTGTTGCTGGTGGCC
2402
GCCACCAGCAACACCAAGG
CCTTGGTGTTGCTGGTGGC
2403
CCACCAGCAACACCAAGGT
ACCTTGGTGTTGCTGGTGG
2404
CACCAGCAACACCAAGGTG
CACCTTGGTGTTGCTGGTG
2405
ACCAGCAACACCAAGGTGC
GCACCTTGGTGTTGCTGGT
2406
CCAGCAACACCAAGGTGCC
GGCACCTTGGTGTTGCTGG
2407
CAGCAACACCAAGGTGCCC
GGGCACCTTGGTGTTGCTG
2408
AGCAACACCAAGGTGCCCC
GGGGCACCTTGGTGTTGCT
2409
GCAACACCAAGGTGCCCCT
AGGGGCACCTTGGTGTTGC
2410
CAACACCAAGGTGCCCCTC
GAGGGGCACCTTGGTGTTG
2411
AACACCAAGGTGCCCCTCT
AGAGGGGCACCTTGGTGTT
2412
ACACCAAGGTGCCCCTCTC
GAGAGGGGCACCTTGGTGT
2413
CACCAAGGTGCCCCTCTCC
GGAGAGGGGCACCTTGGTG
2414
ACCAAGGTGCCCCTCTCCT
AGGAGAGGGGCACCTTGGT
2415
CCAAGGTGCCCCTCTCCTG
CAGGAGAGGGGCACCTTGG
2416
CAAGGTGCCCCTCTCCTGA
TCAGGAGAGGGGCACCTTG
2417
AAGGTGCCCCTCTCCTGAG
CTCAGGAGAGGGGCACCTT
2418
AGGTGCCCCTCTCCTGAGC
GCTCAGGAGAGGGGCACCT
2419
GGTGCCCCTCTCCTGAGCC
GGCTCAGGAGAGGGGCACC
2420
GTGCCCCTCTCCTGAGCCG
CGGCTCAGGAGAGGGGCAC
2421
TGCCCCTCTCCTGAGCCGC
GCGGCTCAGGAGAGGGGCA
2422
GCCCCTCTCCTGAGCCGCC
GGCGGCTCAGGAGAGGGGC
2423
CCCCTCTCCTGAGCCGCCT
AGGCGGCTCAGGAGAGGGG
2424
CCCTCTCCTGAGCCGCCTG
CAGGCGGCTCAGGAGAGGG
2425
CCTCTCCTGAGCCGCCTGT
ACAGGCGGCTCAGGAGAGG
2426
CTCTCCTGAGCCGCCTGTC
GACAGGCGGCTCAGGAGAG
2427
TCTCCTGAGCCGCCTGTCA
TGACAGGCGGCTCAGGAGA
2428
CTCCTGAGCCGCCTGTCAC
GTGACAGGCGGCTCAGGAG
2429
TCCTGAGCCGCCTGTCACC
GGTGACAGGCGGCTCAGGA
2430
CCTGAGCCGCCTGTCACCC
GGGTGACAGGCGGCTCAGG
2431
CTGAGCCGCCTGTCACCCA
TGGGTGACAGGCGGCTCAG
2432
TGAGCCGCCTGTCACCCAG
CTGGGTGACAGGCGGCTCA
2433
GAGCCGCCTGTCACCCAGC
GCTGGGTGACAGGCGGCTC
2434
AGCCGCCTGTCACCCAGCG
CGCTGGGTGACAGGCGGCT
2435
GCCGCCTGTCACCCAGCGG
CCGCTGGGTGACAGGCGGC
2436
CCGCCTGTCACCCAGCGGG
CCCGCTGGGTGACAGGCGG
2437
CGCCTGTCACCCAGCGGGG
CCCCGCTGGGTGACAGGCG
2438
GCCTGTCACCCAGCGGGGC
GCCCCGCTGGGTGACAGGC
2439
CCTGTCACCCAGCGGGGCT
AGCCCCGCTGGGTGACAGG
2440
CTGTCACCCAGCGGGGCTG
CAGCCCCGCTGGGTGACAG
2441
TGTCACCCAGCGGGGCTGC
GCAGCCCCGCTGGGTGACA
2442
GTCACCCAGCGGGGCTGCT
AGCAGCCCCGCTGGGTGAC
2443
TCACCCAGCGGGGCTGCTG
CAGCAGCCCCGCTGGGTGA
2444
CACCCAGCGGGGCTGCTGT
ACAGCAGCCCCGCTGGGTG
2445
ACCCAGCGGGGCTGCTGTT
AACAGCAGCCCCGCTGGGT
2446
CCCAGCGGGGCTGCTGTTC
GAACAGCAGCCCCGCTGGG
2447
CCAGCGGGGCTGCTGTTCA
TGAACAGCAGCCCCGCTGG
2448
CAGCGGGGCTGCTGTTCAT
ATGAACAGCAGCCCCGCTG
2449
AGCGGGGCTGCTGTTCATC
GATGAACAGCAGCCCCGCT
2450
GCGGGGCTGCTGTTCATCC
GGATGAACAGCAGCCCCGC
2451
CGGGGCTGCTGTTCATCCT
AGGATGAACAGCAGCCCCG
2452
GGGGCTGCTGTTCATCCTA
TAGGATGAACAGCAGCCCC
2453
GGGCTGCTGTTCATCCTAC
GTAGGATGAACAGCAGCCC
2454
GGCTGCTGTTCATCCTACC
GGTAGGATGAACAGCAGCC
2455
GCTGCTGTTCATCCTACCC
GGGTAGGATGAACAGCAGC
2456
CTGCTGTTCATCCTACCCA
TGGGTAGGATGAACAGCAG
2457
TGCTGTTCATCCTACCCAC
GTGGGTAGGATGAACAGCA
2458
GCTGTTCATCCTACCCACC
GGTGGGTAGGATGAACAGC
2459
CTGTTCATCCTACCCACCC
GGGTGGGTAGGATGAACAG
2460
TGTTCATCCTACCCACCCA
TGGGTGGGTAGGATGAACA
2461
GTTCATCCTACCCACCCAC
GTGGGTGGGTAGGATGAAC
2462
TTCATCCTACCCACCCACT
AGTGGGTGGGTAGGATGAA
2463
TCATCCTACCCACCCACTA
TAGTGGGTGGGTAGGATGA
2464
CATCCTACCCACCCACTAA
TTAGTGGGTGGGTAGGATG
2465
ATCCTACCCACCCACTAAA
TTTAGTGGGTGGGTAGGAT
2466
TCCTACCCACCCACTAAAG
CTTTAGTGGGTGGGTAGGA
2467
CCTACCCACCCACTAAAGG
CCTTTAGTGGGTGGGTAGG
2468
CTACCCACCCACTAAAGGT
ACCTTTAGTGGGTGGGTAG
2469
TACCCACCCACTAAAGGTG
CACCTTTAGTGGGTGGGTA
2470
ACCCACCCACTAAAGGTGG
CCACCTTTAGTGGGTGGGT
2471
CCCACCCACTAAAGGTGGG
CCCACCTTTAGTGGGTGGG
2472
CCACCCACTAAAGGTGGGG
CCCCACCTTTAGTGGGTGG
2473
CACCCACTAAAGGTGGGGG
CCCCCACCTTTAGTGGGTG
2474
ACCCACTAAAGGTGGGGGT
ACCCCCACCTTTAGTGGGT
2475
CCCACTAAAGGTGGGGGTC
GACCCCCACCTTTAGTGGG
2476
CCACTAAAGGTGGGGGTCT
AGACCCCCACCTTTAGTGG
2477
CACTAAAGGTGGGGGTCTT
AAGACCCCCACCTTTAGTG
2478
ACTAAAGGTGGGGGTCTTG
CAAGACCCCCACCTTTAGT
2479
CTAAAGGTGGGGGTCTTGG
CCAAGACCCCCACCTTTAG
2480
TAAAGGTGGGGGTCTTGGC
GCCAAGACCCCCACCTTTA
2481
AAAGGTGGGGGTCTTGGCC
GGCCAAGACCCCCACCTTT
2482
AAGGTGGGGGTCTTGGCCC
GGGCCAAGACCCCCACCTT
2483
AGGTGGGGGTCTTGGCCCT
AGGGCCAAGACCCCCACCT
2484
GGTGGGGGTCTTGGCCCTT
AAGGGCCAAGACCCCCACC
2485
GTGGGGGTCTTGGCCCTTG
CAAGGGCCAAGACCCCCAC
2486
TGGGGGTCTTGGCCCTTGT
ACAAGGGCCAAGACCCCCA
2487
GGGGGTCTTGGCCCTTGTG
CACAAGGGCCAAGACCCCC
2488
GGGGTCTTGGCCCTTGTGG
CCACAAGGGCCAAGACCCC
2489
GGGTCTTGGCCCTTGTGGG
CCCACAAGGGCCAAGACCC
2490
GGTCTTGGCCCTTGTGGGA
TCCCACAAGGGCCAAGACC
2491
GTCTTGGCCCTTGTGGGAA
TTCCCACAAGGGCCAAGAC
2492
TCTTGGCCCTTGTGGGAAG
CTTCCCACAAGGGCCAAGA
2493
CTTGGCCCTTGTGGGAAGT
ACTTCCCACAAGGGCCAAG
2494
TTGGCCCTTGTGGGAAGTG
CACTTCCCACAAGGGCCAA
2495
TGGCCCTTGTGGGAAGTGC
GCACTTCCCACAAGGGCCA
2496
GGCCCTTGTGGGAAGTGCC
GGCACTTCCCACAAGGGCC
2497
GCCCTTGTGGGAAGTGCCA
TGGCACTTCCCACAAGGGC
2498
CCCTTGTGGGAAGTGCCAG
CTGGCACTTCCCACAAGGG
2499
CCTTGTGGGAAGTGCCAGG
CCTGGCACTTCCCACAAGG
2500
CTTGTGGGAAGTGCCAGGA
TCCTGGCACTTCCCACAAG
2501
TTGTGGGAAGTGCCAGGAG
CTCCTGGCACTTCCCACAA
2502
TGTGGGAAGTGCCAGGAGG
CCTCCTGGCACTTCCCACA
2503
GTGGGAAGTGCCAGGAGGG
CCCTCCTGGCACTTCCCAC
2504
TGGGAAGTGCCAGGAGGGC
GCCCTCCTGGCACTTCCCA
2505
GGGAAGTGCCAGGAGGGCC
GGCCCTCCTGGCACTTCCC
2506
GGAAGTGCCAGGAGGGCCT
AGGCCCTCCTGGCACTTCC
2507
GAAGTGCCAGGAGGGCCTG
CAGGCCCTCCTGGCACTTC
2508
AAGTGCCAGGAGGGCCTGG
CCAGGCCCTCCTGGCACTT
2509
AGTGCCAGGAGGGCCTGGA
TCCAGGCCCTCCTGGCACT
2510
GTGCCAGGAGGGCCTGGAG
CTCCAGGCCCTCCTGGCAC
2511
TGCCAGGAGGGCCTGGAGG
CCTCCAGGCCCTCCTGGCA
2512
GCCAGGAGGGCCTGGAGGG
CCCTCCAGGCCCTCCTGGC
2513
CCAGGAGGGCCTGGAGGGG
CCCCTCCAGGCCCTCCTGG
2514
CAGGAGGGCCTGGAGGGGG
CCCCCTCCAGGCCCTCCTG
2515
AGGAGGGCCTGGAGGGGGG
CCCCCCTCCAGGCCCTCCT
2516
GGAGGGCCTGGAGGGGGGT
ACCCCCCTCCAGGCCCTCC
2517
GAGGGCCTGGAGGGGGGTG
CACCCCCCTCCAGGCCCTC
2518
AGGGCCTGGAGGGGGGTGC
GCACCCCCCTCCAGGCCCT
2519
GGGCCTGGAGGGGGGTGCC
GGCACCCCCCTCCAGGCCC
2520
GGCCTGGAGGGGGGTGCCA
TGGCACCCCCCTCCAGGCC
2521
GCCTGGAGGGGGGTGCCAG
CTGGCACCCCCCTCCAGGC
2522
CCTGGAGGGGGGTGCCAGT
ACTGGCACCCCCCTCCAGG
2523
CTGGAGGGGGGTGCCAGTG
CACTGGCACCCCCCTCCAG
2524
TGGAGGGGGGTGCCAGTGG
CCACTGGCACCCCCCTCCA
2525
GGAGGGGGGTGCCAGTGGA
TCCACTGGCACCCCCCTCC
2526
GAGGGGGGTGCCAGTGGAG
CTCCACTGGCACCCCCCTC
2527
AGGGGGGTGCCAGTGGAGC
GCTCCACTGGCACCCCCCT
2528
GGGGGGTGCCAGTGGAGCC
GGCTCCACTGGCACCCCCC
2529
GGGGGTGCCAGTGGAGCCA
TGGCTCCACTGGCACCCCC
2530
GGGGTGCCAGTGGAGCCAG
CTGGCTCCACTGGCACCCC
2531
GGGTGCCAGTGGAGCCAGC
GCTGGCTCCACTGGCACCC
2532
GGTGCCAGTGGAGCCAGCG
CGCTGGCTCCACTGGCACC
2533
GTGCCAGTGGAGCCAGCGA
TCGCTGGCTCCACTGGCAC
2534
TGCCAGTGGAGCCAGCGAA
TTCGCTGGCTCCACTGGCA
2535
GCCAGTGGAGCCAGCGAAC
GTTCGCTGGCTCCACTGGC
2536
CCAGTGGAGCCAGCGAACC
GGTTCGCTGGCTCCACTGG
2537
CAGTGGAGCCAGCGAACCC
GGGTTCGCTGGCTCCACTG
2538
AGTGGAGCCAGCGAACCCA
TGGGTTCGCTGGCTCCACT
2539
GTGGAGCCAGCGAACCCAG
CTGGGTTCGCTGGCTCCAC
2540
TGGAGCCAGCGAACCCAGC
GCTGGGTTCGCTGGCTCCA
2541
GGAGCCAGCGAACCCAGCG
CGCTGGGTTCGCTGGCTCC
2542
GAGCCAGCGAACCCAGCGA
TCGCTGGGTTCGCTGGCTC
2543
AGCCAGCGAACCCAGCGAG
CTCGCTGGGTTCGCTGGCT
2544
GCCAGCGAACCCAGCGAGG
CCTCGCTGGGTTCGCTGGC
2545
CCAGCGAACCCAGCGAGGA
TCCTCGCTGGGTTCGCTGG
2546
CAGCGAACCCAGCGAGGAA
TTCCTCGCTGGGTTCGCTG
2547
AGCGAACCCAGCGAGGAAG
CTTCCTCGCTGGGTTCGCT
2548
GCGAACCCAGCGAGGAAGT
ACTTCCTCGCTGGGTTCGC
2549
CGAACCCAGCGAGGAAGTG
CACTTCCTCGCTGGGTTCG
2550
GAACCCAGCGAGGAAGTGA
TCACTTCCTCGCTGGGTTC
2551
AACCCAGCGAGGAAGTGAA
TTCACTTCCTCGCTGGGTT
2552
ACCCAGCGAGGAAGTGAAC
GTTCACTTCCTCGCTGGGT
2553
CCCAGCGAGGAAGTGAACA
TGTTCACTTCCTCGCTGGG
2554
CCAGCGAGGAAGTGAACAA
TTGTTCACTTCCTCGCTGG
2555
CAGCGAGGAAGTGAACAAG
CTTGTTCACTTCCTCGCTG
2556
AGCGAGGAAGTGAACAAGG
CCTTGTTCACTTCCTCGCT
2557
GCGAGGAAGTGAACAAGGC
GCCTTGTTCACTTCCTCGC
2558
CGAGGAAGTGAACAAGGCC
GGCCTTGTTCACTTCCTCG
2559
GAGGAAGTGAACAAGGCCT
AGGCCTTGTTCACTTCCTC
2560
AGGAAGTGAACAAGGCCTC
GAGGCCTTGTTCACTTCCT
2561
GGAAGTGAACAAGGCCTCT
AGAGGCCTTGTTCACTTCC
2562
GAAGTGAACAAGGCCTCTG
CAGAGGCCTTGTTCACTTC
2563
AAGTGAACAAGGCCTCTGG
CCAGAGGCCTTGTTCACTT
2564
AGTGAACAAGGCCTCTGGC
GCCAGAGGCCTTGTTCACT
2565
GTGAACAAGGCCTCTGGCC
GGCCAGAGGCCTTGTTCAC
2566
TGAACAAGGCCTCTGGCCC
GGGCCAGAGGCCTTGTTCA
2567
GAACAAGGCCTCTGGCCCC
GGGGCCAGAGGCCTTGTTC
2568
AACAAGGCCTCTGGCCCCA
TGGGGCCAGAGGCCTTGTT
2569
ACAAGGCCTCTGGCCCCAG
CTGGGGCCAGAGGCCTTGT
2570
CAAGGCCTCTGGCCCCAGG
CCTGGGGCCAGAGGCCTTG
2571
AAGGCCTCTGGCCCCAGGG
CCCTGGGGCCAGAGGCCTT
2572
AGGCCTCTGGCCCCAGGGC
GCCCTGGGGCCAGAGGCCT
2573
GGCCTCTGGCCCCAGGGCC
GGCCCTGGGGCCAGAGGCC
2574
GCCTCTGGCCCCAGGGCCT
AGGCCCTGGGGCCAGAGGC
2575
CCTCTGGCCCCAGGGCCTG
CAGGCCCTGGGGCCAGAGG
2576
CTCTGGCCCCAGGGCCTGT
ACAGGCCCTGGGGCCAGAG
2577
TCTGGCCCCAGGGCCTGTC
GACAGGCCCTGGGGCCAGA
2578
CTGGCCCCAGGGCCTGTCC
GGACAGGCCCTGGGGCCAG
2579
TGGCCCCAGGGCCTGTCCC
GGGACAGGCCCTGGGGCCA
2580
GGCCCCAGGGCCTGTCCCC
GGGGACAGGCCCTGGGGCC
2581
GCCCCAGGGCCTGTCCCCC
GGGGGACAGGCCCTGGGGC
2582
CCCCAGGGCCTGTCCCCCC
GGGGGGACAGGCCCTGGGG
2583
CCCAGGGCCTGTCCCCCCA
TGGGGGGACAGGCCCTGGG
2584
CCAGGGCCTGTCCCCCCAG
CTGGGGGGACAGGCCCTGG
2585
CAGGGCCTGTCCCCCCAGC
GCTGGGGGGACAGGCCCTG
2586
AGGGCCTGTCCCCCCAGCC
GGCTGGGGGGACAGGCCCT
2587
GGGCCTGTCCCCCCAGCCA
TGGCTGGGGGGACAGGCCC
2588
GGCCTGTCCCCCCAGCCAC
GTGGCTGGGGGGACAGGCC
2589
GCCTGTCCCCCCAGCCACC
GGTGGCTGGGGGGACAGGC
2590
CCTGTCCCCCCAGCCACCA
TGGTGGCTGGGGGGACAGG
2591
CTGTCCCCCCAGCCACCAC
GTGGTGGCTGGGGGGACAG
2592
TGTCCCCCCAGCCACCACA
TGTGGTGGCTGGGGGGACA
2593
GTCCCCCCAGCCACCACAC
GTGTGGTGGCTGGGGGGAC
2594
TCCCCCCAGCCACCACACC
GGTGTGGTGGCTGGGGGGA
2595
CCCCCCAGCCACCACACCA
TGGTGTGGTGGCTGGGGGG
2596
CCCCCAGCCACCACACCAA
TTGGTGTGGTGGCTGGGGG
2597
CCCCAGCCACCACACCAAG
CTTGGTGTGGTGGCTGGGG
2598
CCCAGCCACCACACCAAGC
GCTTGGTGTGGTGGCTGGG
2599
CCAGCCACCACACCAAGCT
AGCTTGGTGTGGTGGCTGG
2600
CAGCCACCACACCAAGCTG
CAGCTTGGTGTGGTGGCTG
2601
AGCCACCACACCAAGCTGA
TCAGCTTGGTGTGGTGGCT
2602
GCCACCACACCAAGCTGAA
TTCAGCTTGGTGTGGTGGC
2603
CCACCACACCAAGCTGAAG
CTTCAGCTTGGTGTGGTGG
2604
CACCACACCAAGCTGAAGA
TCTTCAGCTTGGTGTGGTG
2605
ACCACACCAAGCTGAAGAA
TTCTTCAGCTTGGTGTGGT
2606
CCACACCAAGCTGAAGAAG
CTTCTTCAGCTTGGTGTGG
2607
CACACCAAGCTGAAGAAGA
TCTTCTTCAGCTTGGTGTG
2608
ACACCAAGCTGAAGAAGAC
GTCTTCTTCAGCTTGGTGT
2609
CACCAAGCTGAAGAAGACA
TGTCTTCTTCAGCTTGGTG
2610
ACCAAGCTGAAGAAGACAT
ATGTCTTCTTCAGCTTGGT
2611
CCAAGCTGAAGAAGACATG
CATGTCTTCTTCAGCTTGG
2612
CAAGCTGAAGAAGACATGG
CCATGTCTTCTTCAGCTTG
2613
AAGCTGAAGAAGACATGGC
GCCATGTCTTCTTCAGCTT
2614
AGCTGAAGAAGACATGGCT
AGCCATGTCTTCTTCAGCT
2615
GCTGAAGAAGACATGGCTC
GAGCCATGTCTTCTTCAGC
2616
CTGAAGAAGACATGGCTCA
TGAGCCATGTCTTCTTCAG
2617
TGAAGAAGACATGGCTCAC
GTGAGCCATGTCTTCTTCA
2618
GAAGAAGACATGGCTCACA
TGTGAGCCATGTCTTCTTC
2619
AAGAAGACATGGCTCACAC
GTGTGAGCCATGTCTTCTT
2620
AGAAGACATGGCTCACACG
CGTGTGAGCCATGTCTTCT
2621
GAAGACATGGCTCACACGG
CCGTGTGAGCCATGTCTTC
2622
AAGACATGGCTCACACGGC
GCCGTGTGAGCCATGTCTT
2623
AGACATGGCTCACACGGCA
TGCCGTGTGAGCCATGTCT
2624
GACATGGCTCACACGGCAC
GTGCCGTGTGAGCCATGTC
2625
ACATGGCTCACACGGCACT
AGTGCCGTGTGAGCCATGT
2626
CATGGCTCACACGGCACTC
GAGTGCCGTGTGAGCCATG
2627
ATGGCTCACACGGCACTCG
CGAGTGCCGTGTGAGCCAT
2628
TGGCTCACACGGCACTCGG
CCGAGTGCCGTGTGAGCCA
2629
GGCTCACACGGCACTCGGA
TCCGAGTGCCGTGTGAGCC
2630
GCTCACACGGCACTCGGAG
CTCCGAGTGCCGTGTGAGC
2631
CTCACACGGCACTCGGAGC
GCTCCGAGTGCCGTGTGAG
2632
TCACACGGCACTCGGAGCA
TGCTCCGAGTGCCGTGTGA
2633
CACACGGCACTCGGAGCAG
CTGCTCCGAGTGCCGTGTG
2634
ACACGGCACTCGGAGCAGT
ACTGCTCCGAGTGCCGTGT
2635
CACGGCACTCGGAGCAGTT
AACTGCTCCGAGTGCCGTG
2636
ACGGCACTCGGAGCAGTTT
AAACTGCTCCGAGTGCCGT
2637
CGGCACTCGGAGCAGTTTG
CAAACTGCTCCGAGTGCCG
2638
GGCACTCGGAGCAGTTTGA
TCAAACTGCTCCGAGTGCC
2639
GCACTCGGAGCAGTTTGAA
TTCAAACTGCTCCGAGTGC
2640
CACTCGGAGCAGTTTGAAT
ATTCAAACTGCTCCGAGTG
2641
ACTCGGAGCAGTTTGAATG
CATTCAAACTGCTCCGAGT
2642
CTCGGAGCAGTTTGAATGT
ACATTCAAACTGCTCCGAG
2643
TCGGAGCAGTTTGAATGTC
GACATTCAAACTGCTCCGA
2644
CGGAGCAGTTTGAATGTCC
GGACATTCAAACTGCTCCG
2645
GGAGCAGTTTGAATGTCCA
TGGACATTCAAACTGCTCC
2646
GAGCAGTTTGAATGTCCAC
GTGGACATTCAAACTGCTC
2647
AGCAGTTTGAATGTCCACG
CGTGGACATTCAAACTGCT
2648
GCAGTTTGAATGTCCACGC
GCGTGGACATTCAAACTGC
2649
CAGTTTGAATGTCCACGCG
CGCGTGGACATTCAAACTG
2650
AGTTTGAATGTCCACGCGG
CCGCGTGGACATTCAAACT
2651
GTTTGAATGTCCACGCGGC
GCCGCGTGGACATTCAAAC
2652
TTTGAATGTCCACGCGGCT
AGCCGCGTGGACATTCAAA
2653
TTGAATGTCCACGCGGCTG
CAGCCGCGTGGACATTCAA
2654
TGAATGTCCACGCGGCTGC
GCAGCCGCGTGGACATTCA
2655
GAATGTCCACGCGGCTGCC
GGCAGCCGCGTGGACATTC
2656
AATGTCCACGCGGCTGCCC
GGGCAGCCGCGTGGACATT
2657
ATGTCCACGCGGCTGCCCT
AGGGCAGCCGCGTGGACAT
2658
TGTCCACGCGGCTGCCCTG
CAGGGCAGCCGCGTGGACA
2659
GTCCACGCGGCTGCCCTGA
TCAGGGCAGCCGCGTGGAC
2660
TCCACGCGGCTGCCCTGAG
CTCAGGGCAGCCGCGTGGA
2661
CCACGCGGCTGCCCTGAGG
CCTCAGGGCAGCCGCGTGG
2662
CACGCGGCTGCCCTGAGGT
ACCTCAGGGCAGCCGCGTG
2663
ACGCGGCTGCCCTGAGGTC
GACCTCAGGGCAGCCGCGT
2664
CGCGGCTGCCCTGAGGTCG
CGACCTCAGGGCAGCCGCG
2665
GCGGCTGCCCTGAGGTCGA
TCGACCTCAGGGCAGCCGC
2666
CGGCTGCCCTGAGGTCGAG
CTCGACCTCAGGGCAGCCG
2667
GGCTGCCCTGAGGTCGAGG
CCTCGACCTCAGGGCAGCC
2668
GCTGCCCTGAGGTCGAGGA
TCCTCGACCTCAGGGCAGC
2669
CTGCCCTGAGGTCGAGGAG
CTCCTCGACCTCAGGGCAG
2670
TGCCCTGAGGTCGAGGAGA
TCTCCTCGACCTCAGGGCA
2671
GCCCTGAGGTCGAGGAGAG
CTCTCCTCGACCTCAGGGC
2672
CCCTGAGGTCGAGGAGAGG
CCTCTCCTCGACCTCAGGG
2673
CCTGAGGTCGAGGAGAGGC
GCCTCTCCTCGACCTCAGG
2674
CTGAGGTCGAGGAGAGGCC
GGCCTCTCCTCGACCTCAG
2675
TGAGGTCGAGGAGAGGCCG
CGGCCTCTCCTCGACCTCA
2676
GAGGTCGAGGAGAGGCCGG
CCGGCCTCTCCTCGACCTC
2677
AGGTCGAGGAGAGGCCGGT
ACCGGCCTCTCCTCGACCT
2678
GGTCGAGGAGAGGCCGGTT
AACCGGCCTCTCCTCGACC
2679
GTCGAGGAGAGGCCGGTTG
CAACCGGCCTCTCCTCGAC
2680
TCGAGGAGAGGCCGGTTGC
GCAACCGGCCTCTCCTCGA
2681
CGAGGAGAGGCCGGTTGCT
AGCAACCGGCCTCTCCTCG
2682
GAGGAGAGGCCGGTTGCTC
GAGCAACCGGCCTCTCCTC
2683
AGGAGAGGCCGGTTGCTCG
CGAGCAACCGGCCTCTCCT
2684
GGAGAGGCCGGTTGCTCGG
CCGAGCAACCGGCCTCTCC
2685
GAGAGGCCGGTTGCTCGGC
GCCGAGCAACCGGCCTCTC
2686
AGAGGCCGGTTGCTCGGCT
AGCCGAGCAACCGGCCTCT
2687
GAGGCCGGTTGCTCGGCTC
GAGCCGAGCAACCGGCCTC
2688
AGGCCGGTTGCTCGGCTCC
GGAGCCGAGCAACCGGCCT
2689
GGCCGGTTGCTCGGCTCCG
CGGAGCCGAGCAACCGGCC
2690
GCCGGTTGCTCGGCTCCGG
CCGGAGCCGAGCAACCGGC
2691
CCGGTTGCTCGGCTCCGGG
CCCGGAGCCGAGCAACCGG
2692
CGGTTGCTCGGCTCCGGGC
GCCCGGAGCCGAGCAACCG
2693
GGTTGCTCGGCTCCGGGCC
GGCCCGGAGCCGAGCAACC
2694
GTTGCTCGGCTCCGGGCCC
GGGCCCGGAGCCGAGCAAC
2695
TTGCTCGGCTCCGGGCCCT
AGGGCCCGGAGCCGAGCAA
2696
TGCTCGGCTCCGGGCCCTC
GAGGGCCCGGAGCCGAGCA
2697
GCTCGGCTCCGGGCCCTCA
TGAGGGCCCGGAGCCGAGC
2698
CTCGGCTCCGGGCCCTCAA
TTGAGGGCCCGGAGCCGAG
2699
TCGGCTCCGGGCCCTCAAA
TTTGAGGGCCCGGAGCCGA
2700
CGGCTCCGGGCCCTCAAAA
TTTTGAGGGCCCGGAGCCG
2701
GGCTCCGGGCCCTCAAAAG
CTTTTGAGGGCCCGGAGCC
2702
GCTCCGGGCCCTCAAAAGG
CCTTTTGAGGGCCCGGAGC
2703
CTCCGGGCCCTCAAAAGGG
CCCTTTTGAGGGCCCGGAG
2704
TCCGGGCCCTCAAAAGGGC
GCCCTTTTGAGGGCCCGGA
2705
CCGGGCCCTCAAAAGGGCA
TGCCCTTTTGAGGGCCCGG
2706
CGGGCCCTCAAAAGGGCAG
CTGCCCTTTTGAGGGCCCG
2707
GGGCCCTCAAAAGGGCAGG
CCTGCCCTTTTGAGGGCCC
2708
GGCCCTCAAAAGGGCAGGC
GCCTGCCCTTTTGAGGGCC
2709
GCCCTCAAAAGGGCAGGCA
TGCCTGCCCTTTTGAGGGC
2710
CCCTCAAAAGGGCAGGCAG
CTGCCTGCCCTTTTGAGGG
2711
CCTCAAAAGGGCAGGCAGC
GCTGCCTGCCCTTTTGAGG
2712
CTCAAAAGGGCAGGCAGCC
GGCTGCCTGCCCTTTTGAG
2713
TCAAAAGGGCAGGCAGCCC
GGGCTGCCTGCCCTTTTGA
2714
CAAAAGGGCAGGCAGCCCC
GGGGCTGCCTGCCCTTTTG
2715
AAAAGGGCAGGCAGCCCCG
CGGGGCTGCCTGCCCTTTT
2716
AAAGGGCAGGCAGCCCCGA
TCGGGGCTGCCTGCCCTTT
2717
AAGGGCAGGCAGCCCCGAG
CTCGGGGCTGCCTGCCCTT
2718
AGGGCAGGCAGCCCCGAGG
CCTCGGGGCTGCCTGCCCT
2719
GGGCAGGCAGCCCCGAGGT
ACCTCGGGGCTGCCTGCCC
2720
GGCAGGCAGCCCCGAGGTC
GACCTCGGGGCTGCCTGCC
2721
GCAGGCAGCCCCGAGGTCC
GGACCTCGGGGCTGCCTGC
2722
CAGGCAGCCCCGAGGTCCA
TGGACCTCGGGGCTGCCTG
2723
AGGCAGCCCCGAGGTCCAG
CTGGACCTCGGGGCTGCCT
2724
GGCAGCCCCGAGGTCCAGG
CCTGGACCTCGGGGCTGCC
2725
GCAGCCCCGAGGTCCAGGG
CCCTGGACCTCGGGGCTGC
2726
CAGCCCCGAGGTCCAGGGA
TCCCTGGACCTCGGGGCTG
2727
AGCCCCGAGGTCCAGGGAG
CTCCCTGGACCTCGGGGCT
2728
GCCCCGAGGTCCAGGGAGC
GCTCCCTGGACCTCGGGGC
2729
CCCCGAGGTCCAGGGAGCA
TGCTCCCTGGACCTCGGGG
2730
CCCGAGGTCCAGGGAGCAA
TTGCTCCCTGGACCTCGGG
2731
CCGAGGTCCAGGGAGCAAT
ATTGCTCCCTGGACCTCGG
2732
CGAGGTCCAGGGAGCAATG
CATTGCTCCCTGGACCTCG
2733
GAGGTCCAGGGAGCAATGG
CCATTGCTCCCTGGACCTC
2734
AGGTCCAGGGAGCAATGGG
CCCATTGCTCCCTGGACCT
2735
GGTCCAGGGAGCAATGGGC
GCCCATTGCTCCCTGGACC
2736
GTCCAGGGAGCAATGGGCA
TGCCCATTGCTCCCTGGAC
2737
TCCAGGGAGCAATGGGCAG
CTGCCCATTGCTCCCTGGA
2738
CCAGGGAGCAATGGGCAGT
ACTGCCCATTGCTCCCTGG
2739
CAGGGAGCAATGGGCAGTC
GACTGCCCATTGCTCCCTG
2740
AGGGAGCAATGGGCAGTCC
GGACTGCCCATTGCTCCCT
2741
GGGAGCAATGGGCAGTCCA
TGGACTGCCCATTGCTCCC
2742
GGAGCAATGGGCAGTCCAG
CTGGACTGCCCATTGCTCC
2743
GAGCAATGGGCAGTCCAGC
GCTGGACTGCCCATTGCTC
2744
AGCAATGGGCAGTCCAGCC
GGCTGGACTGCCCATTGCT
2745
GCAATGGGCAGTCCAGCCC
GGGCTGGACTGCCCATTGC
2746
CAATGGGCAGTCCAGCCCC
GGGGCTGGACTGCCCATTG
2747
AATGGGCAGTCCAGCCCCC
GGGGGCTGGACTGCCCATT
2748
ATGGGCAGTCCAGCCCCCA
TGGGGGCTGGACTGCCCAT
2749
TGGGCAGTCCAGCCCCCAA
TTGGGGGCTGGACTGCCCA
2750
GGGCAGTCCAGCCCCCAAG
CTTGGGGGCTGGACTGCCC
2751
GGCAGTCCAGCCCCCAAGC
GCTTGGGGGCTGGACTGCC
2752
GCAGTCCAGCCCCCAAGCG
CGCTTGGGGGCTGGACTGC
2753
CAGTCCAGCCCCCAAGCGG
CCGCTTGGGGGCTGGACTG
2754
AGTCCAGCCCCCAAGCGGC
GCCGCTTGGGGGCTGGACT
2755
GTCCAGCCCCCAAGCGGCC
GGCCGCTTGGGGGCTGGAC
2756
TCCAGCCCCCAAGCGGCCA
TGGCCGCTTGGGGGCTGGA
2757
CCAGCCCCCAAGCGGCCAC
GTGGCCGCTTGGGGGCTGG
2758
CAGCCCCCAAGCGGCCACC
GGTGGCCGCTTGGGGGCTG
2759
AGCCCCCAAGCGGCCACCG
CGGTGGCCGCTTGGGGGCT
2760
GCCCCCAAGCGGCCACCGG
CCGGTGGCCGCTTGGGGGC
2761
CCCCCAAGCGGCCACCGGA
TCCGGTGGCCGCTTGGGGG
2762
CCCCAAGCGGCCACCGGAC
GTCCGGTGGCCGCTTGGGG
2763
CCCAAGCGGCCACCGGACC
GGTCCGGTGGCCGCTTGGG
2764
CCAAGCGGCCACCGGACCC
GGGTCCGGTGGCCGCTTGG
2765
CAAGCGGCCACCGGACCCT
AGGGTCCGGTGGCCGCTTG
2766
AAGCGGCCACCGGACCCTT
AAGGGTCCGGTGGCCGCTT
2767
AGCGGCCACCGGACCCTTT
AAAGGGTCCGGTGGCCGCT
2768
GCGGCCACCGGACCCTTTT
AAAAGGGTCCGGTGGCCGC
2769
CGGCCACCGGACCCTTTTC
GAAAAGGGTCCGGTGGCCG
2770
GGCCACCGGACCCTTTTCC
GGAAAAGGGTCCGGTGGCC
2771
GCCACCGGACCCTTTTCCA
TGGAAAAGGGTCCGGTGGC
2772
CCACCGGACCCTTTTCCAG
CTGGAAAAGGGTCCGGTGG
2773
CACCGGACCCTTTTCCAGG
CCTGGAAAAGGGTCCGGTG
2774
ACCGGACCCTTTTCCAGGC
GCCTGGAAAAGGGTCCGGT
2775
CCGGACCCTTTTCCAGGCA
TGCCTGGAAAAGGGTCCGG
2776
CGGACCCTTTTCCAGGCAC
GTGCCTGGAAAAGGGTCCG
2777
GGACCCTTTTCCAGGCACT
AGTGCCTGGAAAAGGGTCC
2778
GACCCTTTTCCAGGCACTG
CAGTGCCTGGAAAAGGGTC
2779
ACCCTTTTCCAGGCACTGC
GCAGTGCCTGGAAAAGGGT
2780
CCCTTTTCCAGGCACTGCA
TGCAGTGCCTGGAAAAGGG
2781
CCTTTTCCAGGCACTGCAG
CTGCAGTGCCTGGAAAAGG
2782
CTTTTCCAGGCACTGCAGA
TCTGCAGTGCCTGGAAAAG
2783
TTTTCCAGGCACTGCAGAA
TTCTGCAGTGCCTGGAAAA
2784
TTTCCAGGCACTGCAGAAC
GTTCTGCAGTGCCTGGAAA
2785
TTCCAGGCACTGCAGAACA
TGTTCTGCAGTGCCTGGAA
2786
TCCAGGCACTGCAGAACAG
CTGTTCTGCAGTGCCTGGA
2787
CCAGGCACTGCAGAACAGG
CCTGTTCTGCAGTGCCTGG
2788
CAGGCACTGCAGAACAGGG
CCCTGTTCTGCAGTGCCTG
2789
AGGCACTGCAGAACAGGGG
CCCCTGTTCTGCAGTGCCT
2790
GGCACTGCAGAACAGGGGG
CCCCCTGTTCTGCAGTGCC
2791
GCACTGCAGAACAGGGGGC
GCCCCCTGTTCTGCAGTGC
2792
CACTGCAGAACAGGGGGCT
AGCCCCCTGTTCTGCAGTG
2793
ACTGCAGAACAGGGGGCTG
CAGCCCCCTGTTCTGCAGT
2794
CTGCAGAACAGGGGGCTGG
CCAGCCCCCTGTTCTGCAG
2795
TGCAGAACAGGGGGCTGGG
CCCAGCCCCCTGTTCTGCA
2796
GCAGAACAGGGGGCTGGGG
CCCCAGCCCCCTGTTCTGC
2797
CAGAACAGGGGGCTGGGGG
CCCCCAGCCCCCTGTTCTG
2798
AGAACAGGGGGCTGGGGGT
ACCCCCAGCCCCCTGTTCT
2799
GAACAGGGGGCTGGGGGTT
AACCCCCAGCCCCCTGTTC
2800
AACAGGGGGCTGGGGGTTG
CAACCCCCAGCCCCCTGTT
2801
ACAGGGGGCTGGGGGTTGG
CCAACCCCCAGCCCCCTGT
2802
CAGGGGGCTGGGGGTTGGC
GCCAACCCCCAGCCCCCTG
2803
AGGGGGCTGGGGGTTGGCA
TGCCAACCCCCAGCCCCCT
2804
GGGGGCTGGGGGTTGGCAG
CTGCCAACCCCCAGCCCCC
2805
GGGGCTGGGGGTTGGCAGG
CCTGCCAACCCCCAGCCCC
2806
GGGCTGGGGGTTGGCAGGA
TCCTGCCAACCCCCAGCCC
2807
GGCTGGGGGTTGGCAGGAG
CTCCTGCCAACCCCCAGCC
2808
GCTGGGGGTTGGCAGGAGG
CCTCCTGCCAACCCCCAGC
2809
CTGGGGGTTGGCAGGAGGT
ACCTCCTGCCAACCCCCAG
2810
TGGGGGTTGGCAGGAGGTG
CACCTCCTGCCAACCCCCA
2811
GGGGGTTGGCAGGAGGTGC
GCACCTCCTGCCAACCCCC
2812
GGGGTTGGCAGGAGGTGCG
CGCACCTCCTGCCAACCCC
2813
GGGTTGGCAGGAGGTGCGG
CCGCACCTCCTGCCAACCC
2814
GGTTGGCAGGAGGTGCGGG
CCCGCACCTCCTGCCAACC
2815
GTTGGCAGGAGGTGCGGGA
TCCCGCACCTCCTGCCAAC
2816
TTGGCAGGAGGTGCGGGAC
GTCCCGCACCTCCTGCCAA
2817
TGGCAGGAGGTGCGGGACA
TGTCCCGCACCTCCTGCCA
2818
GGCAGGAGGTGCGGGACAC
GTGTCCCGCACCTCCTGCC
2819
GCAGGAGGTGCGGGACACA
TGTGTCCCGCACCTCCTGC
2820
CAGGAGGTGCGGGACACAT
ATGTGTCCCGCACCTCCTG
2821
AGGAGGTGCGGGACACATC
GATGTGTCCCGCACCTCCT
2822
GGAGGTGCGGGACACATCG
CGATGTGTCCCGCACCTCC
2823
GAGGTGCGGGACACATCGA
TCGATGTGTCCCGCACCTC
2824
AGGTGCGGGACACATCGAT
ATCGATGTGTCCCGCACCT
2825
GGTGCGGGACACATCGATA
TATCGATGTGTCCCGCACC
2826
GTGCGGGACACATCGATAG
CTATCGATGTGTCCCGCAC
2827
TGCGGGACACATCGATAGG
CCTATCGATGTGTCCCGCA
2828
GCGGGACACATCGATAGGG
CCCTATCGATGTGTCCCGC
2829
CGGGACACATCGATAGGGA
TCCCTATCGATGTGTCCCG
2830
GGGACACATCGATAGGGAA
TTCCCTATCGATGTGTCCC
2831
GGACACATCGATAGGGAAC
GTTCCCTATCGATGTGTCC
2832
GACACATCGATAGGGAACA
TGTTCCCTATCGATGTGTC
2833
ACACATCGATAGGGAACAA
TTGTTCCCTATCGATGTGT
2834
CACATCGATAGGGAACAAG
CTTGTTCCCTATCGATGTG
2835
ACATCGATAGGGAACAAGG
CCTTGTTCCCTATCGATGT
2836
CATCGATAGGGAACAAGGA
TCCTTGTTCCCTATCGATG
2837
ATCGATAGGGAACAAGGAT
ATCCTTGTTCCCTATCGAT
2838
TCGATAGGGAACAAGGATG
CATCCTTGTTCCCTATCGA
2839
CGATAGGGAACAAGGATGT
ACATCCTTGTTCCCTATCG
2840
GATAGGGAACAAGGATGTG
CACATCCTTGTTCCCTATC
2841
ATAGGGAACAAGGATGTGG
CCACATCCTTGTTCCCTAT
2842
TAGGGAACAAGGATGTGGA
TCCACATCCTTGTTCCCTA
2843
AGGGAACAAGGATGTGGAC
GTCCACATCCTTGTTCCCT
2844
GGGAACAAGGATGTGGACT
AGTCCACATCCTTGTTCCC
2845
GGAACAAGGATGTGGACTC
GAGTCCACATCCTTGTTCC
2846
GAACAAGGATGTGGACTCG
CGAGTCCACATCCTTGTTC
2847
AACAAGGATGTGGACTCGG
CCGAGTCCACATCCTTGTT
2848
ACAAGGATGTGGACTCGGG
CCCGAGTCCACATCCTTGT
2849
CAAGGATGTGGACTCGGGA
TCCCGAGTCCACATCCTTG
2850
AAGGATGTGGACTCGGGAC
GTCCCGAGTCCACATCCTT
2851
AGGATGTGGACTCGGGACA
TGTCCCGAGTCCACATCCT
2852
GGATGTGGACTCGGGACAG
CTGTCCCGAGTCCACATCC
2853
GATGTGGACTCGGGACAGC
GCTGTCCCGAGTCCACATC
2854
ATGTGGACTCGGGACAGCA
TGCTGTCCCGAGTCCACAT
2855
TGTGGACTCGGGACAGCAT
ATGCTGTCCCGAGTCCACA
2856
GTGGACTCGGGACAGCATG
CATGCTGTCCCGAGTCCAC
2857
TGGACTCGGGACAGCATGA
TCATGCTGTCCCGAGTCCA
2858
GGACTCGGGACAGCATGAT
ATCATGCTGTCCCGAGTCC
2859
GACTCGGGACAGCATGATG
CATCATGCTGTCCCGAGTC
2860
ACTCGGGACAGCATGATGA
TCATCATGCTGTCCCGAGT
2861
CTCGGGACAGCATGATGAG
CTCATCATGCTGTCCCGAG
2862
TCGGGACAGCATGATGAGC
GCTCATCATGCTGTCCCGA
2863
CGGGACAGCATGATGAGCA
TGCTCATCATGCTGTCCCG
2864
GGGACAGCATGATGAGCAG
CTGCTCATCATGCTGTCCC
2865
GGACAGCATGATGAGCAGA
TCTGCTCATCATGCTGTCC
2866
GACAGCATGATGAGCAGAA
TTCTGCTCATCATGCTGTC
2867
ACAGCATGATGAGCAGAAA
TTTCTGCTCATCATGCTGT
2868
CAGCATGATGAGCAGAAAG
CTTTCTGCTCATCATGCTG
2869
AGCATGATGAGCAGAAAGG
CCTTTCTGCTCATCATGCT
2870
GCATGATGAGCAGAAAGGA
TCCTTTCTGCTCATCATGC
2871
CATGATGAGCAGAAAGGAC
GTCCTTTCTGCTCATCATG
2872
ATGATGAGCAGAAAGGACC
GGTCCTTTCTGCTCATCAT
2873
TGATGAGCAGAAAGGACCC
GGGTCCTTTCTGCTCATCA
2874
GATGAGCAGAAAGGACCCC
GGGGTCCTTTCTGCTCATC
2875
ATGAGCAGAAAGGACCCCA
TGGGGTCCTTTCTGCTCAT
2876
TGAGCAGAAAGGACCCCAA
TTGGGGTCCTTTCTGCTCA
2877
GAGCAGAAAGGACCCCAAG
CTTGGGGTCCTTTCTGCTC
2878
AGCAGAAAGGACCCCAAGA
TCTTGGGGTCCTTTCTGCT
2879
GCAGAAAGGACCCCAAGAT
ATCTTGGGGTCCTTTCTGC
2880
CAGAAAGGACCCCAAGATG
CATCTTGGGGTCCTTTCTG
2881
AGAAAGGACCCCAAGATGG
CCATCTTGGGGTCCTTTCT
2882
GAAAGGACCCCAAGATGGC
GCCATCTTGGGGTCCTTTC
2883
AAAGGACCCCAAGATGGCC
GGCCATCTTGGGGTCCTTT
2884
AAGGACCCCAAGATGGCCA
TGGCCATCTTGGGGTCCTT
2885
AGGACCCCAAGATGGCCAG
CTGGCCATCTTGGGGTCCT
2886
GGACCCCAAGATGGCCAGG
CCTGGCCATCTTGGGGTCC
2887
GACCCCAAGATGGCCAGGC
GCCTGGCCATCTTGGGGTC
2888
ACCCCAAGATGGCCAGGCC
GGCCTGGCCATCTTGGGGT
2889
CCCCAAGATGGCCAGGCCA
TGGCCTGGCCATCTTGGGG
2890
CCCAAGATGGCCAGGCCAG
CTGGCCTGGCCATCTTGGG
2891
CCAAGATGGCCAGGCCAGT
ACTGGCCTGGCCATCTTGG
2892
CAAGATGGCCAGGCCAGTC
GACTGGCCTGGCCATCTTG
2893
AAGATGGCCAGGCCAGTCT
AGACTGGCCTGGCCATCTT
2894
AGATGGCCAGGCCAGTCTC
GAGACTGGCCTGGCCATCT
2895
GATGGCCAGGCCAGTCTCC
GGAGACTGGCCTGGCCATC
2896
ATGGCCAGGCCAGTCTCCA
TGGAGACTGGCCTGGCCAT
2897
TGGCCAGGCCAGTCTCCAG
CTGGAGACTGGCCTGGCCA
2898
GGCCAGGCCAGTCTCCAGG
CCTGGAGACTGGCCTGGCC
2899
GCCAGGCCAGTCTCCAGGA
TCCTGGAGACTGGCCTGGC
2900
CCAGGCCAGTCTCCAGGAC
GTCCTGGAGACTGGCCTGG
2901
CAGGCCAGTCTCCAGGACC
GGTCCTGGAGACTGGCCTG
2902
AGGCCAGTCTCCAGGACCC
GGGTCCTGGAGACTGGCCT
2903
GGCCAGTCTCCAGGACCCG
CGGGTCCTGGAGACTGGCC
2904
GCCAGTCTCCAGGACCCGG
CCGGGTCCTGGAGACTGGC
2905
CCAGTCTCCAGGACCCGGG
CCCGGGTCCTGGAGACTGG
2906
CAGTCTCCAGGACCCGGGA
TCCCGGGTCCTGGAGACTG
2907
AGTCTCCAGGACCCGGGAC
GTCCCGGGTCCTGGAGACT
2908
GTCTCCAGGACCCGGGACT
AGTCCCGGGTCCTGGAGAC
2909
TCTCCAGGACCCGGGACTT
AAGTCCCGGGTCCTGGAGA
2910
CTCCAGGACCCGGGACTTC
GAAGTCCCGGGTCCTGGAG
2911
TCCAGGACCCGGGACTTCA
TGAAGTCCCGGGTCCTGGA
2912
CCAGGACCCGGGACTTCAG
CTGAAGTCCCGGGTCCTGG
2913
CAGGACCCGGGACTTCAGG
CCTGAAGTCCCGGGTCCTG
2914
AGGACCCGGGACTTCAGGA
TCCTGAAGTCCCGGGTCCT
2915
GGACCCGGGACTTCAGGAC
GTCCTGAAGTCCCGGGTCC
2916
GACCCGGGACTTCAGGACA
TGTCCTGAAGTCCCGGGTC
2917
ACCCGGGACTTCAGGACAT
ATGTCCTGAAGTCCCGGGT
2918
CCCGGGACTTCAGGACATA
TATGTCCTGAAGTCCCGGG
2919
CCGGGACTTCAGGACATAC
GTATGTCCTGAAGTCCCGG
2920
CGGGACTTCAGGACATACC
GGTATGTCCTGAAGTCCCG
2921
GGGACTTCAGGACATACCA
TGGTATGTCCTGAAGTCCC
2922
GGACTTCAGGACATACCAT
ATGGTATGTCCTGAAGTCC
2923
GACTTCAGGACATACCATG
CATGGTATGTCCTGAAGTC
2924
ACTTCAGGACATACCATGC
GCATGGTATGTCCTGAAGT
2925
CTTCAGGACATACCATGCC
GGCATGGTATGTCCTGAAG
2926
TTCAGGACATACCATGCCT
AGGCATGGTATGTCCTGAA
2927
TCAGGACATACCATGCCTG
CAGGCATGGTATGTCCTGA
2928
CAGGACATACCATGCCTGG
CCAGGCATGGTATGTCCTG
2929
AGGACATACCATGCCTGGC
GCCAGGCATGGTATGTCCT
2930
GGACATACCATGCCTGGCT
AGCCAGGCATGGTATGTCC
2931
GACATACCATGCCTGGCTC
GAGCCAGGCATGGTATGTC
2932
ACATACCATGCCTGGCTCT
AGAGCCAGGCATGGTATGT
2933
CATACCATGCCTGGCTCTC
GAGAGCCAGGCATGGTATG
2934
ATACCATGCCTGGCTCTCC
GGAGAGCCAGGCATGGTAT
2935
TACCATGCCTGGCTCTCCC
GGGAGAGCCAGGCATGGTA
2936
ACCATGCCTGGCTCTCCCT
AGGGAGAGCCAGGCATGGT
2937
CCATGCCTGGCTCTCCCTG
CAGGGAGAGCCAGGCATGG
2938
CATGCCTGGCTCTCCCTGC
GCAGGGAGAGCCAGGCATG
2939
ATGCCTGGCTCTCCCTGCA
TGCAGGGAGAGCCAGGCAT
2940
TGCCTGGCTCTCCCTGCAA
TTGCAGGGAGAGCCAGGCA
2941
GCCTGGCTCTCCCTGCAAA
TTTGCAGGGAGAGCCAGGC
2942
CCTGGCTCTCCCTGCAAAA
TTTTGCAGGGAGAGCCAGG
2943
CTGGCTCTCCCTGCAAAAC
GTTTTGCAGGGAGAGCCAG
2944
TGGCTCTCCCTGCAAAACT
AGTTTTGCAGGGAGAGCCA
2945
GGCTCTCCCTGCAAAACTG
CAGTTTTGCAGGGAGAGCC
2946
GCTCTCCCTGCAAAACTGG
CCAGTTTTGCAGGGAGAGC
2947
CTCTCCCTGCAAAACTGGC
GCCAGTTTTGCAGGGAGAG
2948
TCTCCCTGCAAAACTGGCT
AGCCAGTTTTGCAGGGAGA
2949
CTCCCTGCAAAACTGGCTC
GAGCCAGTTTTGCAGGGAG
2950
TCCCTGCAAAACTGGCTCA
TGAGCCAGTTTTGCAGGGA
2951
CCCTGCAAAACTGGCTCAA
TTGAGCCAGTTTTGCAGGG
2952
CCTGCAAAACTGGCTCAAT
ATTGAGCCAGTTTTGCAGG
2953
CTGCAAAACTGGCTCAATG
CATTGAGCCAGTTTTGCAG
2954
TGCAAAACTGGCTCAATGC
GCATTGAGCCAGTTTTGCA
2955
GCAAAACTGGCTCAATGCC
GGCATTGAGCCAGTTTTGC
2956
CAAAACTGGCTCAATGCCA
TGGCATTGAGCCAGTTTTG
2957
AAAACTGGCTCAATGCCAA
TTGGCATTGAGCCAGTTTT
2958
AAACTGGCTCAATGCCAAA
TTTGGCATTGAGCCAGTTT
2959
AACTGGCTCAATGCCAAAG
CTTTGGCATTGAGCCAGTT
2960
ACTGGCTCAATGCCAAAGT
ACTTTGGCATTGAGCCAGT
2961
CTGGCTCAATGCCAAAGTT
AACTTTGGCATTGAGCCAG
2962
TGGCTCAATGCCAAAGTTG
CAACTTTGGCATTGAGCCA
2963
GGCTCAATGCCAAAGTTGT
ACAACTTTGGCATTGAGCC
2964
GCTCAATGCCAAAGTTGTG
CACAACTTTGGCATTGAGC
2965
CTCAATGCCAAAGTTGTGC
GCACAACTTTGGCATTGAG
2966
TCAATGCCAAAGTTGTGCC
GGCACAACTTTGGCATTGA
2967
CAATGCCAAAGTTGTGCCC
GGGCACAACTTTGGCATTG
2968
AATGCCAAAGTTGTGCCCA
TGGGCACAACTTTGGCATT
2969
ATGCCAAAGTTGTGCCCAG
CTGGGCACAACTTTGGCAT
2970
TGCCAAAGTTGTGCCCAGG
CCTGGGCACAACTTTGGCA
2971
GCCAAAGTTGTGCCCAGGC
GCCTGGGCACAACTTTGGC
2972
CCAAAGTTGTGCCCAGGCA
TGCCTGGGCACAACTTTGG
2973
CAAAGTTGTGCCCAGGCAG
CTGCCTGGGCACAACTTTG
2974
AAAGTTGTGCCCAGGCAGC
GCTGCCTGGGCACAACTTT
2975
AAGTTGTGCCCAGGCAGCT
AGCTGCCTGGGCACAACTT
2976
AGTTGTGCCCAGGCAGCTG
CAGCTGCCTGGGCACAACT
2977
GTTGTGCCCAGGCAGCTGG
CCAGCTGCCTGGGCACAAC
2978
TTGTGCCCAGGCAGCTGGA
TCCAGCTGCCTGGGCACAA
2979
TGTGCCCAGGCAGCTGGAG
CTCCAGCTGCCTGGGCACA
2980
GTGCCCAGGCAGCTGGAGA
TCTCCAGCTGCCTGGGCAC
2981
TGCCCAGGCAGCTGGAGAG
CTCTCCAGCTGCCTGGGCA
2982
GCCCAGGCAGCTGGAGAGG
CCTCTCCAGCTGCCTGGGC
2983
CCCAGGCAGCTGGAGAGGG
CCCTCTCCAGCTGCCTGGG
2984
CCAGGCAGCTGGAGAGGGA
TCCCTCTCCAGCTGCCTGG
2985
CAGGCAGCTGGAGAGGGAG
CTCCCTCTCCAGCTGCCTG
2986
AGGCAGCTGGAGAGGGAGG
CCTCCCTCTCCAGCTGCCT
2987
GGCAGCTGGAGAGGGAGGA
TCCTCCCTCTCCAGCTGCC
2988
GCAGCTGGAGAGGGAGGAG
CTCCTCCCTCTCCAGCTGC
2989
CAGCTGGAGAGGGAGGAGG
CCTCCTCCCTCTCCAGCTG
2990
AGCTGGAGAGGGAGGAGGG
CCCTCCTCCCTCTCCAGCT
2991
GCTGGAGAGGGAGGAGGGC
GCCCTCCTCCCTCTCCAGC
2992
CTGGAGAGGGAGGAGGGCA
TGCCCTCCTCCCTCTCCAG
2993
TGGAGAGGGAGGAGGGCAC
GTGCCCTCCTCCCTCTCCA
2994
GGAGAGGGAGGAGGGCACG
CGTGCCCTCCTCCCTCTCC
2995
GAGAGGGAGGAGGGCACGC
GCGTGCCCTCCTCCCTCTC
2996
AGAGGGAGGAGGGCACGCC
GGCGTGCCCTCCTCCCTCT
2997
GAGGGAGGAGGGCACGCCT
AGGCGTGCCCTCCTCCCTC
2998
AGGGAGGAGGGCACGCCTG
CAGGCGTGCCCTCCTCCCT
2999
GGGAGGAGGGCACGCCTGC
GCAGGCGTGCCCTCCTCCC
3000
GGAGGAGGGCACGCCTGCC
GGCAGGCGTGCCCTCCTCC
3001
GAGGAGGGCACGCCTGCCA
TGGCAGGCGTGCCCTCCTC
3002
AGGAGGGCACGCCTGCCAC
GTGGCAGGCGTGCCCTCCT
3003
GGAGGGCACGCCTGCCACT
AGTGGCAGGCGTGCCCTCC
3004
GAGGGCACGCCTGCCACTC
GAGTGGCAGGCGTGCCCTC
3005
AGGGCACGCCTGCCACTCT
AGAGTGGCAGGCGTGCCCT
3006
GGGCACGCCTGCCACTCTC
GAGAGTGGCAGGCGTGCCC
3007
GGCACGCCTGCCACTCTCA
TGAGAGTGGCAGGCGTGCC
3008
GCACGCCTGCCACTCTCAG
CTGAGAGTGGCAGGCGTGC
3009
CACGCCTGCCACTCTCAGC
GCTGAGAGTGGCAGGCGTG
3010
ACGCCTGCCACTCTCAGCA
TGCTGAGAGTGGCAGGCGT
3011
CGCCTGCCACTCTCAGCAA
TTGCTGAGAGTGGCAGGCG
3012
GCCTGCCACTCTCAGCAAG
CTTGCTGAGAGTGGCAGGC
3013
CCTGCCACTCTCAGCAAGT
ACTTGCTGAGAGTGGCAGG
3014
CTGCCACTCTCAGCAAGTG
CACTTGCTGAGAGTGGCAG
3015
TGCCACTCTCAGCAAGTGC
GCACTTGCTGAGAGTGGCA
3016
GCCACTCTCAGCAAGTGCG
CGCACTTGCTGAGAGTGGC
3017
CCACTCTCAGCAAGTGCGG
CCGCACTTGCTGAGAGTGG
3018
CACTCTCAGCAAGTGCGGA
TCCGCACTTGCTGAGAGTG
3019
ACTCTCAGCAAGTGCGGAG
CTCCGCACTTGCTGAGAGT
3020
CTCTCAGCAAGTGCGGAGA
TCTCCGCACTTGCTGAGAG
3021
TCTCAGCAAGTGCGGAGAT
ATCTCCGCACTTGCTGAGA
3022
CTCAGCAAGTGCGGAGATC
GATCTCCGCACTTGCTGAG
3023
TCAGCAAGTGCGGAGATCG
CGATCTCCGCACTTGCTGA
3024
CAGCAAGTGCGGAGATCGC
GCGATCTCCGCACTTGCTG
3025
AGCAAGTGCGGAGATCGCC
GGCGATCTCCGCACTTGCT
3026
GCAAGTGCGGAGATCGCCT
AGGCGATCTCCGCACTTGC
3027
CAAGTGCGGAGATCGCCTC
GAGGCGATCTCCGCACTTG
3028
AAGTGCGGAGATCGCCTCT
AGAGGCGATCTCCGCACTT
3029
AGTGCGGAGATCGCCTCTG
CAGAGGCGATCTCCGCACT
3030
GTGCGGAGATCGCCTCTGG
CCAGAGGCGATCTCCGCAC
3031
TGCGGAGATCGCCTCTGGG
CCCAGAGGCGATCTCCGCA
3032
GCGGAGATCGCCTCTGGGA
TCCCAGAGGCGATCTCCGC
3033
CGGAGATCGCCTCTGGGAG
CTCCCAGAGGCGATCTCCG
3034
GGAGATCGCCTCTGGGAGG
CCTCCCAGAGGCGATCTCC
3035
GAGATCGCCTCTGGGAGGG
CCCTCCCAGAGGCGATCTC
3036
AGATCGCCTCTGGGAGGGG
CCCCTCCCAGAGGCGATCT
3037
GATCGCCTCTGGGAGGGGA
TCCCCTCCCAGAGGCGATC
3038
ATCGCCTCTGGGAGGGGAG
CTCCCCTCCCAGAGGCGAT
3039
TCGCCTCTGGGAGGGGAGC
GCTCCCCTCCCAGAGGCGA
3040
CGCCTCTGGGAGGGGAGCT
AGCTCCCCTCCCAGAGGCG
3041
GCCTCTGGGAGGGGAGCTG
CAGCTCCCCTCCCAGAGGC
3042
CCTCTGGGAGGGGAGCTGC
GCAGCTCCCCTCCCAGAGG
3043
CTCTGGGAGGGGAGCTGCA
TGCAGCTCCCCTCCCAGAG
3044
TCTGGGAGGGGAGCTGCAG
CTGCAGCTCCCCTCCCAGA
3045
CTGGGAGGGGAGCTGCAGC
GCTGCAGCTCCCCTCCCAG
3046
TGGGAGGGGAGCTGCAGCA
TGCTGCAGCTCCCCTCCCA
3047
GGGAGGGGAGCTGCAGCAG
CTGCTGCAGCTCCCCTCCC
3048
GGAGGGGAGCTGCAGCAGG
CCTGCTGCAGCTCCCCTCC
3049
GAGGGGAGCTGCAGCAGGA
TCCTGCTGCAGCTCCCCTC
3050
AGGGGAGCTGCAGCAGGAG
CTCCTGCTGCAGCTCCCCT
3051
GGGGAGCTGCAGCAGGAGG
CCTCCTGCTGCAGCTCCCC
3052
GGGAGCTGCAGCAGGAGGA
TCCTCCTGCTGCAGCTCCC
3053
GGAGCTGCAGCAGGAGGAA
TTCCTCCTGCTGCAGCTCC
3054
GAGCTGCAGCAGGAGGAAG
CTTCCTCCTGCTGCAGCTC
3055
AGCTGCAGCAGGAGGAAGA
TCTTCCTCCTGCTGCAGCT
3056
GCTGCAGCAGGAGGAAGAC
GTCTTCCTCCTGCTGCAGC
3057
CTGCAGCAGGAGGAAGACA
TGTCTTCCTCCTGCTGCAG
3058
TGCAGCAGGAGGAAGACAC
GTGTCTTCCTCCTGCTGCA
3059
GCAGCAGGAGGAAGACACA
TGTGTCTTCCTCCTGCTGC
3060
CAGCAGGAGGAAGACACAG
CTGTGTCTTCCTCCTGCTG
3061
AGCAGGAGGAAGACACAGC
GCTGTGTCTTCCTCCTGCT
3062
GCAGGAGGAAGACACAGCC
GGCTGTGTCTTCCTCCTGC
3063
CAGGAGGAAGACACAGCCA
TGGCTGTGTCTTCCTCCTG
3064
AGGAGGAAGACACAGCCAC
GTGGCTGTGTCTTCCTCCT
3065
GGAGGAAGACACAGCCACC
GGTGGCTGTGTCTTCCTCC
3066
GAGGAAGACACAGCCACCA
TGGTGGCTGTGTCTTCCTC
3067
AGGAAGACACAGCCACCAA
TTGGTGGCTGTGTCTTCCT
3068
GGAAGACACAGCCACCAAC
GTTGGTGGCTGTGTCTTCC
3069
GAAGACACAGCCACCAACT
AGTTGGTGGCTGTGTCTTC
3070
AAGACACAGCCACCAACTC
GAGTTGGTGGCTGTGTCTT
3071
AGACACAGCCACCAACTCC
GGAGTTGGTGGCTGTGTCT
3072
GACACAGCCACCAACTCCA
TGGAGTTGGTGGCTGTGTC
3073
ACACAGCCACCAACTCCAG
CTGGAGTTGGTGGCTGTGT
3074
CACAGCCACCAACTCCAGC
GCTGGAGTTGGTGGCTGTG
3075
ACAGCCACCAACTCCAGCT
AGCTGGAGTTGGTGGCTGT
3076
CAGCCACCAACTCCAGCTC
GAGCTGGAGTTGGTGGCTG
3077
AGCCACCAACTCCAGCTCT
AGAGCTGGAGTTGGTGGCT
3078
GCCACCAACTCCAGCTCTG
CAGAGCTGGAGTTGGTGGC
3079
CCACCAACTCCAGCTCTGA
TCAGAGCTGGAGTTGGTGG
3080
CACCAACTCCAGCTCTGAG
CTCAGAGCTGGAGTTGGTG
3081
ACCAACTCCAGCTCTGAGG
CCTCAGAGCTGGAGTTGGT
3082
CCAACTCCAGCTCTGAGGA
TCCTCAGAGCTGGAGTTGG
3083
CAACTCCAGCTCTGAGGAA
TTCCTCAGAGCTGGAGTTG
3084
AACTCCAGCTCTGAGGAAG
CTTCCTCAGAGCTGGAGTT
3085
ACTCCAGCTCTGAGGAAGG
CCTTCCTCAGAGCTGGAGT
3086
CTCCAGCTCTGAGGAAGGC
GCCTTCCTCAGAGCTGGAG
3087
TCCAGCTCTGAGGAAGGCC
GGCCTTCCTCAGAGCTGGA
3088
CCAGCTCTGAGGAAGGCCC
GGGCCTTCCTCAGAGCTGG
3089
CAGCTCTGAGGAAGGCCCA
TGGGCCTTCCTCAGAGCTG
3090
AGCTCTGAGGAAGGCCCAG
CTGGGCCTTCCTCAGAGCT
3091
GCTCTGAGGAAGGCCCAGG
CCTGGGCCTTCCTCAGAGC
3092
CTCTGAGGAAGGCCCAGGG
CCCTGGGCCTTCCTCAGAG
3093
TCTGAGGAAGGCCCAGGGT
ACCCTGGGCCTTCCTCAGA
3094
CTGAGGAAGGCCCAGGGTC
GACCCTGGGCCTTCCTCAG
3095
TGAGGAAGGCCCAGGGTCC
GGACCCTGGGCCTTCCTCA
3096
GAGGAAGGCCCAGGGTCCG
CGGACCCTGGGCCTTCCTC
3097
AGGAAGGCCCAGGGTCCGG
CCGGACCCTGGGCCTTCCT
3098
GGAAGGCCCAGGGTCCGGC
GCCGGACCCTGGGCCTTCC
3099
GAAGGCCCAGGGTCCGGCC
GGCCGGACCCTGGGCCTTC
3100
AAGGCCCAGGGTCCGGCCC
GGGCCGGACCCTGGGCCTT
3101
AGGCCCAGGGTCCGGCCCT
AGGGCCGGACCCTGGGCCT
3102
GGCCCAGGGTCCGGCCCTG
CAGGGCCGGACCCTGGGCC
3103
GCCCAGGGTCCGGCCCTGA
TCAGGGCCGGACCCTGGGC
3104
CCCAGGGTCCGGCCCTGAC
GTCAGGGCCGGACCCTGGG
3105
CCAGGGTCCGGCCCTGACA
TGTCAGGGCCGGACCCTGG
3106
CAGGGTCCGGCCCTGACAG
CTGTCAGGGCCGGACCCTG
3107
AGGGTCCGGCCCTGACAGC
GCTGTCAGGGCCGGACCCT
3108
GGGTCCGGCCCTGACAGCC
GGCTGTCAGGGCCGGACCC
3109
GGTCCGGCCCTGACAGCCG
CGGCTGTCAGGGCCGGACC
3110
GTCCGGCCCTGACAGCCGG
CCGGCTGTCAGGGCCGGAC
3111
TCCGGCCCTGACAGCCGGC
GCCGGCTGTCAGGGCCGGA
3112
CCGGCCCTGACAGCCGGCT
AGCCGGCTGTCAGGGCCGG
3113
CGGCCCTGACAGCCGGCTC
GAGCCGGCTGTCAGGGCCG
3114
GGCCCTGACAGCCGGCTCA
TGAGCCGGCTGTCAGGGCC
3115
GCCCTGACAGCCGGCTCAG
CTGAGCCGGCTGTCAGGGC
3116
CCCTGACAGCCGGCTCAGC
GCTGAGCCGGCTGTCAGGG
3117
CCTGACAGCCGGCTCAGCA
TGCTGAGCCGGCTGTCAGG
3118
CTGACAGCCGGCTCAGCAC
GTGCTGAGCCGGCTGTCAG
3119
TGACAGCCGGCTCAGCACA
TGTGCTGAGCCGGCTGTCA
3120
GACAGCCGGCTCAGCACAG
CTGTGCTGAGCCGGCTGTC
3121
ACAGCCGGCTCAGCACAGG
CCTGTGCTGAGCCGGCTGT
3122
CAGCCGGCTCAGCACAGGC
GCCTGTGCTGAGCCGGCTG
3123
AGCCGGCTCAGCACAGGCC
GGCCTGTGCTGAGCCGGCT
3124
GCCGGCTCAGCACAGGCCT
AGGCCTGTGCTGAGCCGGC
3125
CCGGCTCAGCACAGGCCTC
GAGGCCTGTGCTGAGCCGG
3126
CGGCTCAGCACAGGCCTCG
CGAGGCCTGTGCTGAGCCG
3127
GGCTCAGCACAGGCCTCGC
GCGAGGCCTGTGCTGAGCC
3128
GCTCAGCACAGGCCTCGCC
GGCGAGGCCTGTGCTGAGC
3129
CTCAGCACAGGCCTCGCCA
TGGCGAGGCCTGTGCTGAG
3130
TCAGCACAGGCCTCGCCAA
TTGGCGAGGCCTGTGCTGA
3131
CAGCACAGGCCTCGCCAAG
CTTGGCGAGGCCTGTGCTG
3132
AGCACAGGCCTCGCCAAGC
GCTTGGCGAGGCCTGTGCT
3133
GCACAGGCCTCGCCAAGCA
TGCTTGGCGAGGCCTGTGC
3134
CACAGGCCTCGCCAAGCAC
GTGCTTGGCGAGGCCTGTG
3135
ACAGGCCTCGCCAAGCACC
GGTGCTTGGCGAGGCCTGT
3136
CAGGCCTCGCCAAGCACCT
AGGTGCTTGGCGAGGCCTG
3137
AGGCCTCGCCAAGCACCTG
CAGGTGCTTGGCGAGGCCT
3138
GGCCTCGCCAAGCACCTGC
GCAGGTGCTTGGCGAGGCC
3139
GCCTCGCCAAGCACCTGCT
AGCAGGTGCTTGGCGAGGC
3140
CCTCGCCAAGCACCTGCTC
GAGCAGGTGCTTGGCGAGG
3141
CTCGCCAAGCACCTGCTCA
TGAGCAGGTGCTTGGCGAG
3142
TCGCCAAGCACCTGCTCAG
CTGAGCAGGTGCTTGGCGA
3143
CGCCAAGCACCTGCTCAGT
ACTGAGCAGGTGCTTGGCG
3144
GCCAAGCACCTGCTCAGTG
CACTGAGCAGGTGCTTGGC
3145
CCAAGCACCTGCTCAGTGG
CCACTGAGCAGGTGCTTGG
3146
CAAGCACCTGCTCAGTGGT
ACCACTGAGCAGGTGCTTG
3147
AAGCACCTGCTCAGTGGTT
AACCACTGAGCAGGTGCTT
3148
AGCACCTGCTCAGTGGTTT
AAACCACTGAGCAGGTGCT
3149
GCACCTGCTCAGTGGTTTG
CAAACCACTGAGCAGGTGC
3150
CACCTGCTCAGTGGTTTGG
CCAAACCACTGAGCAGGTG
3151
ACCTGCTCAGTGGTTTGGG
CCCAAACCACTGAGCAGGT
3152
CCTGCTCAGTGGTTTGGGG
CCCCAAACCACTGAGCAGG
3153
CTGCTCAGTGGTTTGGGGG
CCCCCAAACCACTGAGCAG
3154
TGCTCAGTGGTTTGGGGGA
TCCCCCAAACCACTGAGCA
3155
GCTCAGTGGTTTGGGGGAC
GTCCCCCAAACCACTGAGC
3156
CTCAGTGGTTTGGGGGACC
GGTCCCCCAAACCACTGAG
3157
TCAGTGGTTTGGGGGACCG
CGGTCCCCCAAACCACTGA
3158
CAGTGGTTTGGGGGACCGA
TCGGTCCCCCAAACCACTG
3159
AGTGGTTTGGGGGACCGAC
GTCGGTCCCCCAAACCACT
3160
GTGGTTTGGGGGACCGACT
AGTCGGTCCCCCAAACCAC
3161
TGGTTTGGGGGACCGACTG
CAGTCGGTCCCCCAAACCA
3162
GGTTTGGGGGACCGACTGT
ACAGTCGGTCCCCCAAACC
3163
GTTTGGGGGACCGACTGTG
CACAGTCGGTCCCCCAAAC
3164
TTTGGGGGACCGACTGTGC
GCACAGTCGGTCCCCCAAA
3165
TTGGGGGACCGACTGTGCC
GGCACAGTCGGTCCCCCAA
3166
TGGGGGACCGACTGTGCCG
CGGCACAGTCGGTCCCCCA
3167
GGGGGACCGACTGTGCCGC
GCGGCACAGTCGGTCCCCC
3168
GGGGACCGACTGTGCCGCC
GGCGGCACAGTCGGTCCCC
3169
GGGACCGACTGTGCCGCCT
AGGCGGCACAGTCGGTCCC
3170
GGACCGACTGTGCCGCCTG
CAGGCGGCACAGTCGGTCC
3171
GACCGACTGTGCCGCCTGC
GCAGGCGGCACAGTCGGTC
3172
ACCGACTGTGCCGCCTGCT
AGCAGGCGGCACAGTCGGT
3173
CCGACTGTGCCGCCTGCTG
CAGCAGGCGGCACAGTCGG
3174
CGACTGTGCCGCCTGCTGC
GCAGCAGGCGGCACAGTCG
3175
GACTGTGCCGCCTGCTGCG
CGCAGCAGGCGGCACAGTC
3176
ACTGTGCCGCCTGCTGCGG
CCGCAGCAGGCGGCACAGT
3177
CTGTGCCGCCTGCTGCGGA
TCCGCAGCAGGCGGCACAG
3178
TGTGCCGCCTGCTGCGGAG
CTCCGCAGCAGGCGGCACA
3179
GTGCCGCCTGCTGCGGAGG
CCTCCGCAGCAGGCGGCAC
3180
TGCCGCCTGCTGCGGAGGG
CCCTCCGCAGCAGGCGGCA
3181
GCCGCCTGCTGCGGAGGGA
TCCCTCCGCAGCAGGCGGC
3182
CCGCCTGCTGCGGAGGGAG
CTCCCTCCGCAGCAGGCGG
3183
CGCCTGCTGCGGAGGGAGC
GCTCCCTCCGCAGCAGGCG
3184
GCCTGCTGCGGAGGGAGCG
CGCTCCCTCCGCAGCAGGC
3185
CCTGCTGCGGAGGGAGCGG
CCGCTCCCTCCGCAGCAGG
3186
CTGCTGCGGAGGGAGCGGG
CCCGCTCCCTCCGCAGCAG
3187
TGCTGCGGAGGGAGCGGGA
TCCCGCTCCCTCCGCAGCA
3188
GCTGCGGAGGGAGCGGGAG
CTCCCGCTCCCTCCGCAGC
3189
CTGCGGAGGGAGCGGGAGG
CCTCCCGCTCCCTCCGCAG
3190
TGCGGAGGGAGCGGGAGGC
GCCTCCCGCTCCCTCCGCA
3191
GCGGAGGGAGCGGGAGGCC
GGCCTCCCGCTCCCTCCGC
3192
CGGAGGGAGCGGGAGGCCC
GGGCCTCCCGCTCCCTCCG
3193
GGAGGGAGCGGGAGGCCCT
AGGGCCTCCCGCTCCCTCC
3194
GAGGGAGCGGGAGGCCCTG
CAGGGCCTCCCGCTCCCTC
3195
AGGGAGCGGGAGGCCCTGG
CCAGGGCCTCCCGCTCCCT
3196
GGGAGCGGGAGGCCCTGGC
GCCAGGGCCTCCCGCTCCC
3197
GGAGCGGGAGGCCCTGGCT
AGCCAGGGCCTCCCGCTCC
3198
GAGCGGGAGGCCCTGGCTT
AAGCCAGGGCCTCCCGCTC
3199
AGCGGGAGGCCCTGGCTTG
CAAGCCAGGGCCTCCCGCT
3200
GCGGGAGGCCCTGGCTTGG
CCAAGCCAGGGCCTCCCGC
3201
CGGGAGGCCCTGGCTTGGG
CCCAAGCCAGGGCCTCCCG
3202
GGGAGGCCCTGGCTTGGGC
GCCCAAGCCAGGGCCTCCC
3203
GGAGGCCCTGGCTTGGGCC
GGCCCAAGCCAGGGCCTCC
3204
GAGGCCCTGGCTTGGGCCC
GGGCCCAAGCCAGGGCCTC
3205
AGGCCCTGGCTTGGGCCCA
TGGGCCCAAGCCAGGGCCT
3206
GGCCCTGGCTTGGGCCCAG
CTGGGCCCAAGCCAGGGCC
3207
GCCCTGGCTTGGGCCCAGC
GCTGGGCCCAAGCCAGGGC
3208
CCCTGGCTTGGGCCCAGCG
CGCTGGGCCCAAGCCAGGG
3209
CCTGGCTTGGGCCCAGCGG
CCGCTGGGCCCAAGCCAGG
3210
CTGGCTTGGGCCCAGCGGG
CCCGCTGGGCCCAAGCCAG
3211
TGGCTTGGGCCCAGCGGGA
TCCCGCTGGGCCCAAGCCA
3212
GGCTTGGGCCCAGCGGGAA
TTCCCGCTGGGCCCAAGCC
3213
GCTTGGGCCCAGCGGGAAG
CTTCCCGCTGGGCCCAAGC
3214
CTTGGGCCCAGCGGGAAGG
CCTTCCCGCTGGGCCCAAG
3215
TTGGGCCCAGCGGGAAGGC
GCCTTCCCGCTGGGCCCAA
3216
TGGGCCCAGCGGGAAGGCC
GGCCTTCCCGCTGGGCCCA
3217
GGGCCCAGCGGGAAGGCCA
TGGCCTTCCCGCTGGGCCC
3218
GGCCCAGCGGGAAGGCCAA
TTGGCCTTCCCGCTGGGCC
3219
GCCCAGCGGGAAGGCCAAG
CTTGGCCTTCCCGCTGGGC
3220
CCCAGCGGGAAGGCCAAGG
CCTTGGCCTTCCCGCTGGG
3221
CCAGCGGGAAGGCCAAGGG
CCCTTGGCCTTCCCGCTGG
3222
CAGCGGGAAGGCCAAGGGC
GCCCTTGGCCTTCCCGCTG
3223
AGCGGGAAGGCCAAGGGCC
GGCCCTTGGCCTTCCCGCT
3224
GCGGGAAGGCCAAGGGCCA
TGGCCCTTGGCCTTCCCGC
3225
CGGGAAGGCCAAGGGCCAG
CTGGCCCTTGGCCTTCCCG
3226
GGGAAGGCCAAGGGCCAGC
GCTGGCCCTTGGCCTTCCC
3227
GGAAGGCCAAGGGCCAGCC
GGCTGGCCCTTGGCCTTCC
3228
GAAGGCCAAGGGCCAGCCG
CGGCTGGCCCTTGGCCTTC
3229
AAGGCCAAGGGCCAGCCGT
ACGGCTGGCCCTTGGCCTT
3230
AGGCCAAGGGCCAGCCGTG
CACGGCTGGCCCTTGGCCT
3231
GGCCAAGGGCCAGCCGTGA
TCACGGCTGGCCCTTGGCC
3232
GCCAAGGGCCAGCCGTGAC
GTCACGGCTGGCCCTTGGC
3233
CCAAGGGCCAGCCGTGACA
TGTCACGGCTGGCCCTTGG
3234
CAAGGGCCAGCCGTGACAG
CTGTCACGGCTGGCCCTTG
3235
AAGGGCCAGCCGTGACAGA
TCTGTCACGGCTGGCCCTT
3236
AGGGCCAGCCGTGACAGAG
CTCTGTCACGGCTGGCCCT
3237
GGGCCAGCCGTGACAGAGG
CCTCTGTCACGGCTGGCCC
3238
GGCCAGCCGTGACAGAGGA
TCCTCTGTCACGGCTGGCC
3239
GCCAGCCGTGACAGAGGAC
GTCCTCTGTCACGGCTGGC
3240
CCAGCCGTGACAGAGGACA
TGTCCTCTGTCACGGCTGG
3241
CAGCCGTGACAGAGGACAG
CTGTCCTCTGTCACGGCTG
3242
AGCCGTGACAGAGGACAGC
GCTGTCCTCTGTCACGGCT
3243
GCCGTGACAGAGGACAGCC
GGCTGTCCTCTGTCACGGC
3244
CCGTGACAGAGGACAGCCC
GGGCTGTCCTCTGTCACGG
3245
CGTGACAGAGGACAGCCCA
TGGGCTGTCCTCTGTCACG
3246
GTGACAGAGGACAGCCCAG
CTGGGCTGTCCTCTGTCAC
3247
TGACAGAGGACAGCCCAGG
CCTGGGCTGTCCTCTGTCA
3248
GACAGAGGACAGCCCAGGC
GCCTGGGCTGTCCTCTGTC
3249
ACAGAGGACAGCCCAGGCA
TGCCTGGGCTGTCCTCTGT
3250
CAGAGGACAGCCCAGGCAT
ATGCCTGGGCTGTCCTCTG
3251
AGAGGACAGCCCAGGCATT
AATGCCTGGGCTGTCCTCT
3252
GAGGACAGCCCAGGCATTC
GAATGCCTGGGCTGTCCTC
3253
AGGACAGCCCAGGCATTCC
GGAATGCCTGGGCTGTCCT
3254
GGACAGCCCAGGCATTCCA
TGGAATGCCTGGGCTGTCC
3255
GACAGCCCAGGCATTCCAC
GTGGAATGCCTGGGCTGTC
3256
ACAGCCCAGGCATTCCACG
CGTGGAATGCCTGGGCTGT
3257
CAGCCCAGGCATTCCACGC
GCGTGGAATGCCTGGGCTG
3258
AGCCCAGGCATTCCACGCT
AGCGTGGAATGCCTGGGCT
3259
GCCCAGGCATTCCACGCTG
CAGCGTGGAATGCCTGGGC
3260
CCCAGGCATTCCACGCTGC
GCAGCGTGGAATGCCTGGG
3261
CCAGGCATTCCACGCTGCT
AGCAGCGTGGAATGCCTGG
3262
CAGGCATTCCACGCTGCTG
CAGCAGCGTGGAATGCCTG
3263
AGGCATTCCACGCTGCTGC
GCAGCAGCGTGGAATGCCT
3264
GGCATTCCACGCTGCTGCA
TGCAGCAGCGTGGAATGCC
3265
GCATTCCACGCTGCTGCAG
CTGCAGCAGCGTGGAATGC
3266
CATTCCACGCTGCTGCAGC
GCTGCAGCAGCGTGGAATG
3267
ATTCCACGCTGCTGCAGCC
GGCTGCAGCAGCGTGGAAT
3268
TTCCACGCTGCTGCAGCCG
CGGCTGCAGCAGCGTGGAA
3269
TCCACGCTGCTGCAGCCGT
ACGGCTGCAGCAGCGTGGA
3270
CCACGCTGCTGCAGCCGTT
AACGGCTGCAGCAGCGTGG
3271
CACGCTGCTGCAGCCGTTG
CAACGGCTGCAGCAGCGTG
3272
ACGCTGCTGCAGCCGTTGC
GCAACGGCTGCAGCAGCGT
3273
CGCTGCTGCAGCCGTTGCC
GGCAACGGCTGCAGCAGCG
3274
GCTGCTGCAGCCGTTGCCA
TGGCAACGGCTGCAGCAGC
3275
CTGCTGCAGCCGTTGCCAC
GTGGCAACGGCTGCAGCAG
3276
TGCTGCAGCCGTTGCCACC
GGTGGCAACGGCTGCAGCA
3277
GCTGCAGCCGTTGCCACCA
TGGTGGCAACGGCTGCAGC
3278
CTGCAGCCGTTGCCACCAT
ATGGTGGCAACGGCTGCAG
3279
TGCAGCCGTTGCCACCATG
CATGGTGGCAACGGCTGCA
3280
GCAGCCGTTGCCACCATGG
CCATGGTGGCAACGGCTGC
3281
CAGCCGTTGCCACCATGGA
TCCATGGTGGCAACGGCTG
3282
AGCCGTTGCCACCATGGAC
GTCCATGGTGGCAACGGCT
3283
GCCGTTGCCACCATGGACT
AGTCCATGGTGGCAACGGC
3284
CCGTTGCCACCATGGACTC
GAGTCCATGGTGGCAACGG
3285
CGTTGCCACCATGGACTCT
AGAGTCCATGGTGGCAACG
3286
GTTGCCACCATGGACTCTT
AAGAGTCCATGGTGGCAAC
3287
TTGCCACCATGGACTCTTC
GAAGAGTCCATGGTGGCAA
3288
TGCCACCATGGACTCTTCA
TGAAGAGTCCATGGTGGCA
3289
GCCACCATGGACTCTTCAA
TTGAAGAGTCCATGGTGGC
3290
CCACCATGGACTCTTCAAC
GTTGAAGAGTCCATGGTGG
3291
CACCATGGACTCTTCAACA
TGTTGAAGAGTCCATGGTG
3292
ACCATGGACTCTTCAACAC
GTGTTGAAGAGTCCATGGT
3293
CCATGGACTCTTCAACACC
GGTGTTGAAGAGTCCATGG
3294
CATGGACTCTTCAACACCC
GGGTGTTGAAGAGTCCATG
3295
ATGGACTCTTCAACACCCA
TGGGTGTTGAAGAGTCCAT
3296
TGGACTCTTCAACACCCAC
GTGGGTGTTGAAGAGTCCA
3297
GGACTCTTCAACACCCACT
AGTGGGTGTTGAAGAGTCC
3298
GACTCTTCAACACCCACTG
CAGTGGGTGTTGAAGAGTC
3299
ACTCTTCAACACCCACTGG
CCAGTGGGTGTTGAAGAGT
3300
CTCTTCAACACCCACTGGC
GCCAGTGGGTGTTGAAGAG
3301
TCTTCAACACCCACTGGCG
CGCCAGTGGGTGTTGAAGA
3302
CTTCAACACCCACTGGCGA
TCGCCAGTGGGTGTTGAAG
3303
TTCAACACCCACTGGCGAT
ATCGCCAGTGGGTGTTGAA
3304
TCAACACCCACTGGCGATG
CATCGCCAGTGGGTGTTGA
3305
CAACACCCACTGGCGATGT
ACATCGCCAGTGGGTGTTG
3306
AACACCCACTGGCGATGTC
GACATCGCCAGTGGGTGTT
3307
ACACCCACTGGCGATGTCC
GGACATCGCCAGTGGGTGT
3308
CACCCACTGGCGATGTCCC
GGGACATCGCCAGTGGGTG
3309
ACCCACTGGCGATGTCCCC
GGGGACATCGCCAGTGGGT
3310
CCCACTGGCGATGTCCCCG
CGGGGACATCGCCAGTGGG
3311
CCACTGGCGATGTCCCCGC
GCGGGGACATCGCCAGTGG
3312
CACTGGCGATGTCCCCGCT
AGCGGGGACATCGCCAGTG
3313
ACTGGCGATGTCCCCGCTG
CAGCGGGGACATCGCCAGT
3314
CTGGCGATGTCCCCGCTGC
GCAGCGGGGACATCGCCAG
3315
TGGCGATGTCCCCGCTGCA
TGCAGCGGGGACATCGCCA
3316
GGCGATGTCCCCGCTGCAG
CTGCAGCGGGGACATCGCC
3317
GCGATGTCCCCGCTGCAGC
GCTGCAGCGGGGACATCGC
3318
CGATGTCCCCGCTGCAGCC
GGCTGCAGCGGGGACATCG
3319
GATGTCCCCGCTGCAGCCA
TGGCTGCAGCGGGGACATC
3320
ATGTCCCCGCTGCAGCCAC
GTGGCTGCAGCGGGGACAT
3321
TGTCCCCGCTGCAGCCACC
GGTGGCTGCAGCGGGGACA
3322
GTCCCCGCTGCAGCCACCG
CGGTGGCTGCAGCGGGGAC
3323
TCCCCGCTGCAGCCACCGG
CCGGTGGCTGCAGCGGGGA
3324
CCCCGCTGCAGCCACCGGC
GCCGGTGGCTGCAGCGGGG
3325
CCCGCTGCAGCCACCGGCT
AGCCGGTGGCTGCAGCGGG
3326
CCGCTGCAGCCACCGGCTG
CAGCCGGTGGCTGCAGCGG
3327
CGCTGCAGCCACCGGCTGT
ACAGCCGGTGGCTGCAGCG
3328
GCTGCAGCCACCGGCTGTG
CACAGCCGGTGGCTGCAGC
3329
CTGCAGCCACCGGCTGTGT
ACACAGCCGGTGGCTGCAG
3330
TGCAGCCACCGGCTGTGTG
CACACAGCCGGTGGCTGCA
3331
GCAGCCACCGGCTGTGTGT
ACACACAGCCGGTGGCTGC
3332
CAGCCACCGGCTGTGTGTG
CACACACAGCCGGTGGCTG
3333
AGCCACCGGCTGTGTGTGG
CCACACACAGCCGGTGGCT
3334
GCCACCGGCTGTGTGTGGC
GCCACACACAGCCGGTGGC
3335
CCACCGGCTGTGTGTGGCC
GGCCACACACAGCCGGTGG
3336
CACCGGCTGTGTGTGGCCT
AGGCCACACACAGCCGGTG
3337
ACCGGCTGTGTGTGGCCTG
CAGGCCACACACAGCCGGT
3338
CCGGCTGTGTGTGGCCTGT
ACAGGCCACACACAGCCGG
3339
CGGCTGTGTGTGGCCTGTG
CACAGGCCACACACAGCCG
3340
GGCTGTGTGTGGCCTGTGG
CCACAGGCCACACACAGCC
3341
GCTGTGTGTGGCCTGTGGT
ACCACAGGCCACACACAGC
3342
CTGTGTGTGGCCTGTGGTC
GACCACAGGCCACACACAG
3343
TGTGTGTGGCCTGTGGTCG
CGACCACAGGCCACACACA
3344
GTGTGTGGCCTGTGGTCGT
ACGACCACAGGCCACACAC
3345
TGTGTGGCCTGTGGTCGTG
CACGACCACAGGCCACACA
3346
GTGTGGCCTGTGGTCGTGT
ACACGACCACAGGCCACAC
3347
TGTGGCCTGTGGTCGTGTG
CACACGACCACAGGCCACA
3348
GTGGCCTGTGGTCGTGTGG
CCACACGACCACAGGCCAC
3349
TGGCCTGTGGTCGTGTGGC
GCCACACGACCACAGGCCA
3350
GGCCTGTGGTCGTGTGGCA
TGCCACACGACCACAGGCC
3351
GCCTGTGGTCGTGTGGCAG
CTGCCACACGACCACAGGC
3352
CCTGTGGTCGTGTGGCAGG
CCTGCCACACGACCACAGG
3353
CTGTGGTCGTGTGGCAGGC
GCCTGCCACACGACCACAG
3354
TGTGGTCGTGTGGCAGGCA
TGCCTGCCACACGACCACA
3355
GTGGTCGTGTGGCAGGCAC
GTGCCTGCCACACGACCAC
3356
TGGTCGTGTGGCAGGCACT
AGTGCCTGCCACACGACCA
3357
GGTCGTGTGGCAGGCACTG
CAGTGCCTGCCACACGACC
3358
GTCGTGTGGCAGGCACTGG
CCAGTGCCTGCCACACGAC
3359
TCGTGTGGCAGGCACTGGG
CCCAGTGCCTGCCACACGA
3360
CGTGTGGCAGGCACTGGGC
GCCCAGTGCCTGCCACACG
3361
GTGTGGCAGGCACTGGGCG
CGCCCAGTGCCTGCCACAC
3362
TGTGGCAGGCACTGGGCGG
CCGCCCAGTGCCTGCCACA
3363
GTGGCAGGCACTGGGCGGG
CCCGCCCAGTGCCTGCCAC
3364
TGGCAGGCACTGGGCGGGC
GCCCGCCCAGTGCCTGCCA
3365
GGCAGGCACTGGGCGGGCC
GGCCCGCCCAGTGCCTGCC
3366
GCAGGCACTGGGCGGGCCA
TGGCCCGCCCAGTGCCTGC
3367
CAGGCACTGGGCGGGCCAG
CTGGCCCGCCCAGTGCCTG
3368
AGGCACTGGGCGGGCCAGG
CCTGGCCCGCCCAGTGCCT
3369
GGCACTGGGCGGGCCAGGG
CCCTGGCCCGCCCAGTGCC
3370
GCACTGGGCGGGCCAGGGA
TCCCTGGCCCGCCCAGTGC
3371
CACTGGGCGGGCCAGGGAG
CTCCCTGGCCCGCCCAGTG
3372
ACTGGGCGGGCCAGGGAGA
TCTCCCTGGCCCGCCCAGT
3373
CTGGGCGGGCCAGGGAGAA
TTCTCCCTGGCCCGCCCAG
3374
TGGGCGGGCCAGGGAGAAA
TTTCTCCCTGGCCCGCCCA
3375
GGGCGGGCCAGGGAGAAAG
CTTTCTCCCTGGCCCGCCC
3376
GGCGGGCCAGGGAGAAAGC
GCTTTCTCCCTGGCCCGCC
3377
GCGGGCCAGGGAGAAAGCA
TGCTTTCTCCCTGGCCCGC
3378
CGGGCCAGGGAGAAAGCAG
CTGCTTTCTCCCTGGCCCG
3379
GGGCCAGGGAGAAAGCAGG
CCTGCTTTCTCCCTGGCCC
3380
GGCCAGGGAGAAAGCAGGC
GCCTGCTTTCTCCCTGGCC
3381
GCCAGGGAGAAAGCAGGCT
AGCCTGCTTTCTCCCTGGC
3382
CCAGGGAGAAAGCAGGCTT
AAGCCTGCTTTCTCCCTGG
3383
CAGGGAGAAAGCAGGCTTT
AAAGCCTGCTTTCTCCCTG
3384
AGGGAGAAAGCAGGCTTTC
GAAAGCCTGCTTTCTCCCT
3385
GGGAGAAAGCAGGCTTTCA
TGAAAGCCTGCTTTCTCCC
3386
GGAGAAAGCAGGCTTTCAG
CTGAAAGCCTGCTTTCTCC
3387
GAGAAAGCAGGCTTTCAGG
CCTGAAAGCCTGCTTTCTC
3388
AGAAAGCAGGCTTTCAGGA
TCCTGAAAGCCTGCTTTCT
3389
GAAAGCAGGCTTTCAGGAG
CTCCTGAAAGCCTGCTTTC
3390
AAAGCAGGCTTTCAGGAGC
GCTCCTGAAAGCCTGCTTT
3391
AAGCAGGCTTTCAGGAGCA
TGCTCCTGAAAGCCTGCTT
3392
AGCAGGCTTTCAGGAGCAG
CTGCTCCTGAAAGCCTGCT
3393
GCAGGCTTTCAGGAGCAGT
ACTGCTCCTGAAAGCCTGC
3394
CAGGCTTTCAGGAGCAGTC
GACTGCTCCTGAAAGCCTG
3395
AGGCTTTCAGGAGCAGTCC
GGACTGCTCCTGAAAGCCT
3396
GGCTTTCAGGAGCAGTCCG
CGGACTGCTCCTGAAAGCC
3397
GCTTTCAGGAGCAGTCCGC
GCGGACTGCTCCTGAAAGC
3398
CTTTCAGGAGCAGTCCGCG
CGCGGACTGCTCCTGAAAG
3399
TTTCAGGAGCAGTCCGCGG
CCGCGGACTGCTCCTGAAA
3400
TTCAGGAGCAGTCCGCGGA
TCCGCGGACTGCTCCTGAA
3401
TCAGGAGCAGTCCGCGGAG
CTCCGCGGACTGCTCCTGA
3402
CAGGAGCAGTCCGCGGAGG
CCTCCGCGGACTGCTCCTG
3403
AGGAGCAGTCCGCGGAGGA
TCCTCCGCGGACTGCTCCT
3404
GGAGCAGTCCGCGGAGGAG
CTCCTCCGCGGACTGCTCC
3405
GAGCAGTCCGCGGAGGAGT
ACTCCTCCGCGGACTGCTC
3406
AGCAGTCCGCGGAGGAGTG
CACTCCTCCGCGGACTGCT
3407
GCAGTCCGCGGAGGAGTGC
GCACTCCTCCGCGGACTGC
3408
CAGTCCGCGGAGGAGTGCA
TGCACTCCTCCGCGGACTG
3409
AGTCCGCGGAGGAGTGCAC
GTGCACTCCTCCGCGGACT
3410
GTCCGCGGAGGAGTGCACG
CGTGCACTCCTCCGCGGAC
3411
TCCGCGGAGGAGTGCACGC
GCGTGCACTCCTCCGCGGA
3412
CCGCGGAGGAGTGCACGCA
TGCGTGCACTCCTCCGCGG
3413
CGCGGAGGAGTGCACGCAG
CTGCGTGCACTCCTCCGCG
3414
GCGGAGGAGTGCACGCAGG
CCTGCGTGCACTCCTCCGC
3415
CGGAGGAGTGCACGCAGGA
TCCTGCGTGCACTCCTCCG
3416
GGAGGAGTGCACGCAGGAG
CTCCTGCGTGCACTCCTCC
3417
GAGGAGTGCACGCAGGAGG
CCTCCTGCGTGCACTCCTC
3418
AGGAGTGCACGCAGGAGGC
GCCTCCTGCGTGCACTCCT
3419
GGAGTGCACGCAGGAGGCC
GGCCTCCTGCGTGCACTCC
3420
GAGTGCACGCAGGAGGCCG
CGGCCTCCTGCGTGCACTC
3421
AGTGCACGCAGGAGGCCGG
CCGGCCTCCTGCGTGCACT
3422
GTGCACGCAGGAGGCCGGG
CCCGGCCTCCTGCGTGCAC
3423
TGCACGCAGGAGGCCGGGC
GCCCGGCCTCCTGCGTGCA
3424
GCACGCAGGAGGCCGGGCA
TGCCCGGCCTCCTGCGTGC
3425
CACGCAGGAGGCCGGGCAC
GTGCCCGGCCTCCTGCGTG
3426
ACGCAGGAGGCCGGGCACG
CGTGCCCGGCCTCCTGCGT
3427
CGCAGGAGGCCGGGCACGC
GCGTGCCCGGCCTCCTGCG
3428
GCAGGAGGCCGGGCACGCT
AGCGTGCCCGGCCTCCTGC
3429
CAGGAGGCCGGGCACGCTG
CAGCGTGCCCGGCCTCCTG
3430
AGGAGGCCGGGCACGCTGC
GCAGCGTGCCCGGCCTCCT
3431
GGAGGCCGGGCACGCTGCC
GGCAGCGTGCCCGGCCTCC
3432
GAGGCCGGGCACGCTGCCT
AGGCAGCGTGCCCGGCCTC
3433
AGGCCGGGCACGCTGCCTG
CAGGCAGCGTGCCCGGCCT
3434
GGCCGGGCACGCTGCCTGT
ACAGGCAGCGTGCCCGGCC
3435
GCCGGGCACGCTGCCTGTT
AACAGGCAGCGTGCCCGGC
3436
CCGGGCACGCTGCCTGTTC
GAACAGGCAGCGTGCCCGG
3437
CGGGCACGCTGCCTGTTCC
GGAACAGGCAGCGTGCCCG
3438
GGGCACGCTGCCTGTTCCC
GGGAACAGGCAGCGTGCCC
3439
GGCACGCTGCCTGTTCCCT
AGGGAACAGGCAGCGTGCC
3440
GCACGCTGCCTGTTCCCTG
CAGGGAACAGGCAGCGTGC
3441
CACGCTGCCTGTTCCCTGA
TCAGGGAACAGGCAGCGTG
3442
ACGCTGCCTGTTCCCTGAT
ATCAGGGAACAGGCAGCGT
3443
CGCTGCCTGTTCCCTGATG
CATCAGGGAACAGGCAGCG
3444
GCTGCCTGTTCCCTGATGC
GCATCAGGGAACAGGCAGC
3445
CTGCCTGTTCCCTGATGCT
AGCATCAGGGAACAGGCAG
3446
TGCCTGTTCCCTGATGCTG
CAGCATCAGGGAACAGGCA
3447
GCCTGTTCCCTGATGCTGA
TCAGCATCAGGGAACAGGC
3448
CCTGTTCCCTGATGCTGAC
GTCAGCATCAGGGAACAGG
3449
CTGTTCCCTGATGCTGACC
GGTCAGCATCAGGGAACAG
3450
TGTTCCCTGATGCTGACCC
GGGTCAGCATCAGGGAACA
3451
GTTCCCTGATGCTGACCCA
TGGGTCAGCATCAGGGAAC
3452
TTCCCTGATGCTGACCCAG
CTGGGTCAGCATCAGGGAA
3453
TCCCTGATGCTGACCCAGT
ACTGGGTCAGCATCAGGGA
3454
CCCTGATGCTGACCCAGTT
AACTGGGTCAGCATCAGGG
3455
CCTGATGCTGACCCAGTTT
AAACTGGGTCAGCATCAGG
3456
CTGATGCTGACCCAGTTTG
CAAACTGGGTCAGCATCAG
3457
TGATGCTGACCCAGTTTGT
ACAAACTGGGTCAGCATCA
3458
GATGCTGACCCAGTTTGTC
GACAAACTGGGTCAGCATC
3459
ATGCTGACCCAGTTTGTCT
AGACAAACTGGGTCAGCAT
3460
TGCTGACCCAGTTTGTCTC
GAGACAAACTGGGTCAGCA
3461
GCTGACCCAGTTTGTCTCC
GGAGACAAACTGGGTCAGC
3462
CTGACCCAGTTTGTCTCCA
TGGAGACAAACTGGGTCAG
3463
TGACCCAGTTTGTCTCCAG
CTGGAGACAAACTGGGTCA
3464
GACCCAGTTTGTCTCCAGC
GCTGGAGACAAACTGGGTC
3465
ACCCAGTTTGTCTCCAGCC
GGCTGGAGACAAACTGGGT
3466
CCCAGTTTGTCTCCAGCCA
TGGCTGGAGACAAACTGGG
3467
CCAGTTTGTCTCCAGCCAG
CTGGCTGGAGACAAACTGG
3468
CAGTTTGTCTCCAGCCAGG
CCTGGCTGGAGACAAACTG
3469
AGTTTGTCTCCAGCCAGGC
GCCTGGCTGGAGACAAACT
3470
GTTTGTCTCCAGCCAGGCT
AGCCTGGCTGGAGACAAAC
3471
TTTGTCTCCAGCCAGGCTT
AAGCCTGGCTGGAGACAAA
3472
TTGTCTCCAGCCAGGCTTT
AAAGCCTGGCTGGAGACAA
3473
TGTCTCCAGCCAGGCTTTG
CAAAGCCTGGCTGGAGACA
3474
GTCTCCAGCCAGGCTTTGG
CCAAAGCCTGGCTGGAGAC
3475
TCTCCAGCCAGGCTTTGGC
GCCAAAGCCTGGCTGGAGA
3476
CTCCAGCCAGGCTTTGGCA
TGCCAAAGCCTGGCTGGAG
3477
TCCAGCCAGGCTTTGGCAG
CTGCCAAAGCCTGGCTGGA
3478
CCAGCCAGGCTTTGGCAGA
TCTGCCAAAGCCTGGCTGG
3479
CAGCCAGGCTTTGGCAGAG
CTCTGCCAAAGCCTGGCTG
3480
AGCCAGGCTTTGGCAGAGC
GCTCTGCCAAAGCCTGGCT
3481
GCCAGGCTTTGGCAGAGCT
AGCTCTGCCAAAGCCTGGC
3482
CCAGGCTTTGGCAGAGCTG
CAGCTCTGCCAAAGCCTGG
3483
CAGGCTTTGGCAGAGCTGA
TCAGCTCTGCCAAAGCCTG
3484
AGGCTTTGGCAGAGCTGAG
CTCAGCTCTGCCAAAGCCT
3485
GGCTTTGGCAGAGCTGAGC
GCTCAGCTCTGCCAAAGCC
3486
GCTTTGGCAGAGCTGAGCA
TGCTCAGCTCTGCCAAAGC
3487
CTTTGGCAGAGCTGAGCAC
GTGCTCAGCTCTGCCAAAG
3488
TTTGGCAGAGCTGAGCACT
AGTGCTCAGCTCTGCCAAA
3489
TTGGCAGAGCTGAGCACTG
CAGTGCTCAGCTCTGCCAA
3490
TGGCAGAGCTGAGCACTGC
GCAGTGCTCAGCTCTGCCA
3491
GGCAGAGCTGAGCACTGCA
TGCAGTGCTCAGCTCTGCC
3492
GCAGAGCTGAGCACTGCAA
TTGCAGTGCTCAGCTCTGC
3493
CAGAGCTGAGCACTGCAAT
ATTGCAGTGCTCAGCTCTG
3494
AGAGCTGAGCACTGCAATG
CATTGCAGTGCTCAGCTCT
3495
GAGCTGAGCACTGCAATGC
GCATTGCAGTGCTCAGCTC
3496
AGCTGAGCACTGCAATGCA
TGCATTGCAGTGCTCAGCT
3497
GCTGAGCACTGCAATGCAC
GTGCATTGCAGTGCTCAGC
3498
CTGAGCACTGCAATGCACC
GGTGCATTGCAGTGCTCAG
3499
TGAGCACTGCAATGCACCA
TGGTGCATTGCAGTGCTCA
3500
GAGCACTGCAATGCACCAG
CTGGTGCATTGCAGTGCTC
3501
AGCACTGCAATGCACCAGG
CCTGGTGCATTGCAGTGCT
3502
GCACTGCAATGCACCAGGT
ACCTGGTGCATTGCAGTGC
3503
CACTGCAATGCACCAGGTC
GACCTGGTGCATTGCAGTG
3504
ACTGCAATGCACCAGGTCT
AGACCTGGTGCATTGCAGT
3505
CTGCAATGCACCAGGTCTG
CAGACCTGGTGCATTGCAG
3506
TGCAATGCACCAGGTCTGG
CCAGACCTGGTGCATTGCA
3507
GCAATGCACCAGGTCTGGG
CCCAGACCTGGTGCATTGC
3508
CAATGCACCAGGTCTGGGT
ACCCAGACCTGGTGCATTG
3509
AATGCACCAGGTCTGGGTC
GACCCAGACCTGGTGCATT
3510
ATGCACCAGGTCTGGGTCA
TGACCCAGACCTGGTGCAT
3511
TGCACCAGGTCTGGGTCAA
TTGACCCAGACCTGGTGCA
3512
GCACCAGGTCTGGGTCAAG
CTTGACCCAGACCTGGTGC
3513
CACCAGGTCTGGGTCAAGT
ACTTGACCCAGACCTGGTG
3514
ACCAGGTCTGGGTCAAGTT
AACTTGACCCAGACCTGGT
3515
CCAGGTCTGGGTCAAGTTT
AAACTTGACCCAGACCTGG
3516
CAGGTCTGGGTCAAGTTTG
CAAACTTGACCCAGACCTG
3517
AGGTCTGGGTCAAGTTTGA
TCAAACTTGACCCAGACCT
3518
GGTCTGGGTCAAGTTTGAT
ATCAAACTTGACCCAGACC
3519
GTCTGGGTCAAGTTTGATA
TATCAAACTTGACCCAGAC
3520
TCTGGGTCAAGTTTGATAT
ATATCAAACTTGACCCAGA
3521
CTGGGTCAAGTTTGATATC
GATATCAAACTTGACCCAG
3522
TGGGTCAAGTTTGATATCC
GGATATCAAACTTGACCCA
3523
GGGTCAAGTTTGATATCCG
CGGATATCAAACTTGACCC
3524
GGTCAAGTTTGATATCCGG
CCGGATATCAAACTTGACC
3525
GTCAAGTTTGATATCCGGG
CCCGGATATCAAACTTGAC
3526
TCAAGTTTGATATCCGGGG
CCCCGGATATCAAACTTGA
3527
CAAGTTTGATATCCGGGGG
CCCCCGGATATCAAACTTG
3528
AAGTTTGATATCCGGGGGC
GCCCCCGGATATCAAACTT
3529
AGTTTGATATCCGGGGGCA
TGCCCCCGGATATCAAACT
3530
GTTTGATATCCGGGGGCAC
GTGCCCCCGGATATCAAAC
3531
TTTGATATCCGGGGGCACT
AGTGCCCCCGGATATCAAA
3532
TTGATATCCGGGGGCACTG
CAGTGCCCCCGGATATCAA
3533
TGATATCCGGGGGCACTGC
GCAGTGCCCCCGGATATCA
3534
GATATCCGGGGGCACTGCC
GGCAGTGCCCCCGGATATC
3535
ATATCCGGGGGCACTGCCC
GGGCAGTGCCCCCGGATAT
3536
TATCCGGGGGCACTGCCCC
GGGGCAGTGCCCCCGGATA
3537
ATCCGGGGGCACTGCCCCT
AGGGGCAGTGCCCCCGGAT
3538
TCCGGGGGCACTGCCCCTG
CAGGGGCAGTGCCCCCGGA
3539
CCGGGGGCACTGCCCCTGC
GCAGGGGCAGTGCCCCCGG
3540
CGGGGGCACTGCCCCTGCC
GGCAGGGGCAGTGCCCCCG
3541
GGGGGCACTGCCCCTGCCA
TGGCAGGGGCAGTGCCCCC
3542
GGGGCACTGCCCCTGCCAA
TTGGCAGGGGCAGTGCCCC
3543
GGGCACTGCCCCTGCCAAG
CTTGGCAGGGGCAGTGCCC
3544
GGCACTGCCCCTGCCAAGC
GCTTGGCAGGGGCAGTGCC
3545
GCACTGCCCCTGCCAAGCT
AGCTTGGCAGGGGCAGTGC
3546
CACTGCCCCTGCCAAGCTG
CAGCTTGGCAGGGGCAGTG
3547
ACTGCCCCTGCCAAGCTGA
TCAGCTTGGCAGGGGCAGT
3548
CTGCCCCTGCCAAGCTGAT
ATCAGCTTGGCAGGGGCAG
3549
TGCCCCTGCCAAGCTGATG
CATCAGCTTGGCAGGGGCA
3550
GCCCCTGCCAAGCTGATGC
GCATCAGCTTGGCAGGGGC
3551
CCCCTGCCAAGCTGATGCC
GGCATCAGCTTGGCAGGGG
3552
CCCTGCCAAGCTGATGCCC
GGGCATCAGCTTGGCAGGG
3553
CCTGCCAAGCTGATGCCCG
CGGGCATCAGCTTGGCAGG
3554
CTGCCAAGCTGATGCCCGG
CCGGGCATCAGCTTGGCAG
3555
TGCCAAGCTGATGCCCGGG
CCCGGGCATCAGCTTGGCA
3556
GCCAAGCTGATGCCCGGGT
ACCCGGGCATCAGCTTGGC
3557
CCAAGCTGATGCCCGGGTA
TACCCGGGCATCAGCTTGG
3558
CAAGCTGATGCCCGGGTAT
ATACCCGGGCATCAGCTTG
3559
AAGCTGATGCCCGGGTATG
CATACCCGGGCATCAGCTT
3560
AGCTGATGCCCGGGTATGG
CCATACCCGGGCATCAGCT
3561
GCTGATGCCCGGGTATGGG
CCCATACCCGGGCATCAGC
3562
CTGATGCCCGGGTATGGGC
GCCCATACCCGGGCATCAG
3563
TGATGCCCGGGTATGGGCC
GGCCCATACCCGGGCATCA
3564
GATGCCCGGGTATGGGCCC
GGGCCCATACCCGGGCATC
3565
ATGCCCGGGTATGGGCCCC
GGGGCCCATACCCGGGCAT
3566
TGCCCGGGTATGGGCCCCC
GGGGGCCCATACCCGGGCA
3567
GCCCGGGTATGGGCCCCCG
CGGGGGCCCATACCCGGGC
3568
CCCGGGTATGGGCCCCCGG
CCGGGGGCCCATACCCGGG
3569
CCGGGTATGGGCCCCCGGG
CCCGGGGGCCCATACCCGG
3570
CGGGTATGGGCCCCCGGGG
CCCCGGGGGCCCATACCCG
3571
GGGTATGGGCCCCCGGGGA
TCCCCGGGGGCCCATACCC
3572
GGTATGGGCCCCCGGGGAT
ATCCCCGGGGGCCCATACC
3573
GTATGGGCCCCCGGGGATG
CATCCCCGGGGGCCCATAC
3574
TATGGGCCCCCGGGGATGC
GCATCCCCGGGGGCCCATA
3575
ATGGGCCCCCGGGGATGCA
TGCATCCCCGGGGGCCCAT
3576
TGGGCCCCCGGGGATGCAG
CTGCATCCCCGGGGGCCCA
3577
GGGCCCCCGGGGATGCAGG
CCTGCATCCCCGGGGGCCC
3578
GGCCCCCGGGGATGCAGGC
GCCTGCATCCCCGGGGGCC
3579
GCCCCCGGGGATGCAGGCC
GGCCTGCATCCCCGGGGGC
3580
CCCCCGGGGATGCAGGCCA
TGGCCTGCATCCCCGGGGG
3581
CCCCGGGGATGCAGGCCAG
CTGGCCTGCATCCCCGGGG
3582
CCCGGGGATGCAGGCCAGC
GCTGGCCTGCATCCCCGGG
3583
CCGGGGATGCAGGCCAGCA
TGCTGGCCTGCATCCCCGG
3584
CGGGGATGCAGGCCAGCAG
CTGCTGGCCTGCATCCCCG
3585
GGGGATGCAGGCCAGCAGA
TCTGCTGGCCTGCATCCCC
3586
GGGATGCAGGCCAGCAGAA
TTCTGCTGGCCTGCATCCC
3587
GGATGCAGGCCAGCAGAAG
CTTCTGCTGGCCTGCATCC
3588
GATGCAGGCCAGCAGAAGG
CCTTCTGCTGGCCTGCATC
3589
ATGCAGGCCAGCAGAAGGA
TCCTTCTGCTGGCCTGCAT
3590
TGCAGGCCAGCAGAAGGAA
TTCCTTCTGCTGGCCTGCA
3591
GCAGGCCAGCAGAAGGAAT
ATTCCTTCTGCTGGCCTGC
3592
CAGGCCAGCAGAAGGAATC
GATTCCTTCTGCTGGCCTG
3593
AGGCCAGCAGAAGGAATCA
TGATTCCTTCTGCTGGCCT
3594
GGCCAGCAGAAGGAATCAA
TTGATTCCTTCTGCTGGCC
3595
GCCAGCAGAAGGAATCAAC
GTTGATTCCTTCTGCTGGC
3596
CCAGCAGAAGGAATCAACA
TGTTGATTCCTTCTGCTGG
3597
CAGCAGAAGGAATCAACAC
GTGTTGATTCCTTCTGCTG
3598
AGCAGAAGGAATCAACACA
TGTGTTGATTCCTTCTGCT
3599
GCAGAAGGAATCAACACAG
CTGTGTTGATTCCTTCTGC
3600
CAGAAGGAATCAACACAGA
TCTGTGTTGATTCCTTCTG
3601
AGAAGGAATCAACACAGAA
TTCTGTGTTGATTCCTTCT
3602
GAAGGAATCAACACAGAAA
TTTCTGTGTTGATTCCTTC
3603
AAGGAATCAACACAGAAAA
TTTTCTGTGTTGATTCCTT
3604
AGGAATCAACACAGAAAAC
GTTTTCTGTGTTGATTCCT
3605
GGAATCAACACAGAAAACG
CGTTTTCTGTGTTGATTCC
3606
GAATCAACACAGAAAACGC
GCGTTTTCTGTGTTGATTC
3607
AATCAACACAGAAAACGCC
GGCGTTTTCTGTGTTGATT
3608
ATCAACACAGAAAACGCCC
GGGCGTTTTCTGTGTTGAT
3609
TCAACACAGAAAACGCCCC
GGGGCGTTTTCTGTGTTGA
3610
CAACACAGAAAACGCCCCC
GGGGGCGTTTTCTGTGTTG
3611
AACACAGAAAACGCCCCCA
TGGGGGCGTTTTCTGTGTT
3612
ACACAGAAAACGCCCCCAA
TTGGGGGCGTTTTCTGTGT
3613
CACAGAAAACGCCCCCAAC
GTTGGGGGCGTTTTCTGTG
3614
ACAGAAAACGCCCCCAACT
AGTTGGGGGCGTTTTCTGT
3615
CAGAAAACGCCCCCAACTC
GAGTTGGGGGCGTTTTCTG
3616
AGAAAACGCCCCCAACTCC
GGAGTTGGGGGCGTTTTCT
3617
GAAAACGCCCCCAACTCCA
TGGAGTTGGGGGCGTTTTC
3618
AAAACGCCCCCAACTCCAC
GTGGAGTTGGGGGCGTTTT
3619
AAACGCCCCCAACTCCACA
TGTGGAGTTGGGGGCGTTT
3620
AACGCCCCCAACTCCACAA
TTGTGGAGTTGGGGGCGTT
3621
ACGCCCCCAACTCCACAAC
GTTGTGGAGTTGGGGGCGT
3622
CGCCCCCAACTCCACAACC
GGTTGTGGAGTTGGGGGCG
3623
GCCCCCAACTCCACAACCT
AGGTTGTGGAGTTGGGGGC
3624
CCCCCAACTCCACAACCTT
AAGGTTGTGGAGTTGGGGG
3625
CCCCAACTCCACAACCTTC
GAAGGTTGTGGAGTTGGGG
3626
CCCAACTCCACAACCTTCC
GGAAGGTTGTGGAGTTGGG
3627
CCAACTCCACAACCTTCCT
AGGAAGGTTGTGGAGTTGG
3628
CAACTCCACAACCTTCCTG
CAGGAAGGTTGTGGAGTTG
3629
AACTCCACAACCTTCCTGC
GCAGGAAGGTTGTGGAGTT
3630
ACTCCACAACCTTCCTGCA
TGCAGGAAGGTTGTGGAGT
3631
CTCCACAACCTTCCTGCAA
TTGCAGGAAGGTTGTGGAG
3632
TCCACAACCTTCCTGCAAT
ATTGCAGGAAGGTTGTGGA
3633
CCACAACCTTCCTGCAATG
CATTGCAGGAAGGTTGTGG
3634
CACAACCTTCCTGCAATGG
CCATTGCAGGAAGGTTGTG
3635
ACAACCTTCCTGCAATGGC
GCCATTGCAGGAAGGTTGT
3636
CAACCTTCCTGCAATGGCG
CGCCATTGCAGGAAGGTTG
3637
AACCTTCCTGCAATGGCGA
TCGCCATTGCAGGAAGGTT
3638
ACCTTCCTGCAATGGCGAC
GTCGCCATTGCAGGAAGGT
3639
CCTTCCTGCAATGGCGACA
TGTCGCCATTGCAGGAAGG
3640
CTTCCTGCAATGGCGACAC
GTGTCGCCATTGCAGGAAG
3641
TTCCTGCAATGGCGACACC
GGTGTCGCCATTGCAGGAA
3642
TCCTGCAATGGCGACACCC
GGGTGTCGCCATTGCAGGA
3643
CCTGCAATGGCGACACCCA
TGGGTGTCGCCATTGCAGG
3644
CTGCAATGGCGACACCCAC
GTGGGTGTCGCCATTGCAG
3645
TGCAATGGCGACACCCACA
TGTGGGTGTCGCCATTGCA
3646
GCAATGGCGACACCCACAG
CTGTGGGTGTCGCCATTGC
3647
CAATGGCGACACCCACAGG
CCTGTGGGTGTCGCCATTG
3648
AATGGCGACACCCACAGGA
TCCTGTGGGTGTCGCCATT
3649
ATGGCGACACCCACAGGAC
GTCCTGTGGGTGTCGCCAT
3650
TGGCGACACCCACAGGACC
GGTCCTGTGGGTGTCGCCA
3651
GGCGACACCCACAGGACCA
TGGTCCTGTGGGTGTCGCC
3652
GCGACACCCACAGGACCAA
TTGGTCCTGTGGGTGTCGC
3653
CGACACCCACAGGACCAAG
CTTGGTCCTGTGGGTGTCG
3654
GACACCCACAGGACCAAGA
TCTTGGTCCTGTGGGTGTC
3655
ACACCCACAGGACCAAGAG
CTCTTGGTCCTGTGGGTGT
3656
CACCCACAGGACCAAGAGC
GCTCTTGGTCCTGTGGGTG
3657
ACCCACAGGACCAAGAGCA
TGCTCTTGGTCCTGTGGGT
3658
CCCACAGGACCAAGAGCAT
ATGCTCTTGGTCCTGTGGG
3659
CCACAGGACCAAGAGCATC
GATGCTCTTGGTCCTGTGG
3660
CACAGGACCAAGAGCATCA
TGATGCTCTTGGTCCTGTG
3661
ACAGGACCAAGAGCATCAA
TTGATGCTCTTGGTCCTGT
3662
CAGGACCAAGAGCATCAAA
TTTGATGCTCTTGGTCCTG
3663
AGGACCAAGAGCATCAAAG
CTTTGATGCTCTTGGTCCT
3664
GGACCAAGAGCATCAAAGA
TCTTTGATGCTCTTGGTCC
3665
GACCAAGAGCATCAAAGAG
CTCTTTGATGCTCTTGGTC
3666
ACCAAGAGCATCAAAGAGG
CCTCTTTGATGCTCTTGGT
3667
CCAAGAGCATCAAAGAGGA
TCCTCTTTGATGCTCTTGG
3668
CAAGAGCATCAAAGAGGAG
CTCCTCTTTGATGCTCTTG
3669
AAGAGCATCAAAGAGGAGA
TCTCCTCTTTGATGCTCTT
3670
AGAGCATCAAAGAGGAGAC
GTCTCCTCTTTGATGCTCT
3671
GAGCATCAAAGAGGAGACC
GGTCTCCTCTTTGATGCTC
3672
AGCATCAAAGAGGAGACCC
GGGTCTCCTCTTTGATGCT
3673
GCATCAAAGAGGAGACCCC
GGGGTCTCCTCTTTGATGC
3674
CATCAAAGAGGAGACCCCC
GGGGGTCTCCTCTTTGATG
3675
ATCAAAGAGGAGACCCCCG
CGGGGGTCTCCTCTTTGAT
3676
TCAAAGAGGAGACCCCCGA
TCGGGGGTCTCCTCTTTGA
3677
CAAAGAGGAGACCCCCGAT
ATCGGGGGTCTCCTCTTTG
3678
AAAGAGGAGACCCCCGATT
AATCGGGGGTCTCCTCTTT
3679
AAGAGGAGACCCCCGATTC
GAATCGGGGGTCTCCTCTT
3680
AGAGGAGACCCCCGATTCC
GGAATCGGGGGTCTCCTCT
3681
GAGGAGACCCCCGATTCCG
CGGAATCGGGGGTCTCCTC
3682
AGGAGACCCCCGATTCCGC
GCGGAATCGGGGGTCTCCT
3683
GGAGACCCCCGATTCCGCT
AGCGGAATCGGGGGTCTCC
3684
GAGACCCCCGATTCCGCTG
CAGCGGAATCGGGGGTCTC
3685
AGACCCCCGATTCCGCTGA
TCAGCGGAATCGGGGGTCT
3686
GACCCCCGATTCCGCTGAG
CTCAGCGGAATCGGGGGTC
3687
ACCCCCGATTCCGCTGAGA
TCTCAGCGGAATCGGGGGT
3688
CCCCCGATTCCGCTGAGAC
GTCTCAGCGGAATCGGGGG
3689
CCCCGATTCCGCTGAGACC
GGTCTCAGCGGAATCGGGG
3690
CCCGATTCCGCTGAGACCC
GGGTCTCAGCGGAATCGGG
3691
CCGATTCCGCTGAGACCCC
GGGGTCTCAGCGGAATCGG
3692
CGATTCCGCTGAGACCCCA
TGGGGTCTCAGCGGAATCG
3693
GATTCCGCTGAGACCCCAG
CTGGGGTCTCAGCGGAATC
3694
ATTCCGCTGAGACCCCAGC
GCTGGGGTCTCAGCGGAAT
3695
TTCCGCTGAGACCCCAGCA
TGCTGGGGTCTCAGCGGAA
3696
TCCGCTGAGACCCCAGCAG
CTGCTGGGGTCTCAGCGGA
3697
CCGCTGAGACCCCAGCAGA
TCTGCTGGGGTCTCAGCGG
3698
CGCTGAGACCCCAGCAGAG
CTCTGCTGGGGTCTCAGCG
3699
GCTGAGACCCCAGCAGAGG
CCTCTGCTGGGGTCTCAGC
3700
CTGAGACCCCAGCAGAGGA
TCCTCTGCTGGGGTCTCAG
3701
TGAGACCCCAGCAGAGGAC
GTCCTCTGCTGGGGTCTCA
3702
GAGACCCCAGCAGAGGACC
GGTCCTCTGCTGGGGTCTC
3703
AGACCCCAGCAGAGGACCG
CGGTCCTCTGCTGGGGTCT
3704
GACCCCAGCAGAGGACCGT
ACGGTCCTCTGCTGGGGTC
3705
ACCCCAGCAGAGGACCGTG
CACGGTCCTCTGCTGGGGT
3706
CCCCAGCAGAGGACCGTGC
GCACGGTCCTCTGCTGGGG
3707
CCCAGCAGAGGACCGTGCT
AGCACGGTCCTCTGCTGGG
3708
CCAGCAGAGGACCGTGCTG
CAGCACGGTCCTCTGCTGG
3709
CAGCAGAGGACCGTGCTGG
CCAGCACGGTCCTCTGCTG
3710
AGCAGAGGACCGTGCTGGC
GCCAGCACGGTCCTCTGCT
3711
GCAGAGGACCGTGCTGGCC
GGCCAGCACGGTCCTCTGC
3712
CAGAGGACCGTGCTGGCCG
CGGCCAGCACGGTCCTCTG
3713
AGAGGACCGTGCTGGCCGA
TCGGCCAGCACGGTCCTCT
3714
GAGGACCGTGCTGGCCGAG
CTCGGCCAGCACGGTCCTC
3715
AGGACCGTGCTGGCCGAGG
CCTCGGCCAGCACGGTCCT
3716
GGACCGTGCTGGCCGAGGG
CCCTCGGCCAGCACGGTCC
3717
GACCGTGCTGGCCGAGGGC
GCCCTCGGCCAGCACGGTC
3718
ACCGTGCTGGCCGAGGGCC
GGCCCTCGGCCAGCACGGT
3719
CCGTGCTGGCCGAGGGCCC
GGGCCCTCGGCCAGCACGG
3720
CGTGCTGGCCGAGGGCCCC
GGGGCCCTCGGCCAGCACG
3721
GTGCTGGCCGAGGGCCCCT
AGGGGCCCTCGGCCAGCAC
3722
TGCTGGCCGAGGGCCCCTG
CAGGGGCCCTCGGCCAGCA
3723
GCTGGCCGAGGGCCCCTGC
GCAGGGGCCCTCGGCCAGC
3724
CTGGCCGAGGGCCCCTGCC
GGCAGGGGCCCTCGGCCAG
3725
TGGCCGAGGGCCCCTGCCT
AGGCAGGGGCCCTCGGCCA
3726
GGCCGAGGGCCCCTGCCTT
AAGGCAGGGGCCCTCGGCC
3727
GCCGAGGGCCCCTGCCTTG
CAAGGCAGGGGCCCTCGGC
3728
CCGAGGGCCCCTGCCTTGT
ACAAGGCAGGGGCCCTCGG
3729
CGAGGGCCCCTGCCTTGTC
GACAAGGCAGGGGCCCTCG
3730
GAGGGCCCCTGCCTTGTCC
GGACAAGGCAGGGGCCCTC
3731
AGGGCCCCTGCCTTGTCCT
AGGACAAGGCAGGGGCCCT
3732
GGGCCCCTGCCTTGTCCTT
AAGGACAAGGCAGGGGCCC
3733
GGCCCCTGCCTTGTCCTTC
GAAGGACAAGGCAGGGGCC
3734
GCCCCTGCCTTGTCCTTCT
AGAAGGACAAGGCAGGGGC
3735
CCCCTGCCTTGTCCTTCTC
GAGAAGGACAAGGCAGGGG
3736
CCCTGCCTTGTCCTTCTCT
AGAGAAGGACAAGGCAGGG
3737
CCTGCCTTGTCCTTCTCTC
GAGAGAAGGACAAGGCAGG
3738
CTGCCTTGTCCTTCTCTCT
AGAGAGAAGGACAAGGCAG
3739
TGCCTTGTCCTTCTCTCTG
CAGAGAGAAGGACAAGGCA
3740
GCCTTGTCCTTCTCTCTGC
GCAGAGAGAAGGACAAGGC
3741
CCTTGTCCTTCTCTCTGCG
CGCAGAGAGAAGGACAAGG
3742
CTTGTCCTTCTCTCTGCGA
TCGCAGAGAGAAGGACAAG
3743
TTGTCCTTCTCTCTGCGAA
TTCGCAGAGAGAAGGACAA
3744
TGTCCTTCTCTCTGCGAAC
GTTCGCAGAGAGAAGGACA
3745
GTCCTTCTCTCTGCGAACT
AGTTCGCAGAGAGAAGGAC
3746
TCCTTCTCTCTGCGAACTG
CAGTTCGCAGAGAGAAGGA
3747
CCTTCTCTCTGCGAACTGC
GCAGTTCGCAGAGAGAAGG
3748
CTTCTCTCTGCGAACTGCT
AGCAGTTCGCAGAGAGAAG
3749
TTCTCTCTGCGAACTGCTG
CAGCAGTTCGCAGAGAGAA
3750
TCTCTCTGCGAACTGCTGG
CCAGCAGTTCGCAGAGAGA
3751
CTCTCTGCGAACTGCTGGC
GCCAGCAGTTCGCAGAGAG
3752
TCTCTGCGAACTGCTGGCT
AGCCAGCAGTTCGCAGAGA
3753
CTCTGCGAACTGCTGGCTT
AAGCCAGCAGTTCGCAGAG
3754
TCTGCGAACTGCTGGCTTC
GAAGCCAGCAGTTCGCAGA
3755
CTGCGAACTGCTGGCTTCT
AGAAGCCAGCAGTTCGCAG
3756
TGCGAACTGCTGGCTTCTA
TAGAAGCCAGCAGTTCGCA
3757
GCGAACTGCTGGCTTCTAC
GTAGAAGCCAGCAGTTCGC
3758
CGAACTGCTGGCTTCTACC
GGTAGAAGCCAGCAGTTCG
3759
GAACTGCTGGCTTCTACCG
CGGTAGAAGCCAGCAGTTC
3760
AACTGCTGGCTTCTACCGC
GCGGTAGAAGCCAGCAGTT
3761
ACTGCTGGCTTCTACCGCG
CGCGGTAGAAGCCAGCAGT
3762
CTGCTGGCTTCTACCGCGG
CCGCGGTAGAAGCCAGCAG
3763
TGCTGGCTTCTACCGCGGT
ACCGCGGTAGAAGCCAGCA
3764
GCTGGCTTCTACCGCGGTC
GACCGCGGTAGAAGCCAGC
3765
CTGGCTTCTACCGCGGTCA
TGACCGCGGTAGAAGCCAG
3766
TGGCTTCTACCGCGGTCAA
TTGACCGCGGTAGAAGCCA
3767
GGCTTCTACCGCGGTCAAA
TTTGACCGCGGTAGAAGCC
3768
GCTTCTACCGCGGTCAAAC
GTTTGACCGCGGTAGAAGC
3769
CTTCTACCGCGGTCAAACT
AGTTTGACCGCGGTAGAAG
3770
TTCTACCGCGGTCAAACTC
GAGTTTGACCGCGGTAGAA
3771
TCTACCGCGGTCAAACTCT
AGAGTTTGACCGCGGTAGA
3772
CTACCGCGGTCAAACTCTG
CAGAGTTTGACCGCGGTAG
3773
TACCGCGGTCAAACTCTGC
GCAGAGTTTGACCGCGGTA
3774
ACCGCGGTCAAACTCTGCT
AGCAGAGTTTGACCGCGGT
3775
CCGCGGTCAAACTCTGCTT
AAGCAGAGTTTGACCGCGG
3776
CGCGGTCAAACTCTGCTTG
CAAGCAGAGTTTGACCGCG
3777
GCGGTCAAACTCTGCTTGG
CCAAGCAGAGTTTGACCGC
3778
CGGTCAAACTCTGCTTGGG
CCCAAGCAGAGTTTGACCG
3779
GGTCAAACTCTGCTTGGGC
GCCCAAGCAGAGTTTGACC
3780
GTCAAACTCTGCTTGGGCC
GGCCCAAGCAGAGTTTGAC
3781
TCAAACTCTGCTTGGGCCA
TGGCCCAAGCAGAGTTTGA
3782
CAAACTCTGCTTGGGCCAT
ATGGCCCAAGCAGAGTTTG
3783
AAACTCTGCTTGGGCCATG
CATGGCCCAAGCAGAGTTT
3784
AACTCTGCTTGGGCCATGA
TCATGGCCCAAGCAGAGTT
3785
ACTCTGCTTGGGCCATGAG
CTCATGGCCCAAGCAGAGT
3786
CTCTGCTTGGGCCATGAGC
GCTCATGGCCCAAGCAGAG
3787
TCTGCTTGGGCCATGAGCG
CGCTCATGGCCCAAGCAGA
3788
CTGCTTGGGCCATGAGCGA
TCGCTCATGGCCCAAGCAG
3789
TGCTTGGGCCATGAGCGAA
TTCGCTCATGGCCCAAGCA
3790
GCTTGGGCCATGAGCGAAT
ATTCGCTCATGGCCCAAGC
3791
CTTGGGCCATGAGCGAATA
TATTCGCTCATGGCCCAAG
3792
TTGGGCCATGAGCGAATAC
GTATTCGCTCATGGCCCAA
3793
TGGGCCATGAGCGAATACA
TGTATTCGCTCATGGCCCA
3794
GGGCCATGAGCGAATACAC
GTGTATTCGCTCATGGCCC
3795
GGCCATGAGCGAATACACA
TGTGTATTCGCTCATGGCC
3796
GCCATGAGCGAATACACAT
ATGTGTATTCGCTCATGGC
3797
CCATGAGCGAATACACATG
CATGTGTATTCGCTCATGG
3798
CATGAGCGAATACACATGG
CCATGTGTATTCGCTCATG
3799
ATGAGCGAATACACATGGC
GCCATGTGTATTCGCTCAT
3800
TGAGCGAATACACATGGCC
GGCCATGTGTATTCGCTCA
3801
GAGCGAATACACATGGCCT
AGGCCATGTGTATTCGCTC
3802
AGCGAATACACATGGCCTT
AAGGCCATGTGTATTCGCT
3803
GCGAATACACATGGCCTTC
GAAGGCCATGTGTATTCGC
3804
CGAATACACATGGCCTTCG
CGAAGGCCATGTGTATTCG
3805
GAATACACATGGCCTTCGC
GCGAAGGCCATGTGTATTC
3806
AATACACATGGCCTTCGCC
GGCGAAGGCCATGTGTATT
3807
ATACACATGGCCTTCGCCC
GGGCGAAGGCCATGTGTAT
3808
TACACATGGCCTTCGCCCC
GGGGCGAAGGCCATGTGTA
3809
ACACATGGCCTTCGCCCCC
GGGGGCGAAGGCCATGTGT
3810
CACATGGCCTTCGCCCCCG
CGGGGGCGAAGGCCATGTG
3811
ACATGGCCTTCGCCCCCGT
ACGGGGGCGAAGGCCATGT
3812
CATGGCCTTCGCCCCCGTC
GACGGGGGCGAAGGCCATG
3813
ATGGCCTTCGCCCCCGTCA
TGACGGGGGCGAAGGCCAT
3814
TGGCCTTCGCCCCCGTCAC
GTGACGGGGGCGAAGGCCA
3815
GGCCTTCGCCCCCGTCACT
AGTGACGGGGGCGAAGGCC
3816
GCCTTCGCCCCCGTCACTC
GAGTGACGGGGGCGAAGGC
3817
CCTTCGCCCCCGTCACTCC
GGAGTGACGGGGGCGAAGG
3818
CTTCGCCCCCGTCACTCCG
CGGAGTGACGGGGGCGAAG
3819
TTCGCCCCCGTCACTCCGG
CCGGAGTGACGGGGGCGAA
3820
TCGCCCCCGTCACTCCGGC
GCCGGAGTGACGGGGGCGA
3821
CGCCCCCGTCACTCCGGCC
GGCCGGAGTGACGGGGGCG
3822
GCCCCCGTCACTCCGGCCC
GGGCCGGAGTGACGGGGGC
3823
CCCCCGTCACTCCGGCCCT
AGGGCCGGAGTGACGGGGG
3824
CCCCGTCACTCCGGCCCTG
CAGGGCCGGAGTGACGGGG
3825
CCCGTCACTCCGGCCCTGC
GCAGGGCCGGAGTGACGGG
3826
CCGTCACTCCGGCCCTGCC
GGCAGGGCCGGAGTGACGG
3827
CGTCACTCCGGCCCTGCCC
GGGCAGGGCCGGAGTGACG
3828
GTCACTCCGGCCCTGCCCA
TGGGCAGGGCCGGAGTGAC
3829
TCACTCCGGCCCTGCCCAG
CTGGGCAGGGCCGGAGTGA
3830
CACTCCGGCCCTGCCCAGT
ACTGGGCAGGGCCGGAGTG
3831
ACTCCGGCCCTGCCCAGTG
CACTGGGCAGGGCCGGAGT
3832
CTCCGGCCCTGCCCAGTGA
TCACTGGGCAGGGCCGGAG
3833
TCCGGCCCTGCCCAGTGAT
ATCACTGGGCAGGGCCGGA
3834
CCGGCCCTGCCCAGTGATG
CATCACTGGGCAGGGCCGG
3835
CGGCCCTGCCCAGTGATGA
TCATCACTGGGCAGGGCCG
3836
GGCCCTGCCCAGTGATGAC
GTCATCACTGGGCAGGGCC
3837
GCCCTGCCCAGTGATGACC
GGTCATCACTGGGCAGGGC
3838
CCCTGCCCAGTGATGACCG
CGGTCATCACTGGGCAGGG
3839
CCTGCCCAGTGATGACCGC
GCGGTCATCACTGGGCAGG
3840
CTGCCCAGTGATGACCGCA
TGCGGTCATCACTGGGCAG
3841
TGCCCAGTGATGACCGCAT
ATGCGGTCATCACTGGGCA
3842
GCCCAGTGATGACCGCATC
GATGCGGTCATCACTGGGC
3843
CCCAGTGATGACCGCATCA
TGATGCGGTCATCACTGGG
3844
CCAGTGATGACCGCATCAC
GTGATGCGGTCATCACTGG
3845
CAGTGATGACCGCATCACC
GGTGATGCGGTCATCACTG
3846
AGTGATGACCGCATCACCA
TGGTGATGCGGTCATCACT
3847
GTGATGACCGCATCACCAA
TTGGTGATGCGGTCATCAC
3848
TGATGACCGCATCACCAAC
GTTGGTGATGCGGTCATCA
3849
GATGACCGCATCACCAACA
TGTTGGTGATGCGGTCATC
3850
ATGACCGCATCACCAACAT
ATGTTGGTGATGCGGTCAT
3851
TGACCGCATCACCAACATC
GATGTTGGTGATGCGGTCA
3852
GACCGCATCACCAACATCC
GGATGTTGGTGATGCGGTC
3853
ACCGCATCACCAACATCCT
AGGATGTTGGTGATGCGGT
3854
CCGCATCACCAACATCCTG
CAGGATGTTGGTGATGCGG
3855
CGCATCACCAACATCCTGG
CCAGGATGTTGGTGATGCG
3856
GCATCACCAACATCCTGGA
TCCAGGATGTTGGTGATGC
3857
CATCACCAACATCCTGGAC
GTCCAGGATGTTGGTGATG
3858
ATCACCAACATCCTGGACA
TGTCCAGGATGTTGGTGAT
3859
TCACCAACATCCTGGACAG
CTGTCCAGGATGTTGGTGA
3860
CACCAACATCCTGGACAGC
GCTGTCCAGGATGTTGGTG
3861
ACCAACATCCTGGACAGCA
TGCTGTCCAGGATGTTGGT
3862
CCAACATCCTGGACAGCAT
ATGCTGTCCAGGATGTTGG
3863
CAACATCCTGGACAGCATT
AATGCTGTCCAGGATGTTG
3864
AACATCCTGGACAGCATTA
TAATGCTGTCCAGGATGTT
3865
ACATCCTGGACAGCATTAT
ATAATGCTGTCCAGGATGT
3866
CATCCTGGACAGCATTATC
GATAATGCTGTCCAGGATG
3867
ATCCTGGACAGCATTATCG
CGATAATGCTGTCCAGGAT
3868
TCCTGGACAGCATTATCGC
GCGATAATGCTGTCCAGGA
3869
CCTGGACAGCATTATCGCA
TGCGATAATGCTGTCCAGG
3870
CTGGACAGCATTATCGCAC
GTGCGATAATGCTGTCCAG
3871
TGGACAGCATTATCGCACA
TGTGCGATAATGCTGTCCA
3872
GGACAGCATTATCGCACAG
CTGTGCGATAATGCTGTCC
3873
GACAGCATTATCGCACAGG
CCTGTGCGATAATGCTGTC
3874
ACAGCATTATCGCACAGGT
ACCTGTGCGATAATGCTGT
3875
CAGCATTATCGCACAGGTG
CACCTGTGCGATAATGCTG
3876
AGCATTATCGCACAGGTGG
CCACCTGTGCGATAATGCT
3877
GCATTATCGCACAGGTGGT
ACCACCTGTGCGATAATGC
3878
CATTATCGCACAGGTGGTG
CACCACCTGTGCGATAATG
3879
ATTATCGCACAGGTGGTGG
CCACCACCTGTGCGATAAT
3880
TTATCGCACAGGTGGTGGA
TCCACCACCTGTGCGATAA
3881
TATCGCACAGGTGGTGGAA
TTCCACCACCTGTGCGATA
3882
ATCGCACAGGTGGTGGAAC
GTTCCACCACCTGTGCGAT
3883
TCGCACAGGTGGTGGAACG
CGTTCCACCACCTGTGCGA
3884
CGCACAGGTGGTGGAACGG
CCGTTCCACCACCTGTGCG
3885
GCACAGGTGGTGGAACGGA
TCCGTTCCACCACCTGTGC
3886
CACAGGTGGTGGAACGGAA
TTCCGTTCCACCACCTGTG
3887
ACAGGTGGTGGAACGGAAG
CTTCCGTTCCACCACCTGT
3888
CAGGTGGTGGAACGGAAGA
TCTTCCGTTCCACCACCTG
3889
AGGTGGTGGAACGGAAGAT
ATCTTCCGTTCCACCACCT
3890
GGTGGTGGAACGGAAGATC
GATCTTCCGTTCCACCACC
3891
GTGGTGGAACGGAAGATCC
GGATCTTCCGTTCCACCAC
3892
TGGTGGAACGGAAGATCCA
TGGATCTTCCGTTCCACCA
3893
GGTGGAACGGAAGATCCAG
CTGGATCTTCCGTTCCACC
3894
GTGGAACGGAAGATCCAGG
CCTGGATCTTCCGTTCCAC
3895
TGGAACGGAAGATCCAGGA
TCCTGGATCTTCCGTTCCA
3896
GGAACGGAAGATCCAGGAG
CTCCTGGATCTTCCGTTCC
3897
GAACGGAAGATCCAGGAGA
TCTCCTGGATCTTCCGTTC
3898
AACGGAAGATCCAGGAGAA
TTCTCCTGGATCTTCCGTT
3899
ACGGAAGATCCAGGAGAAA
TTTCTCCTGGATCTTCCGT
3900
CGGAAGATCCAGGAGAAAG
CTTTCTCCTGGATCTTCCG
3901
GGAAGATCCAGGAGAAAGC
GCTTTCTCCTGGATCTTCC
3902
GAAGATCCAGGAGAAAGCC
GGCTTTCTCCTGGATCTTC
3903
AAGATCCAGGAGAAAGCCC
GGGCTTTCTCCTGGATCTT
3904
AGATCCAGGAGAAAGCCCT
AGGGCTTTCTCCTGGATCT
3905
GATCCAGGAGAAAGCCCTG
CAGGGCTTTCTCCTGGATC
3906
ATCCAGGAGAAAGCCCTGG
CCAGGGCTTTCTCGTGGAT
3907
TCCAGGAGAAAGCCCTGGG
CCCAGGGCTTTCTCCTGGA
3908
CCAGGAGAAAGCCCTGGGG
CCCCAGGGCTTTCTCCTGG
3909
CAGGAGAAAGCCCTGGGGC
GCCCCAGGGCTTTCTCCTG
3910
AGGAGAAAGCCCTGGGGCC
GGCCCCAGGGCTTTCTCCT
3911
GGAGAAAGCCCTGGGGCCG
CGGCCCCAGGGCTTTCTCC
3912
GAGAAAGCCCTGGGGCCGG
CCGGCCCCAGGGCTTTCTC
3913
AGAAAGCCCTGGGGCCGGG
CCCGGCCCCAGGGCTTTCT
3914
GAAAGCCCTGGGGCCGGGG
CCCCGGCCCCAGGGCTTTC
3915
AAAGCCCTGGGGCCGGGGC
GCCCCGGCCCCAGGGCTTT
3916
AAGCCCTGGGGCCGGGGCT
AGCCCCGGCCCCAGGGCTT
3917
AGCCCTGGGGCCGGGGCTT
AAGCCCCGGCCCCAGGGCT
3918
GCCCTGGGGCCGGGGCTTC
GAAGCCCCGGCCCCAGGGC
3919
CCCTGGGGCCGGGGCTTCG
CGAAGCCCCGGCCCCAGGG
3920
CCTGGGGCCGGGGCTTCGA
TCGAAGCCCCGGCCCCAGG
3921
CTGGGGCCGGGGCTTCGAG
CTCGAAGCCCCGGCCCCAG
3922
TGGGGCCGGGGCTTCGAGC
GCTCGAAGCCCCGGCCCCA
3923
GGGGCCGGGGCTTCGAGCT
AGCTCGAAGCCCCGGCCCC
3924
GGGCCGGGGCTTCGAGCTG
CAGCTCGAAGCCCCGGCCC
3925
GGCCGGGGCTTCGAGCTGG
CCAGCTCGAAGCCCCGGCC
3926
GCCGGGGCTTCGAGCTGGC
GCCAGCTCGAAGCCCCGGC
3927
CCGGGGCTTCGAGCTGGCC
GGCCAGCTCGAAGCCCCGG
3928
CGGGGCTTCGAGCTGGCCC
GGGCCAGCTCGAAGCCCCG
3929
GGGGCTTCGAGCTGGCCCG
CGGGCCAGCTCGAAGCCCC
3930
GGGCTTCGAGCTGGCCCGG
CCGGGCCAGCTCGAAGCCC
3931
GGCTTCGAGCTGGCCCGGG
CCCGGGCCAGCTCGAAGCC
3932
GCTTCGAGCTGGCCCGGGT
ACCCGGGCCAGCTCGAAGC
3933
CTTCGAGCTGGCCCGGGTC
GACCCGGGCCAGCTCGAAG
3934
TTCGAGCTGGCCCGGGTCT
AGACCCGGGCCAGCTCGAA
3935
TCGAGCTGGCCCGGGTCTG
CAGACCCGGGCCAGCTCGA
3936
CGAGCTGGCCCGGGTCTGC
GCAGACCCGGGCCAGCTCG
3937
GAGCTGGCCCGGGTCTGCG
CGCAGACCCGGGCCAGCTC
3938
AGCTGGCCCGGGTCTGCGC
GCGCAGACCCGGGCCAGCT
3939
GCTGGCCCGGGTCTGCGCA
TGCGCAGACCCGGGCCAGC
3940
CTGGCCCGGGTCTGCGCAA
TTGCGCAGACCCGGGCCAG
3941
TGGCCCGGGTCTGCGCAAG
CTTGCGCAGACCCGGGCCA
3942
GGCCCGGGTCTGCGCAAGG
CCTTGCGCAGACCCGGGCC
3943
GCCCGGGTCTGCGCAAGGG
CCCTTGCGCAGACCCGGGC
3944
CCCGGGTCTGCGCAAGGGC
GCCCTTGCGCAGACCCGGG
3945
CCGGGTCTGCGCAAGGGCC
GGCCCTTGGGCAGACCCGG
3946
CGGGTCTGCGCAAGGGCCT
AGGCCCTTGCGCAGACCCG
3947
GGGTCTGCGCAAGGGCCTG
CAGGCCCTTGCGCAGACCC
3948
GGTCTGCGCAAGGGCCTGG
CCAGGCCCTTGCGCAGACC
3949
GTCTGCGCAAGGGCCTGGG
CCCAGGCCCTTGCGCAGAC
3950
TCTGCGCAAGGGCCTGGGC
GCCCAGGCCCTTGCGCAGA
3951
CTGCGCAAGGGCCTGGGCC
GGCCCAGGCCCTTGCGCAG
3952
TGCGCAAGGGCCTGGGCCT
AGGCCCAGGCCCTTGCGCA
3953
GCGCAAGGGCCTGGGCCTG
CAGGCCCAGGCCCTTGCGC
3954
CGCAAGGGCCTGGGCCTGC
GCAGGCCCAGGCCCTTGCG
3955
GCAAGGGCCTGGGCCTGCC
GGCAGGCCCAGGCCCTTGC
3956
CAAGGGCCTGGGCCTGCCC
GGGCAGGCCCAGGCCCTTG
3957
AAGGGCCTGGGCCTGCCCC
GGGGCAGGCCCAGGCCCTT
3958
AGGGCCTGGGCCTGCCCCT
AGGGGCAGGCCCAGGCCCT
3959
GGGCCTGGGCCTGCCCCTC
GAGGGGCAGGCCCAGGCCC
3960
GGCCTGGGCCTGCCCCTCT
AGAGGGGCAGGCCCAGGCC
3961
GCCTGGGCCTGCCCCTCTC
GAGAGGGGCAGGCCCAGGC
3962
CCTGGGCCTGCCCCTCTCT
AGAGAGGGGCAGGCCCAGG
3963
CTGGGCCTGCCCCTCTCTC
GAGAGAGGGGCAGGCCCAG
3964
TGGGCCTGCCCCTCTCTCC
GGAGAGAGGGGCAGGCCCA
3965
GGGCCTGCCCCTCTCTCCA
TGGAGAGAGGGGCAGGCCC
3966
GGCCTGCCCCTCTCTCCAG
CTGGAGAGAGGGGCAGGCC
3967
GCCTGCCCCTCTCTCCAGT
ACTGGAGAGAGGGGCAGGC
3968
CCTGCCCCTCTCTCCAGTG
CACTGGAGAGAGGGGCAGG
3969
CTGCCCCTCTCTCCAGTGC
GCACTGGAGAGAGGGGCAG
3970
TGCCCCTCTCTCCAGTGCG
CGCACTGGAGAGAGGGGCA
3971
GCCCCTCTCTCCAGTGCGG
CCGCACTGGAGAGAGGGGC
3972
CCCCTCTCTCCAGTGCGGC
GCCGCACTGGAGAGAGGGG
3973
CCCTCTCTCCAGTGCGGCC
GGCCGCACTGGAGAGAGGG
3974
CCTCTCTCCAGTGCGGCCC
GGGCCGCACTGGAGAGAGG
3975
CTCTCTCCAGTGCGGCCCC
GGGGCCGCACTGGAGAGAG
3976
TCTCTCCAGTGCGGCCCCG
CGGGGCCGCACTGGAGAGA
3977
CTCTCCAGTGCGGCCCCGG
CCGGGGCCGCACTGGAGAG
3978
TCTCCAGTGCGGCCCCGGC
GCCGGGGCCGCACTGGAGA
3979
CTCCAGTGCGGCCCCGGCT
AGCCGGGGCCGCACTGGAG
3980
TCCAGTGCGGCCCCGGCTG
CAGCCGGGGCCGCACTGGA
3981
CCAGTGCGGCCCCGGCTGC
GCAGCCGGGGCCGCACTGG
3982
CAGTGCGGCCCCGGCTGCC
GGCAGCCGGGGCCGCACTG
3983
AGTGCGGCCCCGGCTGCCT
AGGCAGCCGGGGCCGCACT
3984
GTGCGGCCCCGGCTGCCTC
GAGGCAGCCGGGGCCGCAC
3985
TGCGGCCCCGGCTGCCTCC
GGAGGCAGCCGGGGCCGCA
3986
GCGGCCCCGGCTGCCTCCC
GGGAGGCAGCCGGGGCCGC
3987
CGGCCCCGGCTGCCTCCCC
GGGGAGGCAGCCGGGGCCG
3988
GGCCCCGGCTGCCTCCCCC
GGGGGAGGCAGCCGGGGCC
3989
GCCCCGGCTGCCTCCCCCA
TGGGGGAGGCAGCCGGGGC
3990
CCCCGGCTGCCTCCCCCAG
CTGGGGGAGGCAGCCGGGG
3991
CCCGGCTGCCTCCCCCAGG
CCTGGGGGAGGCAGCCGGG
3992
CCGGCTGCCTCCCCCAGGG
CCCTGGGGGAGGCAGCCGG
3993
CGGCTGCCTCCCCCAGGGG
CCCCTGGGGGAGGCAGCCG
3994
GGCTGCCTCCCCCAGGGGC
GCCCCTGGGGGAGGCAGCC
3995
GCTGCCTCCCCCAGGGGCT
AGCCCCTGGGGGAGGCAGC
3996
CTGCCTCCCCCAGGGGCTT
AAGCCCCTGGGGGAGGCAG
3997
TGCCTCCCCCAGGGGCTTT
AAAGCCCCTGGGGGAGGCA
3998
GCCTCCCCCAGGGGCTTTG
CAAAGCCCCTGGGGGAGGC
3999
CCTCCCCCAGGGGCTTTGC
GCAAAGCCCCTGGGGGAGG
4000
CTCCCCCAGGGGCTTTGCT
AGCAAAGCCCCTGGGGGAG
4001
TCCCCCAGGGGCTTTGCTG
CAGCAAAGCCCCTGGGGGA
4002
CCCCCAGGGGCTTTGCTGT
ACAGCAAAGCCCCTGGGGG
4003
CCCCAGGGGCTTTGCTGTG
CACAGCAAAGCCCCTGGGG
4004
CCCAGGGGCTTTGCTGTGG
CCACAGCAAAGCCCCTGGG
4005
CCAGGGGCTTTGCTGTGGC
GCCACAGCAAAGCCCCTGG
4006
CAGGGGCTTTGCTGTGGCT
AGCCACAGCAAAGCCCCTG
4007
AGGGGCTTTGCTGTGGCTG
CAGCCACAGCAAAGCCCCT
4008
GGGGCTTTGCTGTGGCTGC
GCAGCCACAGCAAAGCCCC
4009
GGGCTTTGCTGTGGCTGCA
TGCAGCCACAGCAAAGCCC
4010
GGCTTTGCTGTGGCTGCAG
CTGCAGCCACAGCAAAGCC
4011
GCTTTGCTGTGGCTGCAGG
CCTGCAGCCACAGCAAAGC
4012
CTTTGCTGTGGCTGCAGGA
TCCTGCAGCCACAGCAAAG
4013
TTTGCTGTGGCTGCAGGAG
CTCCTGCAGCCACAGCAAA
4014
TTGCTGTGGCTGCAGGAGC
GCTCCTGCAGCCACAGCAA
4015
TGCTGTGGCTGCAGGAGCC
GGCTCCTGCAGCCACAGCA
4016
GCTGTGGCTGCAGGAGCCC
GGGCTCCTGCAGCCACAGC
4017
CTGTGGCTGCAGGAGCCCC
GGGGCTCCTGCAGCCACAG
4018
TGTGGCTGCAGGAGCCCCA
TGGGGCTCCTGCAGCCACA
4019
GTGGCTGCAGGAGCCCCAG
CTGGGGCTCCTGCAGCCAC
4020
TGGCTGCAGGAGCCCCAGC
GCTGGGGCTCCTGCAGCCA
4021
GGCTGCAGGAGCCCCAGCC
GGCTGGGGCTCCTGCAGCC
4022
GCTGCAGGAGCCCCAGCCT
AGGCTGGGGCTCCTGCAGC
4023
CTGCAGGAGCCCCAGCCTT
AAGGCTGGGGCTCCTGCAG
4024
TGCAGGAGCCCCAGCCTTG
CAAGGCTGGGGCTCCTGCA
4025
GCAGGAGCCCCAGCCTTGC
GCAAGGCTGGGGCTCCTGC
4026
CAGGAGCCCCAGCCTTGCC
GGCAAGGCTGGGGCTCCTG
4027
AGGAGCCCCAGCCTTGCCC
GGGCAAGGCTGGGGCTCCT
4028
GGAGCCCCAGCCTTGCCCT
AGGGCAAGGCTGGGGCTCC
4029
GAGCCCCAGCCTTGCCCTC
GAGGGCAAGGCTGGGGCTC
4030
AGCCCCAGCCTTGCCCTCG
CGAGGGCAAGGCTGGGGCT
4031
GCCCCAGCCTTGCCCTCGG
CCGAGGGCAAGGCTGGGGC
4032
CCCCAGCCTTGCCCTCGGC
GCCGAGGGCAAGGCTGGGG
4033
CCCAGCCTTGCCCTCGGCG
CGCCGAGGGCAAGGCTGGG
4034
CCAGCCTTGCCCTCGGCGT
ACGCCGAGGGCAAGGCTGG
4035
CAGCCTTGCCCTCGGCGTG
CACGCCGAGGGCAAGGCTG
4036
AGCCTTGCCCTCGGCGTGG
CCACGCCGAGGGCAAGGCT
4037
GCCTTGCCCTCGGCGTGGC
GCCACGCCGAGGGCAAGGC
4038
CCTTGCCCTCGGCGTGGCT
AGCCACGCCGAGGGCAAGG
4039
CTTGCCCTCGGCGTGGCTT
AAGCCACGCCGAGGGCAAG
4040
TTGCCCTCGGCGTGGCTTC
GAAGCCACGCCGAGGGCAA
4041
TGCCCTCGGCGTGGCTTCC
GGAAGCCACGCCGAGGGCA
4042
GCCCTCGGCGTGGCTTCCA
TGGAAGCCACGCCGAGGGC
4043
CCCTCGGCGTGGCTTCCAC
GTGGAAGCCACGCCGAGGG
4044
CCTCGGCGTGGCTTCCACC
GGTGGAAGCCACGCCGAGG
4045
CTCGGCGTGGCTTCCACCT
AGGTGGAAGCCACGCCGAG
4046
TCGGCGTGGCTTCCACCTC
GAGGTGGAAGCCACGCCGA
4047
CGGCGTGGCTTCCACCTCT
AGAGGTGGAAGCCACGCCG
4048
GGCGTGGCTTCCACCTCTT
AAGAGGTGGAAGCCACGCC
4049
GCGTGGCTTCCACCTCTTC
GAAGAGGTGGAAGCCACGC
4050
CGTGGCTTCCACCTCTTCC
GGAAGAGGTGGAAGCCACG
4051
GTGGCTTCCACCTCTTCCA
TGGAAGAGGTGGAAGCCAC
4052
TGGCTTCCACCTCTTCCAG
CTGGAAGAGGTGGAAGCCA
4053
GGCTTCCACCTCTTCCAGG
CCTGGAAGAGGTGGAAGCC
4054
GCTTCCACCTCTTCCAGGA
TCCTGGAAGAGGTGGAAGC
4055
CTTCCACCTCTTCCAGGAG
CTCCTGGAAGAGGTGGAAG
4056
TTCCACCTCTTCCAGGAGC
GCTCCTGGAAGAGGTGGAA
4057
TCCACCTCTTCCAGGAGCA
TGCTCCTGGAAGAGGTGGA
4058
CCACCTCTTCCAGGAGCAC
GTGCTCCTGGAAGAGGTGG
4059
CACCTCTTCCAGGAGCACT
AGTGCTCCTGGAAGAGGTG
4060
ACCTCTTCCAGGAGCACTG
CAGTGCTCCTGGAAGAGGT
4061
CCTCTTCCAGGAGCACTGG
CCAGTGCTCCTGGAAGAGG
4062
CTCTTCCAGGAGCACTGGA
TCCAGTGCTCCTGGAAGAG
4063
TCTTCCAGGAGCACTGGAG
CTCCAGTGCTCCTGGAAGA
4064
CTTCCAGGAGCACTGGAGG
CCTCCAGTGCTCCTGGAAG
4065
TTCCAGGAGCACTGGAGGC
GCCTCCAGTGCTCCTGGAA
4066
TCCAGGAGCACTGGAGGCA
TGCCTCCAGTGCTCCTGGA
4067
CCAGGAGCACTGGAGGCAG
CTGCCTCCAGTGCTCCTGG
4068
CAGGAGCACTGGAGGCAGG
CCTGCCTCCAGTGCTCCTG
4069
AGGAGCACTGGAGGCAGGG
CCCTGCCTCCAGTGCTCCT
4070
GGAGCACTGGAGGCAGGGC
GCCCTGCCTCCAGTGCTCC
4071
GAGCACTGGAGGCAGGGCC
GGCCCTGCCTCCAGTGCTC
4072
AGCACTGGAGGCAGGGCCA
TGGCCCTGCCTCCAGTGCT
4073
GCACTGGAGGCAGGGCCAG
CTGGCCCTGCCTCCAGTGC
4074
CACTGGAGGCAGGGCCAGC
GCTGGCCCTGCCTCCAGTG
4075
ACTGGAGGCAGGGCCAGCC
GGCTGGCCCTGCCTCCAGT
4076
CTGGAGGCAGGGCCAGCCT
AGGCTGGCCCTGCCTCCAG
4077
TGGAGGCAGGGCCAGCCTG
CAGGCTGGCCCTGCCTCCA
4078
GGAGGCAGGGCCAGCCTGT
ACAGGCTGGCCCTGCCTCC
4079
GAGGCAGGGCCAGCCTGTG
CACAGGCTGGCCCTGCCTC
4080
AGGCAGGGCCAGCCTGTGT
ACACAGGCTGGCCCTGCCT
4081
GGCAGGGCCAGCCTGTGTT
AACACAGGCTGGCCCTGCC
4082
GCAGGGCCAGCCTGTGTTG
CAACACAGGCTGGCCCTGC
4083
CAGGGCCAGCCTGTGTTGG
CCAACACAGGCTGGCCCTG
4084
AGGGCCAGCCTGTGTTGGT
ACCAACACAGGCTGGCCCT
4085
GGGCCAGCCTGTGTTGGTG
CACCAACACAGGCTGGCCC
4086
GGCCAGCCTGTGTTGGTGT
ACACCAACACAGGCTGGCC
4087
GCCAGCCTGTGTTGGTGTC
GACACCAACACAGGCTGGC
4088
CCAGCCTGTGTTGGTGTCA
TGACACCAACACAGGCTGG
4089
CAGCCTGTGTTGGTGTCAG
CTGACACCAACACAGGCTG
4090
AGCCTGTGTTGGTGTCAGG
CCTGACACCAACACAGGCT
4091
GCCTGTGTTGGTGTCAGGG
CCCTGACACCAACACAGGC
4092
CCTGTGTTGGTGTCAGGGA
TCCCTGACACCAACACAGG
4093
CTGTGTTGGTGTCAGGGAT
ATCCCTGACACCAACACAG
4094
TGTGTTGGTGTCAGGGATC
GATCCCTGACACCAACACA
4095
GTGTTGGTGTCAGGGATCC
GGATCCCTGACACCAACAC
4096
TGTTGGTGTCAGGGATCCA
TGGATCCCTGACACCAACA
4097
GTTGGTGTCAGGGATCCAA
TTGGATCCCTGACACCAAC
4098
TTGGTGTCAGGGATCCAAA
TTTGGATCCCTGACACCAA
4099
TGGTGTCAGGGATCCAAAG
CTTTGGATCCCTGACACCA
4100
GGTGTCAGGGATCCAAAGG
CCTTTGGATCCCTGACACC
4101
GTGTCAGGGATCCAAAGGA
TCCTTTGGATCCCTGACAC
4102
TGTCAGGGATCCAAAGGAC
GTCCTTTGGATCCCTGACA
4103
GTCAGGGATCCAAAGGACA
TGTCCTTTGGATCCCTGAC
4104
TCAGGGATCCAAAGGACAT
ATGTCCTTTGGATCCCTGA
4105
CAGGGATCCAAAGGACATT
AATGTCCTTTGGATCCCTG
4106
AGGGATCCAAAGGACATTG
CAATGTCCTTTGGATCCCT
4107
GGGATCCAAAGGACATTGC
GCAATGTCCTTTGGATCCC
4108
GGATCCAAAGGACATTGCA
TGCAATGTCCTTTGGATCC
4109
GATCCAAAGGACATTGCAG
CTGCAATGTCCTTTGGATC
4110
ATCCAAAGGACATTGCAGG
CCTGCAATGTCCTTTGGAT
4111
TCCAAAGGACATTGCAGGG
CCCTGCAATGTCCTTTGGA
4112
CCAAAGGACATTGCAGGGC
GCCCTGCAATGTCCTTTGG
4113
CAAAGGACATTGCAGGGCA
TGCCCTGCAATGTCCTTTG
4114
AAAGGACATTGCAGGGCAA
TTGCCCTGCAATGTCCTTT
4115
AAGGACATTGCAGGGCAAC
GTTGCCCTGCAATGTCCTT
4116
AGGACATTGCAGGGCAACC
GGTTGCCCTGCAATGTCCT
4117
GGACATTGCAGGGCAACCT
AGGTTGCCCTGCAATGTCC
4118
GACATTGCAGGGCAACCTG
CAGGTTGCCCTGCAATGTC
4119
ACATTGCAGGGCAACCTGT
ACAGGTTGCCCTGCAATGT
4120
CATTGCAGGGCAACCTGTG
CACAGGTTGCCCTGCAATG
4121
ATTGCAGGGCAACCTGTGG
CCACAGGTTGCCCTGCAAT
4122
TTGCAGGGCAACCTGTGGG
CCCACAGGTTGCCCTGCAA
4123
TGCAGGGCAACCTGTGGGG
CCCCACAGGTTGCCCTGCA
4124
GCAGGGCAACCTGTGGGGG
CCCCCACAGGTTGCCCTGC
4125
CAGGGCAACCTGTGGGGGA
TCCCCCACAGGTTGCCCTG
4126
AGGGCAACCTGTGGGGGAC
GTCCCCCACAGGTTGCCCT
4127
GGGCAACCTGTGGGGGACA
TGTCCCCCACAGGTTGCCC
4128
GGCAACCTGTGGGGGACAG
CTGTCCCCCACAGGTTGCC
4129
GCAACCTGTGGGGGACAGA
TCTGTCCCCCACAGGTTGC
4130
CAACCTGTGGGGGACAGAA
TTCTGTCCCCCACAGGTTG
4131
AACCTGTGGGGGACAGAAG
CTTCTGTCCCCCACAGGTT
4132
ACCTGTGGGGGACAGAAGC
GCTTCTGTCCCCCACAGGT
4133
CCTGTGGGGGACAGAAGCT
AGCTTCTGTCCCCCACAGG
4134
CTGTGGGGGACAGAAGCTC
GAGCTTCTGTCCCCCACAG
4135
TGTGGGGGACAGAAGCTCT
AGAGCTTCTGTCCCCCACA
4136
GTGGGGGACAGAAGCTCTT
AAGAGCTTCTGTCCCCCAC
4137
TGGGGGACAGAAGCTCTTG
CAAGAGCTTCTGTCCCCCA
4138
GGGGGACAGAAGCTCTTGG
CCAAGAGCTTCTGTCCCCC
4139
GGGGACAGAAGCTCTTGGG
CCCAAGAGCTTCTGTCCCC
4140
GGGACAGAAGCTCTTGGGG
CCCCAAGAGCTTCTGTCCC
4141
GGACAGAAGCTCTTGGGGC
GCCCCAAGAGCTTCTGTCC
4142
GACAGAAGCTCTTGGGGCA
TGCCCCAAGAGCTTCTGTC
4143
ACAGAAGCTCTTGGGGCAC
GTGCCCCAAGAGCTTCTGT
4144
CAGAAGCTCTTGGGGCACT
AGTGCCCCAAGAGCTTCTG
4145
AGAAGCTCTTGGGGCACTT
AAGTGCCCCAAGAGCTTCT
4146
GAAGCTCTTGGGGCACTTG
CAAGTGCCCCAAGAGCTTC
4147
AAGCTCTTGGGGCACTTGG
CCAAGTGCCCCAAGAGCTT
4148
AGCTCTTGGGGCACTTGGA
TCCAAGTGCCCCAAGAGCT
4149
GCTCTTGGGGCACTTGGAG
CTCCAAGTGCCCCAAGAGC
4150
CTCTTGGGGCACTTGGAGG
CCTCCAAGTGCCCCAAGAG
4151
TCTTGGGGCACTTGGAGGC
GCCTCCAAGTGCCCCAAGA
4152
CTTGGGGCACTTGGAGGCC
GGCCTCCAAGTGCCCCAAG
4153
TTGGGGCACTTGGAGGCCA
TGGCCTCCAAGTGCCCCAA
4154
TGGGGCACTTGGAGGCCAG
CTGGCCTCCAAGTGCCCCA
4155
GGGGCACTTGGAGGCCAGG
CCTGGCCTCCAAGTGCCCC
4156
GGGCACTTGGAGGCCAGGT
ACCTGGCCTCCAAGTGCCC
4157
GGCACTTGGAGGCCAGGTG
CACCTGGCCTCCAAGTGCC
4158
GCACTTGGAGGCCAGGTGC
GCACCTGGCCTCCAAGTGC
4159
CACTTGGAGGCCAGGTGCA
TGCACCTGGCCTCCAAGTG
4160
ACTTGGAGGCCAGGTGCAG
CTGCACCTGGCCTCCAAGT
4161
CTTGGAGGCCAGGTGCAGG
CCTGCACCTGGCCTCCAAG
4162
TTGGAGGCCAGGTGCAGGC
GCCTGCACCTGGCCTCCAA
4163
TGGAGGCCAGGTGCAGGCG
CGCCTGCACCTGGCCTCCA
4164
GGAGGCCAGGTGCAGGCGC
GCGCCTGCACCTGGCCTCC
4165
GAGGCCAGGTGCAGGCGCT
AGCGCCTGCACCTGGCCTC
4166
AGGCCAGGTGCAGGCGCTG
CAGCGCCTGCACCTGGCCT
4167
GGCCAGGTGCAGGCGCTGA
TCAGCGCCTGCACCTGGCC
4168
GCCAGGTGCAGGCGCTGAG
CTCAGCGCCTGCACCTGGC
4169
CCAGGTGCAGGCGCTGAGC
GCTCAGCGCCTGCACCTGG
4170
CAGGTGCAGGCGCTGAGCC
GGCTCAGCGCCTGCACCTG
4171
AGGTGCAGGCGCTGAGCCC
GGGCTCAGCGCCTGCACCT
4172
GGTGCAGGCGCTGAGCCCC
GGGGCTCAGCGCCTGCACC
4173
GTGCAGGCGCTGAGCCCCC
GGGGGCTCAGCGCCTGCAC
4174
TGCAGGCGCTGAGCCCCCT
AGGGGGCTCAGCGCCTGCA
4175
GCAGGCGCTGAGCCCCCTC
GAGGGGGCTCAGCGCCTGC
4176
CAGGCGCTGAGCCCCCTCG
CGAGGGGGCTCAGCGCCTG
4177
AGGCGCTGAGCCCCCTCGG
CCGAGGGGGCTCAGCGCCT
4178
GGCGCTGAGCCCCCTCGGA
TCCGAGGGGGCTCAGCGCC
4179
GCGCTGAGCCCCCTCGGAC
GTCCGAGGGGGCTCAGCGC
4180
CGCTGAGCCCCCTCGGACC
GGTCCGAGGGGGCTCAGCG
4181
GCTGAGCCCCCTCGGACCT
AGGTCCGAGGGGGCTCAGC
4182
CTGAGCCCCCTCGGACCTC
GAGGTCCGAGGGGGCTCAG
4183
TGAGCCCCCTCGGACCTCC
GGAGGTCCGAGGGGGCTCA
4184
GAGCCCCCTCGGACCTCCC
GGGAGGTCCGAGGGGGCTC
4185
AGCCCCCTCGGACCTCCCC
GGGGAGGTCCGAGGGGGCT
4186
GCCCCCTCGGACCTCCCCA
TGGGGAGGTCCGAGGGGGC
4187
CCCCCTCGGACCTCCCCAG
CTGGGGAGGTCCGAGGGGG
4188
CCCCTCGGACCTCCCCAGC
GCTGGGGAGGTCCGAGGGG
4189
CCCTCGGACCTCCCCAGCC
GGCTGGGGAGGTCCGAGGG
4190
CCTCGGACCTCCCCAGCCC
GGGCTGGGGAGGTCCGAGG
4191
CTCGGACCTCCCCAGCCCA
TGGGCTGGGGAGGTCCGAG
4192
TCGGACCTCCCCAGCCCAG
CTGGGCTGGGGAGGTCCGA
4193
CGGACCTCCCCAGCCCAGC
GCTGGGCTGGGGAGGTCCG
4194
GGACCTCCCCAGCCCAGCA
TGCTGGGCTGGGGAGGTCC
4195
GACCTCCCCAGCCCAGCAG
CTGCTGGGCTGGGGAGGTC
4196
ACCTCCCCAGCCCAGCAGC
GCTGCTGGGCTGGGGAGGT
4197
CCTCCCCAGCCCAGCAGCC
GGCTGCTGGGCTGGGGAGG
4198
CTCCCCAGCCCAGCAGCCT
AGGCTGCTGGGCTGGGGAG
4199
TCCCCAGCCCAGCAGCCTG
CAGGCTGCTGGGCTGGGGA
4200
CCCCAGCCCAGCAGCCTGG
CCAGGCTGCTGGGCTGGGG
4201
CCCAGCCCAGCAGCCTGGG
CCCAGGCTGCTGGGCTGGG
4202
CCAGCCCAGCAGCCTGGGC
GCCCAGGCTGCTGGGCTGG
4203
CAGCCCAGCAGCCTGGGCA
TGCCCAGGCTGCTGGGCTG
4204
AGCCCAGCAGCCTGGGCAG
CTGCCCAGGCTGCTGGGCT
4205
GCCCAGCAGCCTGGGCAGC
GCTGCCCAGGCTGCTGGGC
4206
CCCAGCAGCCTGGGCAGCA
TGCTGCCCAGGCTGCTGGG
4207
CCAGCAGCCTGGGCAGCAC
GTGCTGCCCAGGCTGCTGG
4208
CAGCAGCCTGGGCAGCACA
TGTGCTGCCCAGGCTGCTG
4209
AGCAGCCTGGGCAGCACAA
TTGTGCTGCCCAGGCTGCT
4210
GCAGCCTGGGCAGCACAAC
GTTGTGCTGCCCAGGCTGC
4211
CAGCCTGGGCAGCACAACA
TGTTGTGCTGCCCAGGCTG
4212
AGCCTGGGCAGCACAACAT
ATGTTGTGCTGCCCAGGCT
4213
GCCTGGGCAGCACAACATT
AATGTTGTGCTGCCCAGGC
4214
CCTGGGCAGCACAACATTC
GAATGTTGTGCTGCCCAGG
4215
CTGGGCAGCACAACATTCT
AGAATGTTGTGCTGCCCAG
4216
TGGGCAGCACAACATTCTG
CAGAATGTTGTGCTGCCCA
4217
GGGCAGCACAACATTCTGG
CCAGAATGTTGTGCTGCCC
4218
GGCAGCACAACATTCTGGG
CCCAGAATGTTGTGCTGCC
4219
GCAGCACAACATTCTGGGA
TCCCAGAATGTTGTGCTGC
4220
CAGCACAACATTCTGGGAG
CTCCCAGAATGTTGTGCTG
4221
AGCACAACATTCTGGGAGG
CCTCCCAGAATGTTGTGCT
4222
GCACAACATTCTGGGAGGG
CCCTCCCAGAATGTTGTGC
4223
CACAACATTCTGGGAGGGC
GCCCTCCCAGAATGTTGTG
4224
ACAACATTCTGGGAGGGCT
AGCCCTCCCAGAATGTTGT
4225
CAACATTCTGGGAGGGCTT
AAGCCCTCCCAGAATGTTG
4226
AACATTCTGGGAGGGCTTC
GAAGCCCTCCCAGAATGTT
4227
ACATTCTGGGAGGGCTTCT
AGAAGCCCTCCCAGAATGT
4228
CATTCTGGGAGGGCTTCTC
GAGAAGCCCTCCCAGAATG
4229
ATTCTGGGAGGGCTTCTCC
GGAGAAGCCCTCCCAGAAT
4230
TTCTGGGAGGGCTTCTCCT
AGGAGAAGCCCTCCCAGAA
4231
TCTGGGAGGGCTTCTCCTG
CAGGAGAAGCCCTCCCAGA
4232
CTGGGAGGGCTTCTCCTGG
CCAGGAGAAGCCCTCCCAG
4233
TGGGAGGGCTTCTCCTGGC
GCCAGGAGAAGCCCTCCCA
4234
GGGAGGGCTTCTCCTGGCC
GGCCAGGAGAAGCCCTCCC
4235
GGAGGGCTTCTCCTGGCCT
AGGCCAGGAGAAGCCCTCC
4236
GAGGGCTTCTCCTGGCCTG
CAGGCCAGGAGAAGCCCTC
4237
AGGGCTTCTCCTGGCCTGA
TCAGGCCAGGAGAAGCCCT
4238
GGGCTTCTCCTGGCCTGAG
CTCAGGCCAGGAGAAGCCC
4239
GGCTTCTCCTGGCCTGAGC
GCTCAGGCCAGGAGAAGCC
4240
GCTTCTCCTGGCCTGAGCT
AGCTCAGGCCAGGAGAAGC
4241
CTTCTCCTGGCCTGAGCTT
AAGCTCAGGCCAGGAGAAG
4242
TTCTCCTGGCCTGAGCTTC
GAAGCTCAGGCCAGGAGAA
4243
TCTCCTGGCCTGAGCTTCG
CGAAGCTCAGGCCAGGAGA
4244
CTCCTGGCCTGAGCTTCGC
GCGAAGCTCAGGCCAGGAG
4245
TCCTGGCCTGAGCTTCGCC
GGCGAAGCTCAGGCCAGGA
4246
CCTGGCCTGAGCTTCGCCC
GGGCGAAGCTCAGGCCAGG
4247
CTGGCCTGAGCTTCGCCCA
TGGGCGAAGCTCAGGCCAG
4248
TGGCCTGAGCTTCGCCCAA
TTGGGCGAAGCTCAGGCCA
4249
GGCCTGAGCTTCGCCCAAA
TTTGGGCGAAGCTCAGGCC
4250
GCCTGAGCTTCGCCCAAAG
CTTTGGGCGAAGCTCAGGC
4251
CCTGAGCTTCGCCCAAAGT
ACTTTGGGCGAAGCTCAGG
4252
CTGAGCTTCGCCCAAAGTC
GACTTTGGGCGAAGCTCAG
4253
TGAGCTTCGCCCAAAGTCA
TGACTTTGGGCGAAGCTCA
4254
GAGCTTCGCCCAAAGTCAG
CTGACTTTGGGCGAAGCTC
4255
AGCTTCGCCCAAAGTCAGA
TCTGACTTTGGGCGAAGCT
4256
GCTTCGCCCAAAGTCAGAC
GTCTGACTTTGGGCGAAGC
4257
CTTCGCCCAAAGTCAGACG
CGTCTGACTTTGGGCGAAG
4258
TTCGCCCAAAGTCAGACGA
TCGTCTGACTTTGGGCGAA
4259
TCGCCCAAAGTCAGACGAG
CTCGTCTGACTTTGGGCGA
4260
CGCCCAAAGTCAGACGAGG
CCTCGTCTGACTTTGGGCG
4261
GCCCAAAGTCAGACGAGGG
CCCTCGTCTGACTTTGGGC
4262
CCCAAAGTCAGACGAGGGC
GCCCTCGTCTGACTTTGGG
4263
CCAAAGTCAGACGAGGGCT
AGCCCTCGTCTGACTTTGG
4264
CAAAGTCAGACGAGGGCTC
GAGCCCTCGTCTGACTTTG
4265
AAAGTCAGACGAGGGCTCT
AGAGCCCTCGTCTGACTTT
4266
AAGTCAGACGAGGGCTCTG
CAGAGCCCTCGTCTGACTT
4267
AGTCAGACGAGGGCTCTGT
ACAGAGCCCTCGTCTGACT
4268
GTCAGACGAGGGCTCTGTC
GACAGAGCCCTCGTCTGAC
4269
TCAGACGAGGGCTCTGTCC
GGACAGAGCCCTCGTCTGA
4270
CAGACGAGGGCTCTGTCCT
AGGACAGAGCCCTCGTCTG
4271
AGACGAGGGCTCTGTCCTC
GAGGACAGAGCCCTCGTCT
4272
GACGAGGGCTCTGTCCTCC
GGAGGACAGAGCCCTCGTC
4273
ACGAGGGCTCTGTCCTCCT
AGGAGGACAGAGCCCTCGT
4274
CGAGGGCTCTGTCCTCCTG
CAGGAGGACAGAGCCCTCG
4275
GAGGGCTCTGTCCTCCTGC
GCAGGAGGACAGAGCCCTC
4276
AGGGCTCTGTCCTCCTGCT
AGCAGGAGGACAGAGCCCT
4277
GGGCTCTGTCCTCCTGCTG
CAGCAGGAGGACAGAGCCC
4278
GGCTCTGTCCTCCTGCTGC
GCAGCAGGAGGACAGAGCC
4279
GCTCTGTCCTCCTGCTGCA
TGCAGCAGGAGGACAGAGC
4280
CTCTGTCCTCCTGCTGCAC
GTGCAGCAGGAGGACAGAG
4281
TCTGTCCTCCTGCTGCACC
GGTGCAGCAGGAGGACAGA
4282
CTGTCCTCCTGCTGCACCG
CGGTGCAGCAGGAGGACAG
4283
TGTCCTCCTGCTGCACCGA
TCGGTGCAGCAGGAGGACA
4284
GTCCTCCTGCTGCACCGAG
CTCGGTGCAGCAGGAGGAC
4285
TCCTCCTGCTGCACCGAGC
GCTCGGTGCAGCAGGAGGA
4286
CCTCCTGCTGCACCGAGCT
AGCTCGGTGCAGCAGGAGG
4287
CTCCTGCTGCACCGAGCTT
AAGCTCGGTGCAGCAGGAG
4288
TCCTGCTGCACCGAGCTTT
AAAGCTCGGTGCAGCAGGA
4289
CCTGCTGCACCGAGCTTTG
CAAAGCTCGGTGCAGCAGG
4290
CTGCTGCACCGAGCTTTGG
CCAAAGCTCGGTGCAGCAG
4291
TGCTGCACCGAGCTTTGGG
CCCAAAGCTCGGTGCAGCA
4292
GCTGCACCGAGCTTTGGGG
CCCCAAAGCTCGGTGCAGC
4293
CTGCACCGAGCTTTGGGGG
CCCCCAAAGCTCGGTGCAG
4294
TGCACCGAGCTTTGGGGGA
TCCCCCAAAGCTCGGTGCA
4295
GCACCGAGCTTTGGGGGAT
ATCCCCCAAAGCTCGGTGC
4296
CACCGAGCTTTGGGGGATG
CATCCCCCAAAGCTCGGTG
4297
ACCGAGCTTTGGGGGATGA
TCATCCCCCAAAGCTCGGT
4298
CCGAGCTTTGGGGGATGAG
CTCATCCCCCAAAGCTCGG
4299
CGAGCTTTGGGGGATGAGG
CCTCATCCCCCAAAGCTCG
4300
GAGCTTTGGGGGATGAGGA
TCCTCATCCCCCAAAGCTC
4301
AGCTTTGGGGGATGAGGAC
GTCCTCATCCCCCAAAGCT
4302
GCTTTGGGGGATGAGGACA
TGTCCTCATCCCCCAAAGC
4303
CTTTGGGGGATGAGGACAC
GTGTCCTCATCCCCCAAAG
4304
TTTGGGGGATGAGGACACC
GGTGTCCTCATCCCCCAAA
4305
TTGGGGGATGAGGACACCA
TGGTGTCCTCATCCCCCAA
4306
TGGGGGATGAGGACACCAG
CTGGTGTCCTCATCCCCCA
4307
GGGGGATGAGGACACCAGC
GCTGGTGTCCTCATCCCCC
4308
GGGGATGAGGACACCAGCA
TGCTGGTGTCCTCATCCCC
4309
GGGATGAGGACACCAGCAG
CTGCTGGTGTCCTCATCCC
4310
GGATGAGGACACCAGCAGG
CCTGCTGGTGTCCTCATCC
4311
GATGAGGACACCAGCAGGG
CCCTGCTGGTGTCCTCATC
4312
ATGAGGACACCAGCAGGGT
ACCCTGCTGGTGTCCTCAT
4313
TGAGGACACCAGCAGGGTG
CACCCTGCTGGTGTCCTCA
4314
GAGGACACCAGCAGGGTGG
CCACCCTGCTGGTGTCCTC
4315
AGGACACCAGCAGGGTGGA
TCCACCCTGCTGGTGTCCT
4316
GGACACCAGCAGGGTGGAG
CTCCACCCTGCTGGTGTCC
4317
GACACCAGCAGGGTGGAGA
TCTCCACCCTGCTGGTGTC
4318
ACACCAGCAGGGTGGAGAA
TTCTCCACCCTGCTGGTGT
4319
CACCAGCAGGGTGGAGAAC
GTTCTCCACCCTGCTGGTG
4320
ACCAGCAGGGTGGAGAACC
GGTTCTCCACCCTGCTGGT
4321
CCAGCAGGGTGGAGAACCT
AGGTTCTCCACCCTGCTGG
4322
CAGCAGGGTGGAGAACCTA
TAGGTTCTCCACCCTGCTG
4323
AGCAGGGTGGAGAACCTAG
CTAGGTTCTCCACCCTGCT
4324
GCAGGGTGGAGAACCTAGC
GCTAGGTTCTCCACCCTGC
4325
CAGGGTGGAGAACCTAGCT
AGCTAGGTTCTCCACCCTG
4326
AGGGTGGAGAACCTAGCTG
CAGCTAGGTTCTCCACCCT
4327
GGGTGGAGAACCTAGCTGC
GCAGCTAGGTTCTCCACCC
4328
GGTGGAGAACCTAGCTGCC
GGCAGCTAGGTTCTCCACC
4329
GTGGAGAACCTAGCTGCCA
TGGCAGCTAGGTTCTCCAC
4330
TGGAGAACCTAGCTGCCAG
CTGGCAGCTAGGTTCTCCA
4331
GGAGAACCTAGCTGCCAGT
ACTGGCAGCTAGGTTCTCC
4332
GAGAACCTAGCTGCCAGTC
GACTGGCAGCTAGGTTCTC
4333
AGAACCTAGCTGCCAGTCT
AGACTGGCAGCTAGGTTCT
4334
GAACCTAGCTGCCAGTCTG
CAGACTGGCAGCTAGGTTC
4335
AACCTAGCTGCCAGTCTGC
GCAGACTGGCAGCTAGGTT
4336
ACCTAGCTGCCAGTCTGCC
GGCAGACTGGCAGCTAGGT
4337
CCTAGCTGCCAGTCTGCCA
TGGCAGACTGGCAGCTAGG
4338
CTAGCTGCCAGTCTGCCAC
GTGGCAGACTGGCAGCTAG
4339
TAGCTGCCAGTCTGCCACT
AGTGGCAGACTGGCAGCTA
4340
AGCTGCCAGTCTGCCACTT
AAGTGGCAGACTGGCAGCT
4341
GCTGCCAGTCTGCCACTTC
GAAGTGGCAGACTGGCAGC
4342
CTGCCAGTCTGCCACTTCC
GGAAGTGGCAGACTGGCAG
4343
TGCCAGTCTGCCACTTCCG
CGGAAGTGGCAGACTGGCA
4344
GCCAGTCTGCCACTTCCGG
CCGGAAGTGGCAGACTGGC
4345
CCAGTCTGCCACTTCCGGA
TCCGGAAGTGGCAGACTGG
4346
CAGTCTGCCACTTCCGGAG
CTCCGGAAGTGGCAGACTG
4347
AGTCTGCCACTTCCGGAGT
ACTCCGGAAGTGGCAGACT
4348
GTCTGCCACTTCCGGAGTA
TACTCCGGAAGTGGCAGAC
4349
TCTGCCACTTCCGGAGTAC
GTACTCCGGAAGTGGCAGA
4350
CTGCCACTTCCGGAGTACT
AGTACTCCGGAAGTGGCAG
4351
TGCCACTTCCGGAGTACTG
CAGTACTCCGGAAGTGGCA
4352
GCCACTTCCGGAGTACTGC
GCAGTACTCCGGAAGTGGC
4353
CCACTTCCGGAGTACTGCG
CGCAGTACTCCGGAAGTGG
4354
CACTTCCGGAGTACTGCGC
GCGCAGTACTCCGGAAGTG
4355
ACTTCCGGAGTACTGCGCC
GGCGCAGTACTCCGGAAGT
4356
CTTCCGGAGTACTGCGCCC
GGGCGCAGTACTCCGGAAG
4357
TTCCGGAGTACTGCGCCCT
AGGGCGCAGTACTCCGGAA
4358
TCCGGAGTACTGCGCCCTC
GAGGGCGCAGTACTCCGGA
4359
CCGGAGTACTGCGCCCTCC
GGAGGGCGCAGTACTCCGG
4360
CGGAGTACTGCGCCCTCCA
TGGAGGGCGCAGTACTCCG
4361
GGAGTACTGCGCCCTCCAT
ATGGAGGGCGCAGTACTCC
4362
GAGTACTGCGCCCTCCATG
CATGGAGGGCGCAGTACTC
4363
AGTACTGCGCCCTCCATGG
CCATGGAGGGCGCAGTACT
4364
GTACTGCGCCCTCCATGGA
TCCATGGAGGGCGCAGTAC
4365
TACTGCGCCCTCCATGGAA
TTCCATGGAGGGCGCAGTA
4366
ACTGCGCCCTCCATGGAAA
TTTCCATGGAGGGCGCAGT
4367
CTGCGCCCTCCATGGAAAA
TTTTCCATGGAGGGCGCAG
4368
TGCGCCCTCCATGGAAAAC
GTTTTCCATGGAGGGCGCA
4369
GCGCCCTCCATGGAAAACT
AGTTTTCCATGGAGGGCGC
4370
CGCCCTCCATGGAAAACTC
GAGTTTTCCATGGAGGGCG
4371
GCCCTCCATGGAAAACTCA
TGAGTTTTCCATGGAGGGC
4372
CCCTCCATGGAAAACTCAA
TTGAGTTTTCCATGGAGGG
4373
CCTCCATGGAAAACTCAAC
GTTGAGTTTTCCATGGAGG
4374
CTCCATGGAAAACTCAACC
GGTTGAGTTTTCCATGGAG
4375
TCCATGGAAAACTCAACCT
AGGTTGAGTTTTCCATGGA
4376
CCATGGAAAACTCAACCTG
CAGGTTGAGTTTTCCATGG
4377
CATGGAAAACTCAACCTGG
CCAGGTTGAGTTTTCCATG
4378
ATGGAAAACTCAACCTGGC
GCCAGGTTGAGTTTTCCAT
4379
TGGAAAACTCAACCTGGCT
AGCCAGGTTGAGTTTTCCA
4380
GGAAAACTCAACCTGGCTT
AAGCCAGGTTGAGTTTTCC
4381
GAAAACTCAACCTGGCTTC
GAAGCCAGGTTGAGTTTTC
4382
AAAACTCAACCTGGCTTCC
GGAAGCCAGGTTGAGTTTT
4383
AAACTCAACCTGGCTTCCT
AGGAAGCCAGGTTGAGTTT
4384
AACTCAACCTGGCTTCCTA
TAGGAAGCCAGGTTGAGTT
4385
ACTCAACCTGGCTTCCTAC
GTAGGAAGCCAGGTTGAGT
4386
CTCAACCTGGCTTCCTACC
GGTAGGAAGCCAGGTTGAG
4387
TCAACCTGGCTTCCTACCT
AGGTAGGAAGCCAGGTTGA
4388
CAACCTGGCTTCCTACCTC
GAGGTAGGAAGCCAGGTTG
4389
AACCTGGCTTCCTACCTCC
GGAGGTAGGAAGCCAGGTT
4390
ACCTGGCTTCCTACCTCCC
GGGAGGTAGGAAGCCAGGT
4391
CCTGGCTTCCTACCTCCCA
TGGGAGGTAGGAAGCCAGG
4392
CTGGCTTCCTACCTCCCAC
GTGGGAGGTAGGAAGCCAG
4393
TGGCTTCCTACCTCCCACC
GGTGGGAGGTAGGAAGCCA
4394
GGCTTCCTACCTCCCACCG
CGGTGGGAGGTAGGAAGCC
4395
GCTTCCTACCTCCCACCGG
CCGGTGGGAGGTAGGAAGC
4396
CTTCCTACCTCCCACCGGG
CCCGGTGGGAGGTAGGAAG
4397
TTCCTACCTCCCACCGGGC
GCCCGGTGGGAGGTAGGAA
4398
TCCTACCTCCCACCGGGCC
GGCCCGGTGGGAGGTAGGA
4399
CCTACCTCCCACCGGGCCT
AGGCCCGGTGGGAGGTAGG
4400
CTACCTCCCACCGGGCCTT
AAGGCCCGGTGGGAGGTAG
4401
TACCTCCCACCGGGCCTTG
CAAGGCCCGGTGGGAGGTA
4402
ACCTCCCACCGGGCCTTGC
GCAAGGCCCGGTGGGAGGT
4403
CCTCCCACCGGGCCTTGCC
GGCAAGGCCCGGTGGGAGG
4404
CTCCCACCGGGCCTTGCCC
GGGCAAGGCCCGGTGGGAG
4405
TCCCACCGGGCCTTGCCCT
AGGGCAAGGCCCGGTGGGA
4406
CCCACCGGGCCTTGCCCTG
CAGGGCAAGGCCCGGTGGG
4407
CCACCGGGCCTTGCCCTGC
GCAGGGCAAGGCCCGGTGG
4408
CACCGGGCCTTGCCCTGCG
CGCAGGGCAAGGCCCGGTG
4409
ACCGGGCCTTGCCCTGCGT
ACGCAGGGCAAGGCCCGGT
4410
CCGGGCCTTGCCCTGCGTC
GACGCAGGGCAAGGCCCGG
4411
CGGGCCTTGCCCTGCGTCC
GGACGCAGGGCAAGGCCCG
4412
GGGCCTTGCCCTGCGTCCA
TGGACGCAGGGCAAGGCCC
4413
GGCCTTGCCCTGCGTCCAC
GTGGACGCAGGGCAAGGCC
4414
GCCTTGCCCTGCGTCCACT
AGTGGACGCAGGGCAAGGC
4415
CCTTGCCCTGCGTCCACTG
CAGTGGACGCAGGGCAAGG
4416
CTTGCCCTGCGTCCACTGG
CCAGTGGACGCAGGGCAAG
4417
TTGCCCTGCGTCCACTGGA
TCCAGTGGACGCAGGGCAA
4418
TGCCCTGCGTCCACTGGAG
CTCCAGTGGACGCAGGGCA
4419
GCCCTGCGTCCACTGGAGC
GCTCCAGTGGACGCAGGGC
4420
CCCTGCGTCCACTGGAGCC
GGCTCCAGTGGACGCAGGG
4421
CCTGCGTCCACTGGAGCCC
GGGCTCCAGTGGACGCAGG
4422
CTGCGTCCACTGGAGCCCC
GGGGCTCCAGTGGACGCAG
4423
TGCGTCCACTGGAGCCCCA
TGGGGCTCCAGTGGACGCA
4424
GCGTCCACTGGAGCCCCAG
CTGGGGCTCCAGTGGACGC
4425
CGTCCACTGGAGCCCCAGC
GCTGGGGCTCCAGTGGACG
4426
GTCCACTGGAGCCCCAGCT
AGCTGGGGCTCCAGTGGAC
4427
TCCACTGGAGCCCCAGCTC
GAGCTGGGGCTCCAGTGGA
4428
CCACTGGAGCCCCAGCTCT
AGAGCTGGGGCTCCAGTGG
4429
CACTGGAGCCCCAGCTCTG
CAGAGCTGGGGCTCCAGTG
4430
ACTGGAGCCCCAGCTCTGG
CCAGAGCTGGGGCTCCAGT
4431
CTGGAGCCCCAGCTCTGGG
CCCAGAGCTGGGGCTCCAG
4432
TGGAGCCCCAGCTCTGGGC
GCCCAGAGCTGGGGCTCCA
4433
GGAGCCCCAGCTCTGGGCA
TGCCCAGAGCTGGGGCTCC
4434
GAGCCCCAGCTCTGGGCAG
CTGCCCAGAGCTGGGGCTC
4435
AGCCCCAGCTCTGGGCAGC
GCTGCCCAGAGCTGGGGCT
4436
GCCCCAGCTCTGGGCAGCC
GGCTGCCCAGAGCTGGGGC
4437
CCCCAGCTCTGGGCAGCCT
AGGCTGCCCAGAGCTGGGG
4438
CCCAGCTCTGGGCAGCCTA
TAGGCTGCCCAGAGCTGGG
4439
CCAGCTCTGGGCAGCCTAT
ATAGGCTGCCCAGAGCTGG
4440
CAGCTCTGGGCAGCCTATG
CATAGGCTGCCCAGAGCTG
4441
AGCTCTGGGCAGCCTATGG
CCATAGGCTGCCCAGAGCT
4442
GCTCTGGGCAGCCTATGGT
ACCATAGGCTGCCCAGAGC
4443
CTCTGGGCAGCCTATGGTG
CACCATAGGCTGCCCAGAG
4444
TCTGGGCAGCCTATGGTGT
ACACCATAGGCTGCCCAGA
4445
CTGGGCAGCCTATGGTGTG
CACACCATAGGCTGCCCAG
4446
TGGGCAGCCTATGGTGTGA
TCACACCATAGGCTGCCCA
4447
GGGCAGCCTATGGTGTGAG
CTCACACCATAGGCTGCCC
4448
GGCAGCCTATGGTGTGAGC
GCTCACACCATAGGCTGCC
4449
GCAGCCTATGGTGTGAGCC
GGCTCACACCATAGGCTGC
4450
CAGCCTATGGTGTGAGCCC
GGGCTCACACCATAGGCTG
4451
AGCCTATGGTGTGAGCCCG
CGGGCTCACACCATAGGCT
4452
GCCTATGGTGTGAGCCCGC
GCGGGCTCACACCATAGGC
4453
CCTATGGTGTGAGCCCGCA
TGCGGGCTCACACCATAGG
4454
CTATGGTGTGAGCCCGCAC
GTGCGGGCTCACACCATAG
4455
TATGGTGTGAGCCCGCACC
GGTGCGGGCTCACACCATA
4456
ATGGTGTGAGCCCGCACCG
CGGTGCGGGCTCACACCAT
4457
TGGTGTGAGCCCGCACCGG
CCGGTGCGGGCTCACACCA
4458
GGTGTGAGCCCGCACCGGG
CCCGGTGCGGGCTCACACC
4459
GTGTGAGCCCGCACCGGGG
CCCCGGTGCGGGCTCACAC
4460
TGTGAGCCCGCACCGGGGA
TCCCCGGTGCGGGCTCACA
4461
GTGAGCCCGCACCGGGGAC
GTCCCCGGTGCGGGCTCAC
4462
TGAGCCCGCACCGGGGACA
TGTCCCCGGTGCGGGCTCA
4463
GAGCCCGCACCGGGGACAC
GTGTCCCCGGTGCGGGCTC
4464
AGCCCGCACCGGGGACACC
GGTGTCCCCGGTGCGGGCT
4465
GCCCGCACCGGGGACACCT
AGGTGTCCCCGGTGCGGGC
4466
CCCGCACCGGGGACACCTG
CAGGTGTCCCCGGTGCGGG
4467
CCGCACCGGGGACACCTGG
CCAGGTGTCCCCGGTGCGG
4468
CGCACCGGGGACACCTGGG
CCCAGGTGTCCCCGGTGCG
4469
GCACCGGGGACACCTGGGG
CCCCAGGTGTCCCCGGTGC
4470
CACCGGGGACACCTGGGGA
TCCCCAGGTGTCCCCGGTG
4471
ACCGGGGACACCTGGGGAC
GTCCCCAGGTGTCCCCGGT
4472
CCGGGGACACCTGGGGACC
GGTCCCCAGGTGTCCCCGG
4473
CGGGGACACCTGGGGACCA
TGGTCCCCAGGTGTCCCCG
4474
GGGGACACCTGGGGACCAA
TTGGTCCCCAGGTGTCCCC
4475
GGGACACCTGGGGACCAAG
CTTGGTCCCCAGGTGTCCC
4476
GGACACCTGGGGACCAAGA
TCTTGGTCCCCAGGTGTCC
4477
GACACCTGGGGACCAAGAA
TTCTTGGTCCCCAGGTGTC
4478
ACACCTGGGGACCAAGAAC
GTTCTTGGTCCCCAGGTGT
4479
CACCTGGGGACCAAGAACC
GGTTCTTGGTCCCCAGGTG
4480
ACCTGGGGACCAAGAACCT
AGGTTCTTGGTCCCCAGGT
4481
CCTGGGGACCAAGAACCTC
GAGGTTCTTGGTCCCCAGG
4482
CTGGGGACCAAGAACCTCT
AGAGGTTCTTGGTCCCCAG
4483
TGGGGACCAAGAACCTCTG
CAGAGGTTCTTGGTCCCCA
4484
GGGGACCAAGAACCTCTGT
ACAGAGGTTCTTGGTCCCC
4485
GGGACCAAGAACCTCTGTG
CACAGAGGTTCTTGGTCCC
4486
GGACCAAGAACCTCTGTGT
ACACAGAGGTTCTTGGTCC
4487
GACCAAGAACCTCTGTGTG
CACACAGAGGTTCTTGGTC
4488
ACCAAGAACCTCTGTGTGG
CCACACAGAGGTTCTTGGT
4489
CCAAGAACCTCTGTGTGGA
TCCACACAGAGGTTCTTGG
4490
CAAGAACCTCTGTGTGGAG
CTCCACACAGAGGTTCTTG
4491
AAGAACCTCTGTGTGGAGG
CCTCCACACAGAGGTTCTT
4492
AGAACCTCTGTGTGGAGGT
ACCTCCACACAGAGGTTCT
4493
GAACCTCTGTGTGGAGGTG
CACCTCCACACAGAGGTTC
4494
AACCTCTGTGTGGAGGTGG
CCACCTCCACACAGAGGTT
4495
ACCTCTGTGTGGAGGTGGC
GCCACCTCCACACAGAGGT
4496
CCTCTGTGTGGAGGTGGCC
GGCCACCTCCACACAGAGG
4497
CTCTGTGTGGAGGTGGCCG
CGGCCACCTCCACACAGAG
4498
TCTGTGTGGAGGTGGCCGA
TCGGCCACCTCCACACAGA
4499
CTGTGTGGAGGTGGCCGAC
GTCGGCCACCTCCACACAG
4500
TGTGTGGAGGTGGCCGACC
GGTCGGCCACCTCCACACA
4501
GTGTGGAGGTGGCCGACCT
AGGTCGGCCACCTCCACAC
4502
TGTGGAGGTGGCCGACCTG
CAGGTCGGCCACCTCCACA
4503
GTGGAGGTGGCCGACCTGG
CCAGGTCGGCCACCTCCAC
4504
TGGAGGTGGCCGACCTGGT
ACCAGGTCGGCCACCTCCA
4505
GGAGGTGGCCGACCTGGTC
GACCAGGTCGGCCACCTCC
4506
GAGGTGGCCGACCTGGTCA
TGACCAGGTCGGCCACCTC
4507
AGGTGGCCGACCTGGTCAG
CTGACCAGGTCGGCCACCT
4508
GGTGGCCGACCTGGTCAGC
GCTGACCAGGTCGGCCACC
4509
GTGGCCGACCTGGTCAGCA
TGCTGACCAGGTCGGCCAC
4510
TGGCCGACCTGGTCAGCAT
ATGCTGACCAGGTCGGCCA
4511
GGCCGACCTGGTCAGCATC
GATGCTGACCAGGTCGGCC
4512
GCCGACCTGGTCAGCATCC
GGATGCTGACCAGGTCGGC
4513
CCGACCTGGTCAGCATCCT
AGGATGCTGACCAGGTCGG
4514
CGACCTGGTCAGCATCCTG
CAGGATGCTGACCAGGTCG
4515
GACCTGGTCAGCATCCTGG
CCAGGATGCTGACCAGGTC
4516
ACCTGGTCAGCATCCTGGT
ACCAGGATGCTGACCAGGT
4517
CCTGGTCAGCATCCTGGTG
CACCAGGATGCTGACCAGG
4518
CTGGTCAGCATCCTGGTGC
GCACCAGGATGCTGACCAG
4519
TGGTCAGCATCCTGGTGCA
TGCACCAGGATGCTGACCA
4520
GGTCAGCATCCTGGTGCAT
ATGCACCAGGATGCTGACC
4521
GTCAGCATCCTGGTGCATG
CATGCACCAGGATGCTGAC
4522
TCAGCATCCTGGTGCATGC
GCATGCACCAGGATGCTGA
4523
CAGCATCCTGGTGCATGCC
GGCATGCACCAGGATGCTG
4524
AGCATCCTGGTGCATGCCG
CGGCATGCACCAGGATGCT
4525
GCATCCTGGTGCATGCCGA
TCGGCATGCACCAGGATGC
4526
CATCCTGGTGCATGCCGAC
GTCGGCATGCACCAGGATG
4527
ATCCTGGTGCATGCCGACA
TGTCGGCATGCACCAGGAT
4528
TCCTGGTGCATGCCGACAC
GTGTCGGCATGCACCAGGA
4529
CCTGGTGCATGCCGACACA
TGTGTCGGCATGCACCAGG
4530
CTGGTGCATGCCGACACAC
GTGTGTCGGCATGCACCAG
4531
TGGTGCATGCCGACACACC
GGTGTGTCGGCATGCACCA
4532
GGTGCATGCCGACACACCA
TGGTGTGTCGGCATGCACC
4533
GTGCATGCCGACACACCAC
GTGGTGTGTCGGCATGCAC
4534
TGCATGCCGACACACCACT
AGTGGTGTGTCGGCATGCA
4535
GCATGCCGACACACCACTG
CAGTGGTGTGTCGGCATGC
4536
CATGCCGACACACCACTGC
GCAGTGGTGTGTCGGCATG
4537
ATGCCGACACACCACTGCC
GGCAGTGGTGTGTCGGCAT
4538
TGCCGACACACCACTGCCT
AGGCAGTGGTGTGTCGGCA
4539
GCCGACACACCACTGCCTG
CAGGCAGTGGTGTGTCGGC
4540
CCGACACACCACTGCCTGC
GCAGGCAGTGGTGTGTCGG
4541
CGACACACCACTGCCTGCC
GGCAGGCAGTGGTGTGTCG
4542
GACACACCACTGCCTGCCT
AGGCAGGCAGTGGTGTGTC
4543
ACACACCACTGCCTGCCTG
CAGGCAGGCAGTGGTGTGT
4544
CACACCACTGCCTGCCTGG
CCAGGCAGGCAGTGGTGTG
4545
ACACCACTGCCTGCCTGGC
GCCAGGCAGGCAGTGGTGT
4546
CACCACTGCCTGCCTGGCA
TGCCAGGCAGGCAGTGGTG
4547
ACCACTGCCTGCCTGGCAC
GTGCCAGGCAGGCAGTGGT
4548
CCACTGCCTGCCTGGCACC
GGTGCCAGGCAGGCAGTGG
4549
CACTGCCTGCCTGGCACCG
CGGTGCCAGGCAGGCAGTG
4550
ACTGCCTGCCTGGCACCGG
CCGGTGCCAGGCAGGCAGT
4551
CTGCCTGCCTGGCACCGGG
CCCGGTGCCAGGCAGGCAG
4552
TGCCTGCCTGGCACCGGGC
GCCCGGTGCCAGGCAGGCA
4553
GCCTGCCTGGCACCGGGCA
TGCCCGGTGCCAGGCAGGC
4554
CCTGCCTGGCACCGGGCAC
GTGCCCGGTGCCAGGCAGG
4555
CTGCCTGGCACCGGGCACA
TGTGCCCGGTGCCAGGCAG
4556
TGCCTGGCACCGGGCACAG
CTGTGCCCGGTGCCAGGCA
4557
GCCTGGCACCGGGCACAGA
TCTGTGCCCGGTGCCAGGC
4558
CCTGGCACCGGGCACAGAA
TTCTGTGCCCGGTGCCAGG
4559
CTGGCACCGGGCACAGAAA
TTTCTGTGCCCGGTGCCAG
4560
TGGCACCGGGCACAGAAAG
CTTTCTGTGCCCGGTGCCA
4561
GGCACCGGGCACAGAAAGA
TCTTTCTGTGCCCGGTGCC
4562
GCACCGGGCACAGAAAGAC
GTCTTTCTGTGCCCGGTGC
4563
CACCGGGCACAGAAAGACT
AGTCTTTCTGTGCCCGGTG
4564
ACCGGGCACAGAAAGACTT
AAGTCTTTCTGTGCCCGGT
4565
CCGGGCACAGAAAGACTTC
GAAGTCTTTCTGTGCCCGG
4566
CGGGCACAGAAAGACTTCC
GGAAGTCTTTCTGTGCCCG
4567
GGGCACAGAAAGACTTCCT
AGGAAGTCTTTCTGTGCCC
4568
GGCACAGAAAGACTTCCTT
AAGGAAGTCTTTCTGTGCC
4569
GCACAGAAAGACTTCCTTT
AAAGGAAGTCTTTCTGTGC
4570
CACAGAAAGACTTCCTTTC
GAAAGGAAGTCTTTCTGTG
4571
ACAGAAAGACTTCCTTTCA
TGAAAGGAAGTCTTTCTGT
4572
CAGAAAGACTTCCTTTCAG
CTGAAAGGAAGTCTTTCTG
4573
AGAAAGACTTCCTTTCAGG
CCTGAAAGGAAGTCTTTCT
4574
GAAAGACTTCCTTTCAGGC
GCCTGAAAGGAAGTCTTTC
4575
AAAGACTTCCTTTCAGGCC
GGCCTGAAAGGAAGTCTTT
4576
AAGACTTCCTTTCAGGCCT
AGGCCTGAAAGGAAGTCTT
4577
AGACTTCCTTTCAGGCCTG
CAGGCCTGAAAGGAAGTCT
4578
GACTTCCTTTCAGGCCTGG
CCAGGCCTGAAAGGAAGTC
4579
ACTTCCTTTCAGGCCTGGA
TCCAGGCCTGAAAGGAAGT
4580
CTTCCTTTCAGGCCTGGAC
GTCCAGGCCTGAAAGGAAG
4581
TTCCTTTCAGGCCTGGACG
CGTCCAGGCCTGAAAGGAA
4582
TCCTTTCAGGCCTGGACGG
CCGTCCAGGCCTGAAAGGA
4583
CCTTTCAGGCCTGGACGGG
CCCGTCCAGGCCTGAAAGG
4584
CTTTCAGGCCTGGACGGGG
CCCCGTCCAGGCCTGAAAG
4585
TTTCAGGCCTGGACGGGGA
TCCCCGTCCAGGCCTGAAA
4586
TTCAGGCCTGGACGGGGAG
CTCCCCGTCCAGGCCTGAA
4587
TCAGGCCTGGACGGGGAGG
CCTCCCCGTCCAGGCCTGA
4588
CAGGCCTGGACGGGGAGGG
CCCTCCCCGTCCAGGCCTG
4589
AGGCCTGGACGGGGAGGGG
CCCCTCCCCGTCCAGGCCT
4590
GGCCTGGACGGGGAGGGGC
GCCCCTCCCCGTCCAGGCC
4591
GCCTGGACGGGGAGGGGCT
AGCCCCTCCCCGTCCAGGC
4592
CCTGGACGGGGAGGGGCTC
GAGCCCCTCCCCGTCCAGG
4593
CTGGACGGGGAGGGGCTCT
AGAGCCCCTCCCCGTCCAG
4594
TGGACGGGGAGGGGCTCTG
CAGAGCCCCTCCCCGTCCA
4595
GGACGGGGAGGGGCTCTGG
CCAGAGCCCCTCCCCGTCC
4596
GACGGGGAGGGGCTCTGGT
ACCAGAGCCCCTCCCCGTC
4597
ACGGGGAGGGGCTCTGGTC
GACCAGAGCCCCTCCCCGT
4598
CGGGGAGGGGCTCTGGTCT
AGACCAGAGCCCCTCCCCG
4599
GGGGAGGGGCTCTGGTCTC
GAGACCAGAGCCCCTCCCC
4600
GGGAGGGGCTCTGGTCTCC
GGAGACCAGAGCCCCTCCC
4601
GGAGGGGCTCTGGTCTCCG
CGGAGACCAGAGCCCCTCC
4602
GAGGGGCTCTGGTCTCCGG
CCGGAGACCAGAGCCCCTC
4603
AGGGGCTCTGGTCTCCGGG
CCCGGAGACCAGAGCCCCT
4604
GGGGCTCTGGTCTCCGGGC
GCCCGGAGACCAGAGCCCC
4605
GGGCTCTGGTCTCCGGGCA
TGCCCGGAGACCAGAGCCC
4606
GGCTCTGGTCTCCGGGCAG
CTGCCCGGAGACCAGAGCC
4607
GCTCTGGTCTCCGGGCAGC
GCTGCCCGGAGACCAGAGC
4608
CTCTGGTCTCCGGGCAGCC
GGCTGCCCGGAGACCAGAG
4609
TCTGGTCTCCGGGCAGCCA
TGGCTGCCCGGAGACCAGA
4610
CTGGTCTCCGGGCAGCCAG
CTGGCTGCCCGGAGACCAG
4611
TGGTCTCCGGGCAGCCAGG
CCTGGCTGCCCGGAGACCA
4612
GGTCTCCGGGCAGCCAGGT
ACCTGGCTGCCCGGAGACC
4613
GTCTCCGGGCAGCCAGGTC
GACCTGGCTGCCCGGAGAC
4614
TCTCCGGGCAGCCAGGTCA
TGACCTGGCTGCCCGGAGA
4615
CTCCGGGCAGCCAGGTCAG
CTGACCTGGCTGCCCGGAG
4616
TCCGGGCAGCCAGGTCAGC
GCTGACCTGGCTGCCCGGA
4617
CCGGGCAGCCAGGTCAGCA
TGCTGACCTGGCTGCCCGG
4618
CGGGCAGCCAGGTCAGCAC
GTGCTGACCTGGCTGCCCG
4619
GGGCAGCCAGGTCAGCACT
AGTGCTGACCTGGCTGCCC
4620
GGCAGCCAGGTCAGCACTG
CAGTGCTGACCTGGCTGCC
4621
GCAGCCAGGTCAGCACTGT
ACAGTGCTGACCTGGCTGC
4622
CAGCCAGGTCAGCACTGTG
CACAGTGCTGACCTGGCTG
4623
AGCCAGGTCAGCACTGTGT
ACACAGTGCTGACCTGGCT
4624
GCCAGGTCAGCACTGTGTG
CACACAGTGCTGACCTGGC
4625
CCAGGTCAGCACTGTGTGG
CCACACAGTGCTGACCTGG
4626
CAGGTCAGCACTGTGTGGC
GCCACACAGTGCTGACCTG
4627
AGGTCAGCACTGTGTGGCA
TGCCACACAGTGCTGACCT
4628
GGTCAGCACTGTGTGGCAC
GTGCCACACAGTGCTGACC
4629
GTCAGCACTGTGTGGCACG
CGTGCCACACAGTGCTGAC
4630
TCAGCACTGTGTGGCACGT
ACGTGCCACACAGTGCTGA
4631
CAGCACTGTGTGGCACGTG
CACGTGCCACACAGTGCTG
4632
AGCACTGTGTGGCACGTGT
ACACGTGCCACACAGTGCT
4633
GCACTGTGTGGCACGTGTT
AACACGTGCCACACAGTGC
4634
CACTGTGTGGCACGTGTTC
GAACACGTGCCACACAGTG
4635
ACTGTGTGGCACGTGTTCC
GGAACACGTGCCACACAGT
4636
CTGTGTGGCACGTGTTCCG
CGGAACACGTGCCACACAG
4637
TGTGTGGCACGTGTTCCGG
CCGGAACACGTGCCACACA
4638
GTGTGGCACGTGTTCCGGG
CCCGGAACACGTGCCACAC
4639
TGTGGCACGTGTTCCGGGC
GCCCGGAACACGTGCCACA
4640
GTGGCACGTGTTCCGGGCA
TGCCCGGAACACGTGCCAC
4641
TGGCACGTGTTCCGGGCAC
GTGCCCGGAACACGTGCCA
4642
GGCACGTGTTCCGGGCACA
TGTGCCCGGAACACGTGCC
4643
GCACGTGTTCCGGGCACAG
CTGTGCCCGGAACACGTGC
4644
CACGTGTTCCGGGCACAGG
CCTGTGCCCGGAACACGTG
4645
ACGTGTTCCGGGCACAGGA
TCCTGTGCCCGGAACACGT
4646
CGTGTTCCGGGCACAGGAC
GTCCTGTGCCCGGAACACG
4647
GTGTTCCGGGCACAGGACG
CGTCCTGTGCCCGGAACAC
4648
TGTTCCGGGCACAGGACGC
GCGTCCTGTGCCCGGAACA
4649
GTTCCGGGCACAGGACGCC
GGCGTCCTGTGCCCGGAAC
4650
TTCCGGGCACAGGACGCCC
GGGCGTCCTGTGCCCGGAA
4651
TCCGGGCACAGGACGCCCA
TGGGCGTCCTGTGCCCGGA
4652
CCGGGCACAGGACGCCCAG
CTGGGCGTCCTGTGCCCGG
4653
CGGGCACAGGACGCCCAGC
GCTGGGCGTCCTGTGCCCG
4654
GGGCACAGGACGCCCAGCG
CGCTGGGCGTCCTGTGCCC
4655
GGCACAGGACGCCCAGCGC
GCGCTGGGCGTCCTGTGCC
4656
GCACAGGACGCCCAGCGCA
TGCGCTGGGCGTCCTGTGC
4657
CACAGGACGCCCAGCGCAT
ATGCGCTGGGCGTCCTGTG
4658
ACAGGACGCCCAGCGCATC
GATGCGCTGGGCGTCCTGT
4659
CAGGACGCCCAGCGCATCC
GGATGCGCTGGGCGTCCTG
4660
AGGACGCCCAGCGCATCCG
CGGATGCGCTGGGCGTCCT
4661
GGACGCCCAGCGCATCCGC
GCGGATGCGCTGGGCGTCC
4662
GACGCCCAGCGCATCCGCC
GGCGGATGCGCTGGGCGTC
4663
ACGCCCAGCGCATCCGCCG
CGGCGGATGCGCTGGGCGT
4664
CGCCCAGCGCATCCGCCGC
GCGGCGGATGCGCTGGGCG
4665
GCCCAGCGCATCCGCCGCT
AGCGGCGGATGCGCTGGGC
4666
CCCAGCGCATCCGCCGCTT
AAGCGGCGGATGCGCTGGG
4667
CCAGCGCATCCGCCGCTTT
AAAGCGGCGGATGCGCTGG
4668
CAGCGCATCCGCCGCTTTC
GAAAGCGGCGGATGCGCTG
4669
AGCGCATCCGCCGCTTTCT
AGAAAGCGGCGGATGCGCT
4670
GCGCATCCGCCGCTTTCTC
GAGAAAGCGGCGGATGCGC
4671
CGCATCCGCCGCTTTCTCC
GGAGAAAGCGGCGGATGCG
4672
GCATCCGCCGCTTTCTCCA
TGGAGAAAGCGGCGGATGC
4673
CATCCGCCGCTTTCTCCAG
CTGGAGAAAGCGGCGGATG
4674
ATCCGCCGCTTTCTCCAGA
TCTGGAGAAAGCGGCGGAT
4675
TCCGCCGCTTTCTCCAGAT
ATCTGGAGAAAGCGGCGGA
4676
CCGCCGCTTTCTCCAGATG
CATCTGGAGAAAGCGGCGG
4677
CGCCGCTTTCTCCAGATGG
CCATCTGGAGAAAGCGGCG
4678
GCCGCTTTCTCCAGATGGT
ACCATCTGGAGAAAGCGGC
4679
CCGCTTTCTCCAGATGGTG
CACCATCTGGAGAAAGCGG
4680
CGCTTTCTCCAGATGGTGT
ACACCATCTGGAGAAAGCG
4681
GCTTTCTCCAGATGGTGTG
CACACCATCTGGAGAAAGC
4682
CTTTCTCCAGATGGTGTGC
GCACACCATCTGGAGAAAG
4683
TTTCTCCAGATGGTGTGCC
GGCACACCATCTGGAGAAA
4684
TTCTCCAGATGGTGTGCCC
GGGCACACCATCTGGAGAA
4685
TCTCCAGATGGTGTGCCCG
CGGGCACACCATCTGGAGA
4686
CTCCAGATGGTGTGCCCGG
CCGGGCACACCATCTGGAG
4687
TCCAGATGGTGTGCCCGGC
GCCGGGCACACCATCTGGA
4688
CCAGATGGTGTGCCCGGCC
GGCCGGGCACACCATCTGG
4689
CAGATGGTGTGCCCGGCCG
CGGCCGGGCACACCATCTG
4690
AGATGGTGTGCCCGGCCGG
CCGGCCGGGCACACCATCT
4691
GATGGTGTGCCCGGCCGGG
CCCGGCCGGGCACACCATC
4692
ATGGTGTGCCCGGCCGGGG
CCCCGGCCGGGCACACCAT
4693
TGGTGTGCCCGGCCGGGGC
GCCCCGGCCGGGCACACCA
4694
GGTGTGCCCGGCCGGGGCA
TGCCCCGGCCGGGCACACC
4695
GTGTGCCCGGCCGGGGCAG
CTGCCCCGGCCGGGCACAC
4696
TGTGCCCGGCCGGGGCAGG
CCTGCCCCGGCCGGGCACA
4697
GTGCCCGGCCGGGGCAGGC
GCCTGCCCCGGCCGGGCAC
4698
TGCCCGGCCGGGGCAGGCG
CGCCTGCCCCGGCCGGGCA
4699
GCCCGGCCGGGGCAGGCGC
GCGCCTGCCCCGGCCGGGC
4700
CCCGGCCGGGGCAGGCGCC
GGCGCCTGCCCCGGCCGGG
4701
CCGGCCGGGGCAGGCGCCC
GGGCGCCTGCCCCGGCCGG
4702
CGGCCGGGGCAGGCGCCCT
AGGGCGCCTGCCCCGGCCG
4703
GGCCGGGGCAGGCGCCCTG
CAGGGCGCCTGCCCCGGCC
4704
GCCGGGGCAGGCGCCCTGG
CCAGGGCGCCTGCCCCGGC
4705
CCGGGGCAGGCGCCCTGGA
TCCAGGGCGCCTGCCCCGG
4706
CGGGGCAGGCGCCCTGGAG
CTCCAGGGCGCCTGCCCCG
4707
GGGGCAGGCGCCCTGGAGC
GCTCCAGGGCGCCTGCCCC
4708
GGGCAGGCGCCCTGGAGCC
GGCTCCAGGGCGCCTGCCC
4709
GGCAGGCGCCCTGGAGCCT
AGGCTCCAGGGCGCCTGCC
4710
GCAGGCGCCCTGGAGCCTG
CAGGCTCCAGGGCGCCTGC
4711
CAGGCGCCCTGGAGCCTGG
CCAGGCTCCAGGGCGCCTG
4712
AGGCGCCCTGGAGCCTGGC
GCCAGGCTCCAGGGCGCCT
4713
GGCGCCCTGGAGCCTGGCG
CGCCAGGCTCCAGGGCGCC
4714
GCGCCCTGGAGCCTGGCGC
GCGCCAGGCTCCAGGGCGC
4715
CGCCCTGGAGCCTGGCGCC
GGCGCCAGGCTCCAGGGCG
4716
GCCCTGGAGCCTGGCGCCC
GGGCGCCAGGCTCCAGGGC
4717
CCCTGGAGCCTGGCGCCCC
GGGGCGCCAGGCTCCAGGG
4718
CCTGGAGCCTGGCGCCCCA
TGGGGCGCCAGGCTCCAGG
4719
CTGGAGCCTGGCGCCCCAG
CTGGGGCGCCAGGCTCCAG
4720
TGGAGCCTGGCGCCCCAGG
CCTGGGGCGCCAGGCTCCA
4721
GGAGCCTGGCGCCCCAGGC
GCCTGGGGCGCCAGGCTCC
4722
GAGCCTGGCGCCCCAGGCA
TGCCTGGGGCGCCAGGCTC
4723
AGCCTGGCGCCCCAGGCAG
CTGCCTGGGGCGCCAGGCT
4724
GCCTGGCGCCCCAGGCAGC
GCTGCCTGGGGCGCCAGGC
4725
CCTGGCGCCCCAGGCAGCT
AGCTGCCTGGGGCGCCAGG
4726
CTGGCGCCCCAGGCAGCTG
CAGCTGCCTGGGGCGCCAG
4727
TGGCGCCCCAGGCAGCTGC
GCAGCTGCCTGGGGCGCCA
4728
GGCGCCCCAGGCAGCTGCT
AGCAGCTGCCTGGGGCGCC
4729
GCGCCCCAGGCAGCTGCTA
TAGCAGCTGCCTGGGGCGC
4730
CGCCCCAGGCAGCTGCTAC
GTAGCAGCTGCCTGGGGCG
4731
GCCCCAGGCAGCTGCTACC
GGTAGCAGCTGCCTGGGGC
4732
CCCCAGGCAGCTGCTACCT
AGGTAGCAGCTGCCTGGGG
4733
CCCAGGCAGCTGCTACCTG
CAGGTAGCAGCTGCCTGGG
4734
CCAGGCAGCTGCTACCTGG
CCAGGTAGCAGCTGCCTGG
4735
CAGGCAGCTGCTACCTGGA
TCCAGGTAGCAGCTGCCTG
4736
AGGCAGCTGCTACCTGGAT
ATCCAGGTAGCAGCTGCCT
4737
GGCAGCTGCTACCTGGATG
CATCCAGGTAGCAGCTGCC
4738
GCAGCTGCTACCTGGATGC
GCATCCAGGTAGCAGCTGC
4739
CAGCTGCTACCTGGATGCA
TGCATCCAGGTAGCAGCTG
4740
AGCTGCTACCTGGATGCAG
CTGCATCCAGGTAGCAGCT
4741
GCTGCTACCTGGATGCAGG
CCTGCATCCAGGTAGCAGC
4742
CTGCTACCTGGATGCAGGG
CCCTGCATCCAGGTAGCAG
4743
TGCTACCTGGATGCAGGGC
GCCCTGCATCCAGGTAGCA
4744
GCTACCTGGATGCAGGGCT
AGCCCTGCATCCAGGTAGC
4745
CTACCTGGATGCAGGGCTG
CAGCCCTGCATCCAGGTAG
4746
TACCTGGATGCAGGGCTGC
GCAGCCCTGCATCCAGGTA
4747
ACCTGGATGCAGGGCTGCG
CGCAGCCCTGCATCCAGGT
4748
CCTGGATGCAGGGCTGCGG
CCGCAGCCCTGCATCCAGG
4749
CTGGATGCAGGGCTGCGGC
GCCGCAGCCCTGCATCCAG
4750
TGGATGCAGGGCTGCGGCG
CGCCGCAGCCCTGCATCCA
4751
GGATGCAGGGCTGCGGCGG
CCGCCGCAGCCCTGCATCC
4752
GATGCAGGGCTGCGGCGGC
GCCGCCGCAGCCCTGCATC
4753
ATGCAGGGCTGCGGCGGCG
CGCCGCCGCAGCCCTGCAT
4754
TGCAGGGCTGCGGCGGCGC
GCGCCGCCGCAGCCCTGCA
4755
GCAGGGCTGCGGCGGCGCC
GGCGCCGCCGCAGCCCTGC
4756
CAGGGCTGCGGCGGCGCCT
AGGCGCCGCCGCAGCCCTG
4757
AGGGCTGCGGCGGCGCCTG
CAGGCGCCGCCGCAGCCCT
4758
GGGCTGCGGCGGCGCCTGC
GCAGGCGCCGCCGCAGCCC
4759
GGCTGCGGCGGCGCCTGCG
CGCAGGCGCCGCCGCAGCC
4760
GCTGCGGCGGCGCCTGCGG
CCGCAGGCGCCGCCGCAGC
4761
CTGCGGCGGCGCCTGCGGG
CCCGCAGGCGCCGCCGCAG
4762
TGCGGCGGCGCCTGCGGGA
TCCCGCAGGCGCCGCCGCA
4763
GCGGCGGCGCCTGCGGGAG
CTCCCGCAGGCGCCGCCGC
4764
CGGCGGCGCCTGCGGGAGG
CCTCCCGCAGGCGCCGCCG
4765
GGCGGCGCCTGCGGGAGGA
TCCTCCCGCAGGCGCCGCC
4766
GCGGCGCCTGCGGGAGGAG
CTCCTCCCGCAGGCGCCGC
4767
CGGCGCCTGCGGGAGGAGT
ACTCCTCCCGCAGGCGCCG
4768
GGCGCCTGCGGGAGGAGTG
CACTCCTCCCGCAGGCGCC
4769
GCGCCTGCGGGAGGAGTGG
CCACTCCTCCCGCAGGCGC
4770
CGCCTGCGGGAGGAGTGGG
CCCACTCCTCCCGCAGGCG
4771
GCCTGCGGGAGGAGTGGGG
CCCCACTCCTCCCGCAGGC
4772
CCTGCGGGAGGAGTGGGGC
GCCCCACTCCTCCCGCAGG
4773
CTGCGGGAGGAGTGGGGCG
CGCCCCACTCCTCCCGCAG
4774
TGCGGGAGGAGTGGGGCGT
ACGCCCCACTCCTCCCGCA
4775
GCGGGAGGAGTGGGGCGTG
CACGCCCCACTCCTCCCGC
4776
CGGGAGGAGTGGGGCGTGA
TCACGCCCCACTCCTCCCG
4777
GGGAGGAGTGGGGCGTGAG
CTCACGCCCCACTCCTCCC
4778
GGAGGAGTGGGGCGTGAGC
GCTCACGCCCCACTCCTCC
4779
GAGGAGTGGGGCGTGAGCT
AGCTCACGCCCCACTCCTC
4780
AGGAGTGGGGCGTGAGCTG
CAGCTCACGCCCCACTCCT
4781
GGAGTGGGGCGTGAGCTGC
GCAGCTCACGCCCCACTCC
4782
GAGTGGGGCGTGAGCTGCT
AGCAGCTCACGCCCCACTC
4783
AGTGGGGCGTGAGCTGCTG
CAGCAGCTCACGCCCCACT
4784
GTGGGGCGTGAGCTGCTGG
CCAGCAGCTCACGCCCCAC
4785
TGGGGCGTGAGCTGCTGGA
TCCAGCAGCTCACGCCCCA
4786
GGGGCGTGAGCTGCTGGAC
GTCCAGCAGCTCACGCCCC
4787
GGGCGTGAGCTGCTGGACC
GGTCCAGCAGCTCACGCCC
4788
GGCGTGAGCTGCTGGACCC
GGGTCCAGCAGCTCACGCC
4789
GCGTGAGCTGCTGGACCCT
AGGGTCCAGCAGCTCACGC
4790
CGTGAGCTGCTGGACCCTG
CAGGGTCCAGCAGCTCACG
4791
GTGAGCTGCTGGACCCTGC
GCAGGGTCCAGCAGCTCAC
4792
TGAGCTGCTGGACCCTGCT
AGCAGGGTCCAGCAGCTCA
4793
GAGCTGCTGGACCCTGCTC
GAGCAGGGTCCAGCAGCTC
4794
AGCTGCTGGACCCTGCTCC
GGAGCAGGGTCCAGCAGCT
4795
GCTGCTGGACCCTGCTCCA
TGGAGCAGGGTCCAGCAGC
4796
CTGCTGGACCCTGCTCCAG
CTGGAGCAGGGTCCAGCAG
4797
TGCTGGACCCTGCTCCAGG
CCTGGAGCAGGGTCCAGCA
4798
GCTGGACCCTGCTCCAGGC
GCCTGGAGCAGGGTCCAGC
4799
CTGGACCCTGCTCCAGGCC
GGCCTGGAGCAGGGTCCAG
4800
TGGACCCTGCTCCAGGCCC
GGGCCTGGAGCAGGGTCCA
4801
GGACCCTGCTCCAGGCCCC
GGGGCCTGGAGCAGGGTCC
4802
GACCCTGCTCCAGGCCCCC
GGGGGCCTGGAGCAGGGTC
4803
ACCCTGCTCCAGGCCCCCG
CGGGGGCCTGGAGCAGGGT
4804
CCCTGCTCCAGGCCCCCGG
CCGGGGGCCTGGAGCAGGG
4805
CCTGCTCCAGGCCCCCGGA
TCCGGGGGCCTGGAGCAGG
4806
CTGCTCCAGGCCCCCGGAG
CTCCGGGGGCCTGGAGCAG
4807
TGCTCCAGGCCCCCGGAGA
TCTCCGGGGGCCTGGAGCA
4808
GCTCCAGGCCCCCGGAGAG
CTCTCCGGGGGCCTGGAGC
4809
CTCCAGGCCCCCGGAGAGG
CCTCTCCGGGGGCCTGGAG
4810
TCCAGGCCCCCGGAGAGGC
GCCTCTCCGGGGGCCTGGA
4811
CCAGGCCCCCGGAGAGGCC
GGCCTCTCCGGGGGCCTGG
4812
CAGGCCCCCGGAGAGGCCG
CGGCCTCTCCGGGGGCCTG
4813
AGGCCCCCGGAGAGGCCGT
ACGGCCTCTCCGGGGGCCT
4814
GGCCCCCGGAGAGGCCGTG
CACGGCCTCTCCGGGGGCC
4815
GCCCCCGGAGAGGCCGTGC
GCACGGCCTCTCCGGGGGC
4816
CCCCCGGAGAGGCCGTGCT
AGCACGGCCTCTCCGGGGG
4817
CCCCGGAGAGGCCGTGCTG
CAGCACGGCCTCTCCGGGG
4818
CCCGGAGAGGCCGTGCTGG
CCAGCACGGCCTCTCCGGG
4819
CCGGAGAGGCCGTGCTGGT
ACCAGCACGGCCTCTCCGG
4820
CGGAGAGGCCGTGCTGGTG
CACCAGCACGGCCTCTCCG
4821
GGAGAGGCCGTGCTGGTGC
GCACCAGCACGGCCTCTCC
4822
GAGAGGCCGTGCTGGTGCC
GGCACCAGCACGGCCTCTC
4823
AGAGGCCGTGCTGGTGCCT
AGGCACCAGCACGGCCTCT
4824
GAGGCCGTGCTGGTGCCTG
CAGGCACCAGCACGGCCTC
4825
AGGCCGTGCTGGTGCCTGC
GCAGGCACCAGCACGGCCT
4826
GGCCGTGCTGGTGCCTGCA
TGCAGGCACCAGCACGGCC
4827
GCCGTGCTGGTGCCTGCAG
CTGCAGGCACCAGCACGGC
4828
CCGTGCTGGTGCCTGCAGG
CCTGCAGGCACCAGCACGG
4829
CGTGCTGGTGCCTGCAGGG
CCCTGCAGGCACCAGCACG
4830
GTGCTGGTGCCTGCAGGGG
CCCCTGCAGGCACCAGCAC
4831
TGCTGGTGCCTGCAGGGGC
GCCCCTGCAGGCACCAGCA
4832
GCTGGTGCCTGCAGGGGCT
AGCCCCTGCAGGCACCAGC
4833
CTGGTGCCTGCAGGGGCTC
GAGCCCCTGCAGGCACCAG
4834
TGGTGCCTGCAGGGGCTCC
GGAGCCCCTGCAGGCACCA
4835
GGTGCCTGCAGGGGCTCCC
GGGAGCCCCTGCAGGCACC
4836
GTGCCTGCAGGGGCTCCCC
GGGGAGCCCCTGCAGGCAC
4837
TGCCTGCAGGGGCTCCCCA
TGGGGAGCCCCTGCAGGCA
4838
GCCTGCAGGGGCTCCCCAC
GTGGGGAGCCCCTGCAGGC
4839
CCTGCAGGGGCTCCCCACC
GGTGGGGAGCCCCTGCAGG
4840
CTGCAGGGGCTCCCCACCA
TGGTGGGGAGCCCCTGCAG
4841
TGCAGGGGCTCCCCACCAG
CTGGTGGGGAGCCCCTGCA
4842
GCAGGGGCTCCCCACCAGG
CCTGGTGGGGAGCCCCTGC
4843
CAGGGGCTCCCCACCAGGT
ACCTGGTGGGGAGCCCCTG
4844
AGGGGCTCCCCACCAGGTG
CACCTGGTGGGGAGCCCCT
4845
GGGGCTCCCCACCAGGTGC
GCACCTGGTGGGGAGCCCC
4846
GGGCTCCCCACCAGGTGCA
TGCACCTGGTGGGGAGCCC
4847
GGCTCCCCACCAGGTGCAG
CTGCACCTGGTGGGGAGCC
4848
GCTCCCCACCAGGTGCAGG
CCTGCACCTGGTGGGGAGC
4849
CTCCCCACCAGGTGCAGGG
CCCTGCACCTGGTGGGGAG
4850
TCCCCACCAGGTGCAGGGC
GCCCTGCACCTGGTGGGGA
4851
CCCCACCAGGTGCAGGGCC
GGCCCTGCACCTGGTGGGG
4852
CCCACCAGGTGCAGGGCCT
AGGCCCTGCACCTGGTGGG
4853
CCACCAGGTGCAGGGCCTG
CAGGCCCTGCACCTGGTGG
4854
CACCAGGTGCAGGGCCTGG
CCAGGCCCTGCACCTGGTG
4855
ACCAGGTGCAGGGCCTGGT
ACCAGGCCCTGCACCTGGT
4856
CCAGGTGCAGGGCCTGGTG
CACCAGGCCCTGCACCTGG
4857
CAGGTGCAGGGCCTGGTGA
TCACCAGGCCCTGCACCTG
4858
AGGTGCAGGGCCTGGTGAG
CTCACCAGGCCCTGCACCT
4859
GGTGCAGGGCCTGGTGAGC
GCTCACCAGGCCCTGCACC
4860
GTGCAGGGCCTGGTGAGCA
TGCTCACCAGGCCCTGCAC
4861
TGCAGGGCCTGGTGAGCAC
GTGCTCACCAGGCCCTGCA
4862
GCAGGGCCTGGTGAGCACA
TGTGCTCACCAGGCCCTGC
4863
CAGGGCCTGGTGAGCACAG
CTGTGCTCACCAGGCCCTG
4864
AGGGCCTGGTGAGCACAGT
ACTGTGCTCACCAGGCCCT
4865
GGGCCTGGTGAGCACAGTC
GACTGTGCTCACCAGGCCC
4866
GGCCTGGTGAGCACAGTCA
TGACTGTGCTCACCAGGCC
4867
GCCTGGTGAGCACAGTCAG
CTGACTGTGCTCACCAGGC
4868
CCTGGTGAGCACAGTCAGC
GCTGACTGTGCTCACCAGG
4869
CTGGTGAGCACAGTCAGCG
CGCTGACTGTGCTCACCAG
4870
TGGTGAGCACAGTCAGCGT
ACGCTGACTGTGCTCACCA
4871
GGTGAGCACAGTCAGCGTC
GACGCTGACTGTGCTCACC
4872
GTGAGCACAGTCAGCGTCA
TGACGCTGACTGTGCTCAC
4873
TGAGCACAGTCAGCGTCAC
GTGACGCTGACTGTGCTCA
4874
GAGCACAGTCAGCGTCACT
AGTGACGCTGACTGTGCTC
4875
AGCACAGTCAGCGTCACTC
GAGTGACGCTGACTGTGCT
4876
GCACAGTCAGCGTCACTCA
TGAGTGACGCTGACTGTGC
4877
CACAGTCAGCGTCACTCAG
CTGAGTGACGCTGACTGTG
4878
ACAGTCAGCGTCACTCAGC
GCTGAGTGACGCTGACTGT
4879
CAGTCAGCGTCACTCAGCA
TGCTGAGTGACGCTGACTG
4880
AGTCAGCGTCACTCAGCAC
GTGCTGAGTGACGCTGACT
4881
GTCAGCGTCACTCAGCACT
AGTGCTGAGTGACGCTGAC
4882
TCAGCGTCACTCAGCACTT
AAGTGCTGAGTGACGCTGA
4883
CAGCGTCACTCAGCACTTC
GAAGTGCTGAGTGACGCTG
4884
AGCGTCACTCAGCACTTCC
GGAAGTGCTGAGTGACGCT
4885
GCGTCACTCAGCACTTCCT
AGGAAGTGCTGAGTGACGC
4886
CGTCACTCAGCACTTCCTC
GAGGAAGTGCTGAGTGACG
4887
GTCACTCAGCACTTCCTCT
AGAGGAAGTGCTGAGTGAC
4888
TCACTCAGCACTTCCTCTC
GAGAGGAAGTGCTGAGTGA
4889
CACTCAGCACTTCCTCTCC
GGAGAGGAAGTGCTGAGTG
4890
ACTCAGCACTTCCTCTCCC
GGGAGAGGAAGTGCTGAGT
4891
CTCAGCACTTCCTCTCCCC
GGGGAGAGGAAGTGCTGAG
4892
TCAGCACTTCCTCTCCCCT
AGGGGAGAGGAAGTGCTGA
4893
CAGCACTTCCTCTCCCCTG
CAGGGGAGAGGAAGTGCTG
4894
AGCACTTCCTCTCCCCTGA
TCAGGGGAGAGGAAGTGCT
4895
GCACTTCCTCTCCCCTGAG
CTCAGGGGAGAGGAAGTGC
4896
CACTTCCTCTCCCCTGAGA
TCTCAGGGGAGAGGAAGTG
4897
ACTTCCTCTCCCCTGAGAC
GTCTCAGGGGAGAGGAAGT
4898
CTTCCTCTCCCCTGAGACC
GGTCTCAGGGGAGAGGAAG
4899
TTCCTCTCCCCTGAGACCT
AGGTCTCAGGGGAGAGGAA
4900
TCCTCTCCCCTGAGACCTC
GAGGTCTCAGGGGAGAGGA
4901
CCTCTCCCCTGAGACCTCT
AGAGGTCTCAGGGGAGAGG
4902
CTCTCCCCTGAGACCTCTG
CAGAGGTCTCAGGGGAGAG
4903
TCTCCCCTGAGACCTCTGC
GCAGAGGTCTCAGGGGAGA
4904
CTCCCCTGAGACCTCTGCC
GGCAGAGGTCTCAGGGGAG
4905
TCCCCTGAGACCTCTGCCC
GGGCAGAGGTCTCAGGGGA
4906
CCCCTGAGACCTCTGCCCT
AGGGCAGAGGTCTCAGGGG
4907
CCCTGAGACCTCTGCCCTC
GAGGGCAGAGGTCTCAGGG
4908
CCTGAGACCTCTGCCCTCT
AGAGGGCAGAGGTCTCAGG
4909
CTGAGACCTCTGCCCTCTC
GAGAGGGCAGAGGTCTCAG
4910
TGAGACCTCTGCCCTCTCT
AGAGAGGGCAGAGGTCTCA
4911
GAGACCTCTGCCCTCTCTG
CAGAGAGGGCAGAGGTCTC
4912
AGACCTCTGCCCTCTCTGC
GCAGAGAGGGCAGAGGTCT
4913
GACCTCTGCCCTCTCTGCT
AGCAGAGAGGGCAGAGGTC
4914
ACCTCTGCCCTCTCTGCTC
GAGCAGAGAGGGCAGAGGT
4915
CCTCTGCCCTCTCTGCTCA
TGAGCAGAGAGGGCAGAGG
4916
CTCTGCCCTCTCTGCTCAG
CTGAGCAGAGAGGGCAGAG
4917
TCTGCCCTCTCTGCTCAGC
GCTGAGCAGAGAGGGCAGA
4918
CTGCCCTCTCTGCTCAGCT
AGCTGAGCAGAGAGGGCAG
4919
TGCCCTCTCTGCTCAGCTC
GAGCTGAGCAGAGAGGGCA
4920
GCCCTCTCTGCTCAGCTCT
AGAGCTGAGCAGAGAGGGC
4921
CCCTCTCTGCTCAGCTCTG
CAGAGCTGAGCAGAGAGGG
4922
CCTCTCTGCTCAGCTCTGC
GCAGAGCTGAGCAGAGAGG
4923
CTCTCTGCTCAGCTCTGCC
GGCAGAGCTGAGCAGAGAG
4924
TCTCTGCTCAGCTCTGCCA
TGGCAGAGCTGAGCAGAGA
4925
CTCTGCTCAGCTCTGCCAC
GTGGCAGAGCTGAGCAGAG
4926
TCTGCTCAGCTCTGCCACC
GGTGGCAGAGCTGAGCAGA
4927
CTGCTCAGCTCTGCCACCA
TGGTGGCAGAGCTGAGCAG
4928
TGCTCAGCTCTGCCACCAG
CTGGTGGCAGAGCTGAGCA
4929
GCTCAGCTCTGCCACCAGG
CCTGGTGGCAGAGCTGAGC
4930
CTCAGCTCTGCCACCAGGG
CCCTGGTGGCAGAGCTGAG
4931
TCAGCTCTGCCACCAGGGA
TCCCTGGTGGCAGAGCTGA
4932
CAGCTCTGCCACCAGGGAC
GTCCCTGGTGGCAGAGCTG
4933
AGCTCTGCCACCAGGGACC
GGTCCCTGGTGGCAGAGCT
4934
GCTCTGCCACCAGGGACCC
GGGTCCCTGGTGGCAGAGC
4935
CTCTGCCACCAGGGACCCA
TGGGTCCCTGGTGGCAGAG
4936
TCTGCCACCAGGGACCCAG
CTGGGTCCCTGGTGGCAGA
4937
CTGCCACCAGGGACCCAGC
GCTGGGTCCCTGGTGGCAG
4938
TGCCACCAGGGACCCAGCC
GGCTGGGTCCCTGGTGGCA
4939
GCCACCAGGGACCCAGCCT
AGGCTGGGTCCCTGGTGGC
4940
CCACCAGGGACCCAGCCTT
AAGGCTGGGTCCCTGGTGG
4941
CACCAGGGACCCAGCCTTC
GAAGGCTGGGTCCCTGGTG
4942
ACCAGGGACCCAGCCTTCC
GGAAGGCTGGGTCCCTGGT
4943
CCAGGGACCCAGCCTTCCC
GGGAAGGCTGGGTCCCTGG
4944
CAGGGACCCAGCCTTCCCC
GGGGAAGGCTGGGTCCCTG
4945
AGGGACCCAGCCTTCCCCC
GGGGGAAGGCTGGGTCCCT
4946
GGGACCCAGCCTTCCCCCT
AGGGGGAAGGCTGGGTCCC
4947
GGACCCAGCCTTCCCCCTG
CAGGGGGAAGGCTGGGTCC
4948
GACCCAGCCTTCCCCCTGA
TCAGGGGGAAGGCTGGGTC
4949
ACCCAGCCTTCCCCCTGAC
GTCAGGGGGAAGGCTGGGT
4950
CCCAGCCTTCCCCCTGACT
AGTCAGGGGGAAGGCTGGG
4951
CCAGCCTTCCCCCTGACTG
CAGTCAGGGGGAAGGCTGG
4952
CAGCCTTCCCCCTGACTGC
GCAGTCAGGGGGAAGGCTG
4953
AGCCTTCCCCCTGACTGCC
GGCAGTCAGGGGGAAGGCT
4954
GCCTTCCCCCTGACTGCCA
TGGCAGTCAGGGGGAAGGC
4955
CCTTCCCCCTGACTGCCAC
GTGGCAGTCAGGGGGAAGG
4956
CTTCCCCCTGACTGCCACC
GGTGGCAGTCAGGGGGAAG
4957
TTCCCCCTGACTGCCACCT
AGGTGGCAGTCAGGGGGAA
4958
TCCCCCTGACTGCCACCTG
CAGGTGGCAGTCAGGGGGA
4959
CCCCCTGACTGCCACCTGC
GCAGGTGGCAGTCAGGGGG
4960
CCCCTGACTGCCACCTGCT
AGCAGGTGGCAGTCAGGGG
4961
CCCTGACTGCCACCTGCTT
AAGCAGGTGGCAGTCAGGG
4962
CCTGACTGCCACCTGCTTT
AAAGCAGGTGGCAGTCAGG
4963
CTGACTGCCACCTGCTTTA
TAAAGCAGGTGGCAGTCAG
4964
TGACTGCCACCTGCTTTAT
ATAAAGCAGGTGGCAGTCA
4965
GACTGCCACCTGCTTTATG
CATAAAGCAGGTGGCAGTC
4966
ACTGCCACCTGCTTTATGC
GCATAAAGCAGGTGGCAGT
4967
CTGCCACCTGCTTTATGCC
GGCATAAAGCAGGTGGCAG
4968
TGCCACCTGCTTTATGCCC
GGGCATAAAGCAGGTGGCA
4969
GCCACCTGCTTTATGCCCA
TGGGCATAAAGCAGGTGGC
4970
CCACCTGCTTTATGCCCAG
CTGGGCATAAAGCAGGTGG
4971
CACCTGCTTTATGCCCAGA
TCTGGGCATAAAGCAGGTG
4972
ACCTGCTTTATGCCCAGAT
ATCTGGGCATAAAGCAGGT
4973
CCTGCTTTATGCCCAGATG
CATCTGGGCATAAAGCAGG
4974
CTGCTTTATGCCCAGATGG
CCATCTGGGCATAAAGCAG
4975
TGCTTTATGCCCAGATGGA
TCCATCTGGGCATAAAGCA
4976
GCTTTATGCCCAGATGGAC
GTCCATCTGGGCATAAAGC
4977
CTTTATGCCCAGATGGACT
AGTCCATCTGGGCATAAAG
4978
TTTATGCCCAGATGGACTG
CAGTCCATCTGGGCATAAA
4979
TTATGCCCAGATGGACTGG
CCAGTCCATCTGGGCATAA
4980
TATGCCCAGATGGACTGGG
CCCAGTCCATCTGGGCATA
4981
ATGCCCAGATGGACTGGGC
GCCCAGTCCATCTGGGCAT
4982
TGCCCAGATGGACTGGGCT
AGCCCAGTCCATCTGGGCA
4983
GCCCAGATGGACTGGGCTG
CAGCCCAGTCCATCTGGGC
4984
CCCAGATGGACTGGGCTGT
ACAGCCCAGTCCATCTGGG
4985
CCAGATGGACTGGGCTGTG
CACAGCCCAGTCCATCTGG
4986
CAGATGGACTGGGCTGTGT
ACACAGCCCAGTCCATCTG
4987
AGATGGACTGGGCTGTGTT
AACACAGCCCAGTCCATCT
4988
GATGGACTGGGCTGTGTTC
GAACACAGCCCAGTCCATC
4989
ATGGACTGGGCTGTGTTCC
GGAACACAGCCCAGTCCAT
4990
TGGACTGGGCTGTGTTCCA
TGGAACACAGCCCAGTCCA
4991
GGACTGGGCTGTGTTCCAA
TTGGAACACAGCCCAGTCC
4992
GACTGGGCTGTGTTCCAAG
CTTGGAACACAGCCCAGTC
4993
ACTGGGCTGTGTTCCAAGC
GCTTGGAACACAGCCCAGT
4994
CTGGGCTGTGTTCCAAGCA
TGCTTGGAACACAGCCCAG
4995
TGGGCTGTGTTCCAAGCAG
CTGCTTGGAACACAGCCCA
4996
GGGCTGTGTTCCAAGCAGT
ACTGCTTGGAACACAGCCC
4997
GGCTGTGTTCCAAGCAGTG
CACTGCTTGGAACACAGCC
4998
GCTGTGTTCCAAGCAGTGA
TCACTGCTTGGAACACAGC
4999
CTGTGTTCCAAGCAGTGAA
TTCACTGCTTGGAACACAG
5000
TGTGTTCCAAGCAGTGAAG
CTTCACTGCTTGGAACACA
5001
GTGTTCCAAGCAGTGAAGG
CCTTCACTGCTTGGAACAC
5002
TGTTCCAAGCAGTGAAGGT
ACCTTCACTGCTTGGAACA
5003
GTTCCAAGCAGTGAAGGTG
CACCTTCACTGCTTGGAAC
5004
TTCCAAGCAGTGAAGGTGG
CCACCTTCACTGCTTGGAA
5005
TCCAAGCAGTGAAGGTGGC
GCCACCTTCACTGCTTGGA
5006
CCAAGCAGTGAAGGTGGCC
GGCCACCTTCACTGCTTGG
5007
CAAGCAGTGAAGGTGGCCG
CGGCCACCTTCACTGCTTG
5008
AAGCAGTGAAGGTGGCCGT
ACGGCCACCTTCACTGCTT
5009
AGCAGTGAAGGTGGCCGTG
CACGGCCACCTTCACTGCT
5010
GCAGTGAAGGTGGCCGTGG
CCACGGCCACCTTCACTGC
5011
CAGTGAAGGTGGCCGTGGG
CCCACGGCCACCTTCACTG
5012
AGTGAAGGTGGCCGTGGGG
CCCCACGGCCACCTTCACT
5013
GTGAAGGTGGCCGTGGGGA
TCCCCACGGCCACCTTCAC
5014
TGAAGGTGGCCGTGGGGAC
GTCCCCACGGCCACCTTCA
5015
GAAGGTGGCCGTGGGGACA
TGTCCCCACGGCCACCTTC
5016
AAGGTGGCCGTGGGGACAT
ATGTCCCCACGGCCACCTT
5017
AGGTGGCCGTGGGGACATT
AATGTCCCCACGGCCACCT
5018
GGTGGCCGTGGGGACATTA
TAATGTCCCCACGGCCACC
5019
GTGGCCGTGGGGACATTAC
GTAATGTCCCCACGGCCAC
5020
TGGCCGTGGGGACATTACA
TGTAATGTCCCCACGGCCA
5021
GGCCGTGGGGACATTACAG
CTGTAATGTCCCCACGGCC
5022
GCCGTGGGGACATTACAGG
CCTGTAATGTCCCCACGGC
5023
CCGTGGGGACATTACAGGA
TCCTGTAATGTCCCCACGG
5024
CGTGGGGACATTACAGGAG
CTCCTGTAATGTCCCCACG
5025
GTGGGGACATTACAGGAGG
CCTCCTGTAATGTCCCCAC
5026
TGGGGACATTACAGGAGGC
GCCTCCTGTAATGTCCCCA
5027
GGGGACATTACAGGAGGCC
GGCCTCCTGTAATGTCCCC
5028
GGGACATTACAGGAGGCCA
TGGCCTCCTGTAATGTCCC
5029
GGACATTACAGGAGGCCAA
TTGGCCTCCTGTAATGTCC
5030
GACATTACAGGAGGCCAAA
TTTGGCCTCCTGTAATGTC
5031
ACATTACAGGAGGCCAAAT
ATTTGGCCTCCTGTAATGT
5032
CATTACAGGAGGCCAAATA
TATTTGGCCTCCTGTAATG
5033
ATTACAGGAGGCCAAATAG
CTATTTGGCCTCCTGTAAT
5034
TTACAGGAGGCCAAATAGA
TCTATTTGGCCTCCTGTAA
5035
TACAGGAGGCCAAATAGAG
CTCTATTTGGCCTCCTGTA
5036
ACAGGAGGCCAAATAGAGG
CCTCTATTTGGCCTCCTGT
5037
CAGGAGGCCAAATAGAGGG
CCCTCTATTTGGCCTCCTG
5038
AGGAGGCCAAATAGAGGGA
TCCCTCTATTTGGCCTCCT
5039
GGAGGCCAAATAGAGGGAT
ATCCCTCTATTTGGCCTCC
5040
GAGGCCAAATAGAGGGATG
CATCCCTCTATTTGGCCTC
5041
AGGCCAAATAGAGGGATGC
GCATCCCTCTATTTGGCCT
5042
GGCCAAATAGAGGGATGCT
AGCATCCCTCTATTTGGCC
5043
GCCAAATAGAGGGATGCTA
TAGCATCCCTCTATTTGGC
5044
CCAAATAGAGGGATGCTAG
CTAGCATCCCTCTATTTGG
5045
CAAATAGAGGGATGCTAGG
CCTAGCATCCCTCTATTTG
5046
AAATAGAGGGATGCTAGGT
ACCTAGCATCCCTCTATTT
5047
AATAGAGGGATGCTAGGTG
CACCTAGCATCCCTCTATT
5048
ATAGAGGGATGCTAGGTGT
ACACCTAGCATCCCTCTAT
5049
TAGAGGGATGCTAGGTGTC
GACACCTAGCATCCCTCTA
5050
AGAGGGATGCTAGGTGTCT
AGACACCTAGCATCCCTCT
5051
GAGGGATGCTAGGTGTCTG
CAGACACCTAGCATCCCTC
5052
AGGGATGCTAGGTGTCTGG
CCAGACACCTAGCATCCCT
5053
GGGATGCTAGGTGTCTGGG
CCCAGACACCTAGCATCCC
5054
GGATGCTAGGTGTCTGGGA
TCCCAGACACCTAGCATCC
5055
GATGCTAGGTGTCTGGGAT
ATCCCAGACACCTAGCATC
5056
ATGCTAGGTGTCTGGGATC
GATCCCAGACACCTAGCAT
5057
TGCTAGGTGTCTGGGATCG
CGATCCCAGACACCTAGCA
5058
GCTAGGTGTCTGGGATCGG
CCGATCCCAGACACCTAGC
5059
CTAGGTGTCTGGGATCGGG
CCCGATCCCAGACACCTAG
5060
TAGGTGTCTGGGATCGGGG
CCCCGATCCCAGACACCTA
5061
AGGTGTCTGGGATCGGGGT
ACCCCGATCCCAGACACCT
5062
GGTGTCTGGGATCGGGGTG
CACCCCGATCCCAGACACC
5063
GTGTCTGGGATCGGGGTGG
CCACCCCGATCCCAGACAC
5064
TGTCTGGGATCGGGGTGGG
CCCACCCCGATCCCAGACA
5065
GTCTGGGATCGGGGTGGGG
CCCCACCCCGATCCCAGAC
5066
TCTGGGATCGGGGTGGGGA
TCCCCACCCCGATCCCAGA
5067
CTGGGATCGGGGTGGGGAC
GTCCCCACCCCGATCCCAG
5068
TGGGATCGGGGTGGGGACA
TGTCCCCACCCCGATCCCA
5069
GGGATCGGGGTGGGGACAG
CTGTCCCCACCCCGATCCC
5070
GGATCGGGGTGGGGACAGG
CCTGTCCCCACCCCGATCC
5071
GATCGGGGTGGGGACAGGT
ACCTGTCCCCACCCCGATC
5072
ATCGGGGTGGGGACAGGTA
TACCTGTCCCCACCCCGAT
5073
TCGGGGTGGGGACAGGTAG
CTACCTGTCCCCACCCCGA
5074
CGGGGTGGGGACAGGTAGA
TCTACCTGTCCCCACCCCG
5075
GGGGTGGGGACAGGTAGAC
GTCTACCTGTCCCCACCCC
5076
GGGTGGGGACAGGTAGACC
GGTCTACCTGTCCCCACCC
5077
GGTGGGGACAGGTAGACCA
TGGTCTACCTGTCCCCACC
5078
GTGGGGACAGGTAGACCAG
CTGGTCTACCTGTCCCCAC
5079
TGGGGACAGGTAGACCAGG
CCTGGTCTACCTGTCCCCA
5080
GGGGACAGGTAGACCAGGT
ACCTGGTCTACCTGTCCCC
5081
GGGACAGGTAGACCAGGTG
CACCTGGTCTACCTGTCCC
5082
GGACAGGTAGACCAGGTGC
GCACCTGGTCTACCTGTCC
5083
GACAGGTAGACCAGGTGCT
AGCACCTGGTCTACCTGTC
5084
ACAGGTAGACCAGGTGCTC
GAGCACCTGGTCTACCTGT
5085
CAGGTAGACCAGGTGCTCA
TGAGCACCTGGTCTACCTG
5086
AGGTAGACCAGGTGCTCAG
CTGAGCACCTGGTCTACCT
5087
GGTAGACCAGGTGCTCAGC
GCTGAGCACCTGGTCTACC
5088
GTAGACCAGGTGCTCAGCC
GGCTGAGCACCTGGTCTAC
5089
TAGACCAGGTGCTCAGCCC
GGGCTGAGCACCTGGTCTA
5090
AGACCAGGTGCTCAGCCCA
TGGGCTGAGCACCTGGTCT
5091
GACCAGGTGCTCAGCCCAG
CTGGGCTGAGCACCTGGTC
5092
ACCAGGTGCTCAGCCCAGG
CCTGGGCTGAGCACCTGGT
5093
CCAGGTGCTCAGCCCAGGC
GCCTGGGCTGAGCACCTGG
5094
CAGGTGCTCAGCCCAGGCA
TGCCTGGGCTGAGCACCTG
5095
AGGTGCTCAGCCCAGGCAC
GTGCCTGGGCTGAGCACCT
5096
GGTGCTCAGCCCAGGCACA
TGTGCCTGGGCTGAGCACC
5097
GTGCTCAGCCCAGGCACAA
TTGTGCCTGGGCTGAGCAC
5098
TGCTCAGCCCAGGCACAAC
GTTGTGCCTGGGCTGAGCA
5099
GCTCAGCCCAGGCACAACT
AGTTGTGCCTGGGCTGAGC
5100
CTCAGCCCAGGCACAACTT
AAGTTGTGCCTGGGCTGAG
5101
TCAGCCCAGGCACAACTTC
GAAGTTGTGCCTGGGCTGA
5102
CAGCCCAGGCACAACTTCA
TGAAGTTGTGCCTGGGCTG
5103
AGCCCAGGCACAACTTCAG
CTGAAGTTGTGCCTGGGCT
5104
GCCCAGGCACAACTTCAGC
GCTGAAGTTGTGCCTGGGC
5105
CCCAGGCACAACTTCAGCA
TGCTGAAGTTGTGCCTGGG
5106
CCAGGCACAACTTCAGCAG
CTGCTGAAGTTGTGCCTGG
5107
CAGGCACAACTTCAGCAGG
CCTGCTGAAGTTGTGCCTG
5108
AGGCACAACTTCAGCAGGG
CCCTGCTGAAGTTGTGCCT
5109
GGCACAACTTCAGCAGGGG
CCCCTGCTGAAGTTGTGCC
5110
GCACAACTTCAGCAGGGGA
TCCCCTGCTGAAGTTGTGC
5111
CACAACTTCAGCAGGGGAT
ATCCCCTGCTGAAGTTGTG
5112
ACAACTTCAGCAGGGGATG
CATCCCCTGCTGAAGTTGT
5113
CAACTTCAGCAGGGGATGG
CCATCCCCTGCTGAAGTTG
5114
AACTTCAGCAGGGGATGGC
GCCATCCCCTGCTGAAGTT
5115
ACTTCAGCAGGGGATGGCG
CGCCATCCCCTGCTGAAGT
5116
CTTCAGCAGGGGATGGCGC
GCGCCATCCCCTGCTGAAG
5117
TTCAGCAGGGGATGGCGCT
AGCGCCATCCCCTGCTGAA
5118
TCAGCAGGGGATGGCGCTA
TAGCGCCATCCCCTGCTGA
5119
CAGCAGGGGATGGCGCTAG
CTAGCGCCATCCCCTGCTG
5120
AGCAGGGGATGGCGCTAGG
CCTAGCGCCATCCCCTGCT
5121
GCAGGGGATGGCGCTAGGG
CCCTAGCGCCATCCCCTGC
5122
CAGGGGATGGCGCTAGGGG
CCCCTAGCGCCATCCCCTG
5123
AGGGGATGGCGCTAGGGGA
TCCCCTAGCGCCATCCCCT
5124
GGGGATGGCGCTAGGGGAC
GTCCCCTAGCGCCATCCCC
5125
GGGATGGCGCTAGGGGACT
AGTCCCCTAGCGCCATCCC
5126
GGATGGCGCTAGGGGACTT
AAGTCCCCTAGCGCCATCC
5127
GATGGCGCTAGGGGACTTG
CAAGTCCCCTAGCGCCATC
5128
ATGGCGCTAGGGGACTTGG
CCAAGTCCCCTAGCGCCAT
5129
TGGCGCTAGGGGACTTGGG
CCCAAGTCCCCTAGCGCCA
5130
GGCGCTAGGGGACTTGGGG
CCCCAAGTCCCCTAGCGCC
5131
GCGCTAGGGGACTTGGGGA
TCCCCAAGTCCCCTAGCGC
5132
CGCTAGGGGACTTGGGGAT
ATCCCCAAGTCCCCTAGCG
5133
GCTAGGGGACTTGGGGATT
AATCCCCAAGTCCCCTAGC
5134
CTAGGGGACTTGGGGATTT
AAATCCCCAAGTCCCCTAG
5135
TAGGGGACTTGGGGATTTC
GAAATCCCCAAGTCCCCTA
5136
AGGGGACTTGGGGATTTCT
AGAAATCCCCAAGTCCCCT
5137
GGGGACTTGGGGATTTCTG
CAGAAATCCCCAAGTCCCC
5138
GGGACTTGGGGATTTCTGG
CCAGAAATCCCCAAGTCCC
5139
GGACTTGGGGATTTCTGGT
ACCAGAAATCCCCAAGTCC
5140
GACTTGGGGATTTCTGGTC
GACCAGAAATCCCCAAGTC
5141
ACTTGGGGATTTCTGGTCA
TGACCAGAAATCCCCAAGT
5142
CTTGGGGATTTCTGGTCAA
TTGACCAGAAATCCCCAAG
5143
TTGGGGATTTCTGGTCAAC
GTTGACCAGAAATCCCCAA
5144
TGGGGATTTCTGGTCAACC
GGTTGACCAGAAATCCCCA
5145
GGGGATTTCTGGTCAACCC
GGGTTGACCAGAAATCCCC
5146
GGGATTTCTGGTCAACCCC
GGGGTTGACCAGAAATCCC
5147
GGATTTCTGGTCAACCCCA
TGGGGTTGACCAGAAATCC
5148
GATTTCTGGTCAACCCCAC
GTGGGGTTGACCAGAAATC
5149
ATTTCTGGTCAACCCCACA
TGTGGGGTTGACCAGAAAT
5150
TTTCTGGTCAACCCCACAA
TTGTGGGGTTGACCAGAAA
5151
TTCTGGTCAACCCCACAAG
CTTGTGGGGTTGACCAGAA
5152
TCTGGTCAACCCCACAAGC
GCTTGTGGGGTTGACCAGA
5153
CTGGTCAACCCCACAAGCA
TGCTTGTGGGGTTGACCAG
5154
TGGTCAACCCCACAAGCAC
GTGCTTGTGGGGTTGACCA
5155
GGTCAACCCCACAAGCACC
GGTGCTTGTGGGGTTGACC
5156
GTCAACCCCACAAGCACCA
TGGTGCTTGTGGGGTTGAC
5157
TCAACCCCACAAGCACCAC
GTGGTGCTTGTGGGGTTGA
5158
CAACCCCACAAGCACCACT
AGTGGTGCTTGTGGGGTTG
5159
AACCCCACAAGCACCACTC
GAGTGGTGCTTGTGGGGTT
5160
ACCCCACAAGCACCACTCT
AGAGTGGTGCTTGTGGGGT
5161
CCCCACAAGCACCACTCTG
CAGAGTGGTGCTTGTGGGG
5162
CCCACAAGCACCACTCTGG
CCAGAGTGGTGCTTGTGGG
5163
CCACAAGCACCACTCTGGG
CCCAGAGTGGTGCTTGTGG
5164
CACAAGCACCACTCTGGGC
GCCCAGAGTGGTGCTTGTG
5165
ACAAGCACCACTCTGGGCA
TGCCCAGAGTGGTGCTTGT
5166
CAAGCACCACTCTGGGCAC
GTGCCCAGAGTGGTGCTTG
5167
AAGCACCACTCTGGGCACA
TGTGCCCAGAGTGGTGCTT
5168
AGCACCACTCTGGGCACAA
TTGTGCCCAGAGTGGTGCT
5169
GCACCACTCTGGGCACAAG
CTTGTGCCCAGAGTGGTGC
5170
CACCACTCTGGGCACAAGC
GCTTGTGCCCAGAGTGGTG
5171
ACCACTCTGGGCACAAGCA
TGCTTGTGCCCAGAGTGGT
5172
CCACTCTGGGCACAAGCAG
CTGCTTGTGCCCAGAGTGG
5173
CACTCTGGGCACAAGCAGG
CCTGCTTGTGCCCAGAGTG
5174
ACTCTGGGCACAAGCAGGG
CCCTGCTTGTGCCCAGAGT
5175
CTCTGGGCACAAGCAGGGC
GCCCTGCTTGTGCCCAGAG
5176
TCTGGGCACAAGCAGGGCA
TGCCCTGCTTGTGCCCAGA
5177
CTGGGCACAAGCAGGGCAC
GTGCCCTGCTTGTGCCCAG
5178
TGGGCACAAGCAGGGCACT
AGTGCCCTGCTTGTGCCCA
5179
GGGCACAAGCAGGGCACTC
GAGTGCCCTGCTTGTGCCC
5180
GGCACAAGCAGGGCACTCT
AGAGTGCCCTGCTTGTGCC
5181
GCACAAGCAGGGCACTCTG
CAGAGTGCCCTGCTTGTGC
5182
CACAAGCAGGGCACTCTGT
ACAGAGTGCCCTGCTTGTG
5183
ACAAGCAGGGCACTCTGTT
AACAGAGTGCCCTGCTTGT
5184
CAAGCAGGGCACTCTGTTC
GAACAGAGTGCCCTGCTTG
5185
AAGCAGGGCACTCTGTTCC
GGAACAGAGTGCCCTGCTT
5186
AGCAGGGCACTCTGTTCCC
GGGAACAGAGTGCCCTGCT
5187
GCAGGGCACTCTGTTCCCC
GGGGAACAGAGTGCCCTGC
5188
CAGGGCACTCTGTTCCCCT
AGGGGAACAGAGTGCCCTG
5189
AGGGCACTCTGTTCCCCTC
GAGGGGAACAGAGTGCCCT
5190
GGGCACTCTGTTCCCCTCC
GGAGGGGAACAGAGTGCCC
5191
GGCACTCTGTTCCCCTCCC
GGGAGGGGAACAGAGTGCC
5192
GCACTCTGTTCCCCTCCCC
GGGGAGGGGAACAGAGTGC
5193
CACTCTGTTCCCCTCCCCC
GGGGGAGGGGAACAGAGTG
5194
ACTCTGTTCCCCTCCCCCT
AGGGGGAGGGGAACAGAGT
5195
CTCTGTTCCCCTCCCCCTT
AAGGGGGAGGGGAACAGAG
5196
TCTGTTCCCCTCCCCCTTA
TAAGGGGGAGGGGAACAGA
5197
CTGTTCCCCTCCCCCTTAA
TTAAGGGGGAGGGGAACAG
5198
TGTTCCCCTCCCCCTTAAG
CTTAAGGGGGAGGGGAACA
5199
GTTCCCCTCCCCCTTAAGC
GCTTAAGGGGGAGGGGAAC
5200
TTCCCCTCCCCCTTAAGCC
GGCTTAAGGGGGAGGGGAA
5201
TCCCCTCCCCCTTAAGCCA
TGGCTTAAGGGGGAGGGGA
5202
CCCCTCCCCCTTAAGCCAA
TTGGCTTAAGGGGGAGGGG
5203
CCCTCCCCCTTAAGCCAAC
GTTGGCTTAAGGGGGAGGG
5204
CCTCCCCCTTAAGCCAACA
TGTTGGCTTAAGGGGGAGG
5205
CTCCCCCTTAAGCCAACAA
TTGTTGGCTTAAGGGGGAG
5206
TCCCCCTTAAGCCAACAAC
GTTGTTGGCTTAAGGGGGA
5207
CCCCCTTAAGCCAACAACC
GGTTGTTGGCTTAAGGGGG
5208
CCCCTTAAGCCAACAACCA
TGGTTGTTGGCTTAAGGGG
5209
CCCTTAAGCCAACAACCAC
GTGGTTGTTGGCTTAAGGG
5210
CCTTAAGCCAACAACCACA
TGTGGTTGTTGGCTTAAGG
5211
CTTAAGCCAACAACCACAG
CTGTGGTTGTTGGCTTAAG
5212
TTAAGCCAACAACCACAGT
ACTGTGGTTGTTGGCTTAA
5213
TAAGCCAACAACCACAGTG
CACTGTGGTTGTTGGCTTA
5214
AAGCCAACAACCACAGTGC
GCACTGTGGTTGTTGGCTT
5215
AGCCAACAACCACAGTGCC
GGCACTGTGGTTGTTGGCT
5216
GCCAACAACCACAGTGCCA
TGGCACTGTGGTTGTTGGC
5217
CCAACAACCACAGTGCCAC
GTGGCACTGTGGTTGTTGG
5218
CAACAACCACAGTGCCACC
GGTGGCACTGTGGTTGTTG
5219
AACAACCACAGTGCCACCA
TGGTGGCACTGTGGTTGTT
5220
ACAACCACAGTGCCACCAA
TTGGTGGCACTGTGGTTGT
5221
CAACCACAGTGCCACCAAG
CTTGGTGGCACTGTGGTTG
5222
AACCACAGTGCCACCAAGC
GCTTGGTGGCACTGTGGTT
5223
ACCACAGTGCCACCAAGCT
AGCTTGGTGGCACTGTGGT
5224
CCACAGTGCCACCAAGCTC
GAGCTTGGTGGCACTGTGG
5225
CACAGTGCCACCAAGCTCA
TGAGCTTGGTGGCACTGTG
5226
ACAGTGCCACCAAGCTCAC
GTGAGCTTGGTGGCACTGT
5227
CAGTGCCACCAAGCTCACA
TGTGAGCTTGGTGGCACTG
5228
AGTGCCACCAAGCTCACAC
GTGTGAGCTTGGTGGCACT
5229
GTGCCACCAAGCTCACACC
GGTGTGAGCTTGGTGGCAC
5230
TGCCACCAAGCTCACACCT
AGGTGTGAGCTTGGTGGCA
5231
GCCACCAAGCTCACACCTG
CAGGTGTGAGCTTGGTGGC
5232
CCACCAAGCTCACACCTGT
ACAGGTGTGAGCTTGGTGG
5233
CACCAAGCTCACACCTGTC
GACAGGTGTGAGCTTGGTG
5234
ACCAAGCTCACACCTGTCC
GGACAGGTGTGAGCTTGGT
5235
CCAAGCTCACACCTGTCCT
AGGACAGGTGTGAGCTTGG
5236
CAAGCTCACACCTGTCCTT
AAGGACAGGTGTGAGCTTG
5237
AAGCTCACACCTGTCCTTC
GAAGGACAGGTGTGAGCTT
5238
AGCTCACACCTGTCCTTCT
AGAAGGACAGGTGTGAGCT
5239
GCTCACACCTGTCCTTCTC
GAGAAGGACAGGTGTGAGC
5240
CTCACACCTGTCCTTCTCA
TGAGAAGGACAGGTGTGAG
5241
TCACACCTGTCCTTCTCAG
CTGAGAAGGACAGGTGTGA
5242
CACACCTGTCCTTCTCAGG
CCTGAGAAGGACAGGTGTG
5243
ACACCTGTCCTTCTCAGGC
GCCTGAGAAGGACAGGTGT
5244
CACCTGTCCTTCTCAGGCT
AGCCTGAGAAGGACAGGTG
5245
ACCTGTCCTTCTCAGGCTG
CAGCCTGAGAAGGACAGGT
5246
CCTGTCCTTCTCAGGCTGG
CCAGCCTGAGAAGGACAGG
5247
CTGTCCTTCTCAGGCTGGC
GCCAGCCTGAGAAGGACAG
5248
TGTCCTTCTCAGGCTGGCA
TGCCAGCCTGAGAAGGACA
5249
GTCCTTCTCAGGCTGGCAT
ATGCCAGCCTGAGAAGGAC
5250
TCCTTCTCAGGCTGGCATC
GATGCCAGCCTGAGAAGGA
5251
CCTTCTCAGGCTGGCATCT
AGATGCCAGCCTGAGAAGG
5252
CTTCTCAGGCTGGCATCTC
GAGATGCCAGCCTGAGAAG
5253
TTCTCAGGCTGGCATCTCC
GGAGATGCCAGCCTGAGAA
5254
TCTCAGGCTGGCATCTCCC
GGGAGATGCCAGCCTGAGA
5255
CTCAGGCTGGCATCTCCCC
GGGGAGATGCCAGCCTGAG
5256
TCAGGCTGGCATCTCCCCC
GGGGGAGATGCCAGCCTGA
5257
CAGGCTGGCATCTCCCCCA
TGGGGGAGATGCCAGCCTG
5258
AGGCTGGCATCTCCCCCAC
GTGGGGGAGATGCCAGCCT
5259
GGCTGGCATCTCCCCCACC
GGTGGGGGAGATGCCAGCC
5260
GCTGGCATCTCCCCCACCC
GGGTGGGGGAGATGCCAGC
5261
CTGGCATCTCCCCCACCCT
AGGGTGGGGGAGATGCCAG
5262
TGGCATCTCCCCCACCCTG
CAGGGTGGGGGAGATGCCA
5263
GGCATCTCCCCCACCCTGT
ACAGGGTGGGGGAGATGCC
5264
GCATCTCCCCCACCCTGTG
CACAGGGTGGGGGAGATGC
5265
CATCTCCCCCACCCTGTGC
GCACAGGGTGGGGGAGATG
5266
ATCTCCCCCACCCTGTGCC
GGCACAGGGTGGGGGAGAT
5267
TCTCCCCCACCCTGTGCCC
GGGCACAGGGTGGGGGAGA
5268
CTCCCCCACCCTGTGCCCC
GGGGCACAGGGTGGGGGAG
5269
TCCCCCACCCTGTGCCCCT
AGGGGCACAGGGTGGGGGA
5270
CCCCCACCCTGTGCCCCTT
AAGGGGCACAGGGTGGGGG
5271
CCCCACCCTGTGCCCCTTT
AAAGGGGCACAGGGTGGGG
5272
CCCACCCTGTGCCCCTTTT
AAAAGGGGCACAGGGTGGG
5273
CCACCCTGTGCCCCTTTTC
GAAAAGGGGCACAGGGTGG
5274
CACCCTGTGCCCCTTTTCA
TGAAAAGGGGCACAGGGTG
5275
ACCCTGTGCCCCTTTTCAT
ATGAAAAGGGGCACAGGGT
5276
CCCTGTGCCCCTTTTCATG
CATGAAAAGGGGCACAGGG
5277
CCTGTGCCCCTTTTCATGG
CCATGAAAAGGGGCACAGG
5278
CTGTGCCCCTTTTCATGGT
ACCATGAAAAGGGGCACAG
5279
TGTGCCCCTTTTCATGGTA
TACCATGAAAAGGGGCACA
5280
GTGCCCCTTTTCATGGTAC
GTACCATGAAAAGGGGCAC
5281
TGCCCCTTTTCATGGTACC
GGTACCATGAAAAGGGGCA
5282
GCCCCTTTTCATGGTACCA
TGGTACCATGAAAAGGGGC
5283
CCCCTTTTCATGGTACCAG
CTGGTACCATGAAAAGGGG
5284
CCCTTTTCATGGTACCAGG
CCTGGTACCATGAAAAGGG
5285
CCTTTTCATGGTACCAGGC
GCCTGGTACCATGAAAAGG
5286
CTTTTCATGGTACCAGGCC
GGCCTGGTACCATGAAAAG
5287
TTTTCATGGTACCAGGCCC
GGGCCTGGTACCATGAAAA
5288
TTTCATGGTACCAGGCCCG
CGGGCCTGGTACCATGAAA
5289
TTCATGGTACCAGGCCCGC
GCGGGCCTGGTACCATGAA
5290
TCATGGTACCAGGCCCGCA
TGCGGGCCTGGTACCATGA
5291
CATGGTACCAGGCCCGCAC
GTGCGGGCCTGGTACCATG
5292
ATGGTACCAGGCCCGCACT
AGTGCGGGCCTGGTACCAT
5293
TGGTACCAGGCCCGCACTG
CAGTGCGGGCCTGGTACCA
5294
GGTACCAGGCCCGCACTGG
CCAGTGCGGGCCTGGTACC
5295
GTACCAGGCCCGCACTGGG
CCCAGTGCGGGCCTGGTAC
5296
TACCAGGCCCGCACTGGGG
CCCCAGTGCGGGCCTGGTA
5297
ACCAGGCCCGCACTGGGGG
CCCCCAGTGCGGGCCTGGT
5298
CCAGGCCCGCACTGGGGGC
GCCCCCAGTGCGGGCCTGG
5299
CAGGCCCGCACTGGGGGCA
TGCCCCCAGTGCGGGCCTG
5300
AGGCCCGCACTGGGGGCAA
TTGCCCCCAGTGCGGGCCT
5301
GGCCCGCACTGGGGGCAAT
ATTGCCCCCAGTGCGGGCC
5302
GCCCGCACTGGGGGCAATT
AATTGCCCCCAGTGCGGGC
5303
CCCGCACTGGGGGCAATTG
CAATTGCCCCCAGTGCGGG
5304
CCGCACTGGGGGCAATTGA
TCAATTGCCCCCAGTGCGG
5305
CGCACTGGGGGCAATTGAC
GTCAATTGCCCCCAGTGCG
5306
GCACTGGGGGCAATTGACT
AGTCAATTGCCCCCAGTGC
5307
CACTGGGGGCAATTGACTT
AAGTCAATTGCCCCCAGTG
5308
ACTGGGGGCAATTGACTTC
GAAGTCAATTGCCCCCAGT
5309
CTGGGGGCAATTGACTTCC
GGAAGTCAATTGCCCCCAG
5310
TGGGGGCAATTGACTTCCT
AGGAAGTCAATTGCCCCCA
5311
GGGGGCAATTGACTTCCTC
GAGGAAGTCAATTGCCCCC
5312
GGGGCAATTGACTTCCTCC
GGAGGAAGTCAATTGCCCC
5313
GGGCAATTGACTTCCTCCA
TGGAGGAAGTCAATTGCCC
5314
GGCAATTGACTTCCTCCAA
TTGGAGGAAGTCAATTGCC
5315
GCAATTGACTTCCTCCAAT
ATTGGAGGAAGTCAATTGC
5316
CAATTGACTTCCTCCAATC
GATTGGAGGAAGTCAATTG
5317
AATTGACTTCCTCCAATCC
GGATTGGAGGAAGTCAATT
5318
ATTGACTTCCTCCAATCCC
GGGATTGGAGGAAGTCAAT
5319
TTGACTTCCTCCAATCCCC
GGGGATTGGAGGAAGTCAA
5320
TGACTTCCTCCAATCCCCA
TGGGGATTGGAGGAAGTCA
5321
GACTTCCTCCAATCCCCAC
GTGGGGATTGGAGGAAGTC
5322
ACTTCCTCCAATCCCCACT
AGTGGGGATTGGAGGAAGT
5323
CTTCCTCCAATCCCCACTC
GAGTGGGGATTGGAGGAAG
5324
TTCCTCCAATCCCCACTCC
GGAGTGGGGATTGGAGGAA
5325
TCCTCCAATCCCCACTCCT
AGGAGTGGGGATTGGAGGA
5326
CCTCCAATCCCCACTCCTC
GAGGAGTGGGGATTGGAGG
5327
CTCCAATCCCCACTCCTCC
GGAGGAGTGGGGATTGGAG
5328
TCCAATCCCCACTCCTCCG
CGGAGGAGTGGGGATTGGA
5329
CCAATCCCCACTCCTCCGA
TCGGAGGAGTGGGGATTGG
5330
CAATCCCCACTCCTCCGAG
CTCGGAGGAGTGGGGATTG
5331
AATCCCCACTCCTCCGAGA
TCTCGGAGGAGTGGGGATT
5332
ATCCCCACTCCTCCGAGAC
GTCTCGGAGGAGTGGGGAT
5333
TCCCCACTCCTCCGAGACC
GGTCTCGGAGGAGTGGGGA
5334
CCCCACTCCTCCGAGACCC
GGGTCTCGGAGGAGTGGGG
5335
CCCACTCCTCCGAGACCCA
TGGGTCTCGGAGGAGTGGG
5336
CCACTCCTCCGAGACCCAG
CTGGGTCTCGGAGGAGTGG
5337
CACTCCTCCGAGACCCAGG
CCTGGGTCTCGGAGGAGTG
5338
ACTCCTCCGAGACCCAGGA
TCCTGGGTCTCGGAGGAGT
5339
CTCCTCCGAGACCCAGGAG
CTCCTGGGTCTCGGAGGAG
5340
TCCTCCGAGACCCAGGAGA
TCTCCTGGGTCTCGGAGGA
5341
CCTCCGAGACCCAGGAGAC
GTCTCCTGGGTCTCGGAGG
5342
CTCCGAGACCCAGGAGACA
TGTCTCCTGGGTCTCGGAG
5343
TCCGAGACCCAGGAGACAA
TTGTCTCCTGGGTCTCGGA
5344
CCGAGACCCAGGAGACAAA
TTTGTCTCCTGGGTCTCGG
5345
CGAGACCCAGGAGACAAAC
GTTTGTCTCCTGGGTCTCG
5346
GAGACCCAGGAGACAAACA
TGTTTGTCTCCTGGGTCTC
5347
AGACCCAGGAGACAAACAG
CTGTTTGTCTCCTGGGTCT
5348
GACCCAGGAGACAAACAGC
GCTGTTTGTCTCCTGGGTC
5349
ACCCAGGAGACAAACAGCC
GGCTGTTTGTCTCCTGGGT
5350
CCCAGGAGACAAACAGCCC
GGGCTGTTTGTCTCCTGGG
5351
CCAGGAGACAAACAGCCCT
AGGGCTGTTTGTCTCCTGG
5352
CAGGAGACAAACAGCCCTT
AAGGGCTGTTTGTCTCCTG
5353
AGGAGACAAACAGCCCTTC
GAAGGGCTGTTTGTCTCCT
5354
GGAGACAAACAGCCCTTCC
GGAAGGGCTGTTTGTCTCC
5355
GAGACAAACAGCCCTTCCT
AGGAAGGGCTGTTTGTCTC
5356
AGACAAACAGCCCTTCCTT
AAGGAAGGGCTGTTTGTCT
5357
GACAAACAGCCCTTCCTTG
CAAGGAAGGGCTGTTTGTC
5358
ACAAACAGCCCTTCCTTGG
CCAAGGAAGGGCTGTTTGT
5359
CAAACAGCCCTTCCTTGGG
CCCAAGGAAGGGCTGTTTG
5360
AAACAGCCCTTCCTTGGGG
CCCCAAGGAAGGGCTGTTT
5361
AACAGCCCTTCCTTGGGGA
TCCCCAAGGAAGGGCTGTT
5362
ACAGCCCTTCCTTGGGGAA
TTCCCCAAGGAAGGGCTGT
5363
CAGCCCTTCCTTGGGGAAA
TTTCCCCAAGGAAGGGCTG
5364
AGCCCTTCCTTGGGGAAAC
GTTTCCCCAAGGAAGGGCT
5365
GCCCTTCCTTGGGGAAACT
AGTTTCCCCAAGGAAGGGC
5366
CCCTTCCTTGGGGAAACTT
AAGTTTCCCCAAGGAAGGG
5367
CCTTCCTTGGGGAAACTTG
CAAGTTTCCCCAAGGAAGG
5368
CTTCCTTGGGGAAACTTGG
CCAAGTTTCCCCAAGGAAG
5369
TTCCTTGGGGAAACTTGGG
CCCAAGTTTCCCCAAGGAA
5370
TCCTTGGGGAAACTTGGGA
TCCCAAGTTTCCCCAAGGA
5371
CCTTGGGGAAACTTGGGAA
TTCCCAAGTTTCCCCAAGG
5372
CTTGGGGAAACTTGGGAAT
ATTCCCAAGTTTCCCCAAG
5373
TTGGGGAAACTTGGGAATC
GATTCCCAAGTTTCCCCAA
5374
TGGGGAAACTTGGGAATCA
TGATTCCCAAGTTTCCCCA
5375
GGGGAAACTTGGGAATCAT
ATGATTCCCAAGTTTCCCC
5376
GGGAAACTTGGGAATCATT
AATGATTCCCAAGTTTCCC
5377
GGAAACTTGGGAATCATTC
GAATGATTCCCAAGTTTCC
5378
GAAACTTGGGAATCATTCT
AGAATGATTCCCAAGTTTC
5379
AAACTTGGGAATCATTCTG
CAGAATGATTCCCAAGTTT
5380
AACTTGGGAATCATTCTGG
CCAGAATGATTCCCAAGTT
5381
ACTTGGGAATCATTCTGGC
GCCAGAATGATTCCCAAGT
5382
CTTGGGAATCATTCTGGCT
AGCCAGAATGATTCCCAAG
5383
TTGGGAATCATTCTGGCTT
AAGCCAGAATGATTCCCAA
5384
TGGGAATCATTCTGGCTTA
TAAGCCAGAATGATTCCCA
5385
GGGAATCATTCTGGCTTAA
TTAAGCCAGAATGATTCCC
5386
GGAATCATTCTGGCTTAAA
TTTAAGCCAGAATGATTCC
5387
GAATCATTCTGGCTTAAAC
GTTTAAGCCAGAATGATTC
5388
AATCATTCTGGCTTAAACA
TGTTTAAGCCAGAATGATT
5389
ATCATTCTGGCTTAAACAA
TTGTTTAAGCCAGAATGAT
5390
TCATTCTGGCTTAAACAAC
GTTGTTTAAGCCAGAATGA
5391
CATTCTGGCTTAAACAACA
TGTTGTTTAAGCCAGAATG
5392
ATTCTGGCTTAAACAACAC
GTGTTGTTTAAGCCAGAAT
5393
TTCTGGCTTAAACAACACC
GGTGTTGTTTAAGCCAGAA
5394
TCTGGCTTAAACAACACCT
AGGTGTTGTTTAAGCCAGA
5395
CTGGCTTAAACAACACCTC
GAGGTGTTGTTTAAGCCAG
5396
TGGCTTAAACAACACCTCC
GGAGGTGTTGTTTAAGCCA
5397
GGCTTAAACAACACCTCCT
AGGAGGTGTTGTTTAAGCC
5398
GCTTAAACAACACCTCCTC
GAGGAGGTGTTGTTTAAGC
5399
CTTAAACAACACCTCCTCC
GGAGGAGGTGTTGTTTAAG
5400
TTAAACAACACCTCCTCCT
AGGAGGAGGTGTTGTTTAA
5401
TAAACAACACCTCCTCCTG
CAGGAGGAGGTGTTGTTTA
5402
AAACAACACCTCCTCCTGC
GCAGGAGGAGGTGTTGTTT
5403
AACAACACCTCCTCCTGCT
AGCAGGAGGAGGTGTTGTT
5404
ACAACACCTCCTCCTGCTG
CAGCAGGAGGAGGTGTTGT
5405
CAACACCTCCTCCTGCTGC
GCAGCAGGAGGAGGTGTTG
5406
AACACCTCCTCCTGCTGCT
AGCAGCAGGAGGAGGTGTT
5407
ACACCTCCTCCTGCTGCTC
GAGCAGCAGGAGGAGGTGT
5408
CACCTCCTCCTGCTGCTCA
TGAGCAGCAGGAGGAGGTG
5409
ACCTCCTCCTGCTGCTCAC
GTGAGCAGCAGGAGGAGGT
5410
CCTCCTCCTGCTGCTCACT
AGTGAGCAGCAGGAGGAGG
5411
CTCCTCCTGCTGCTCACTC
GAGTGAGCAGCAGGAGGAG
5412
TCCTCCTGCTGCTCACTCC
GGAGTGAGCAGCAGGAGGA
5413
CCTCCTGCTGCTCACTCCC
GGGAGTGAGCAGCAGGAGG
5414
CTCCTGCTGCTCACTCCCG
CGGGAGTGAGCAGCAGGAG
5415
TCCTGCTGCTCACTCCCGC
GCGGGAGTGAGCAGCAGGA
5416
CCTGCTGCTCACTCCCGCT
AGCGGGAGTGAGCAGCAGG
5417
CTGCTGCTCACTCCCGCTG
CAGCGGGAGTGAGCAGCAG
5418
TGCTGCTCACTCCCGCTGA
TCAGCGGGAGTGAGCAGCA
5419
GCTGCTCACTCCCGCTGAG
CTCAGCGGGAGTGAGCAGC
5420
CTGCTCACTCCCGCTGAGC
GCTCAGCGGGAGTGAGCAG
5421
TGCTCACTCCCGCTGAGCC
GGCTCAGCGGGAGTGAGCA
5422
GCTCACTCCCGCTGAGCCC
GGGCTCAGCGGGAGTGAGC
5423
CTCACTCCCGCTGAGCCCA
TGGGCTCAGCGGGAGTGAG
5424
TCACTCCCGCTGAGCCCAC
GTGGGCTCAGCGGGAGTGA
5425
CACTCCCGCTGAGCCCACT
AGTGGGCTCAGCGGGAGTG
5426
ACTCCCGCTGAGCCCACTC
GAGTGGGCTCAGCGGGAGT
5427
CTCCCGCTGAGCCCACTCT
AGAGTGGGCTCAGCGGGAG
5428
TCCCGCTGAGCCCACTCTA
TAGAGTGGGCTCAGCGGGA
5429
CCCGCTGAGCCCACTCTAC
GTAGAGTGGGCTCAGCGGG
5430
CCGCTGAGCCCACTCTACT
AGTAGAGTGGGCTCAGCGG
5431
CGCTGAGCCCACTCTACTG
CAGTAGAGTGGGCTCAGCG
5432
GCTGAGCCCACTCTACTGC
GCAGTAGAGTGGGCTCAGC
5433
CTGAGCCCACTCTACTGCC
GGCAGTAGAGTGGGCTCAG
5434
TGAGCCCACTCTACTGCCC
GGGCAGTAGAGTGGGCTCA
5435
GAGCCCACTCTACTGCCCC
GGGGCAGTAGAGTGGGCTC
5436
AGCCCACTCTACTGCCCCA
TGGGGCAGTAGAGTGGGCT
5437
GCCCACTCTACTGCCCCAG
CTGGGGCAGTAGAGTGGGC
5438
CCCACTCTACTGCCCCAGC
GCTGGGGCAGTAGAGTGGG
5439
CCACTCTACTGCCCCAGCT
AGCTGGGGCAGTAGAGTGG
5440
CACTCTACTGCCCCAGCTC
GAGCTGGGGCAGTAGAGTG
5441
ACTCTACTGCCCCAGCTCC
GGAGCTGGGGCAGTAGAGT
5442
CTCTACTGCCCCAGCTCCG
CGGAGCTGGGGCAGTAGAG
5443
TCTACTGCCCCAGCTCCGT
ACGGAGCTGGGGCAGTAGA
5444
CTACTGCCCCAGCTCCGTT
AACGGAGCTGGGGCAGTAG
5445
TACTGCCCCAGCTCCGTTT
AAACGGAGCTGGGGCAGTA
5446
ACTGCCCCAGCTCCGTTTC
GAAACGGAGCTGGGGCAGT
5447
CTGCCCCAGCTCCGTTTCT
AGAAACGGAGCTGGGGCAG
5448
TGCCCCAGCTCCGTTTCTA
TAGAAACGGAGCTGGGGCA
5449
GCCCCAGCTCCGTTTCTAC
GTAGAAACGGAGCTGGGGC
5450
CCCCAGCTCCGTTTCTACC
GGTAGAAACGGAGCTGGGG
5451
CCCAGCTCCGTTTCTACCA
TGGTAGAAACGGAGCTGGG
5452
CCAGCTCCGTTTCTACCAC
GTGGTAGAAACGGAGCTGG
5453
CAGCTCCGTTTCTACCACC
GGTGGTAGAAACGGAGCTG
5454
AGCTCCGTTTCTACCACCG
CGGTGGTAGAAACGGAGCT
5455
GCTCCGTTTCTACCACCGC
GCGGTGGTAGAAACGGAGC
5456
CTCCGTTTCTACCACCGCA
TGCGGTGGTAGAAACGGAG
5457
TCCGTTTCTACCACCGCAT
ATGCGGTGGTAGAAACGGA
5458
CCGTTTCTACCACCGCATC
GATGCGGTGGTAGAAACGG
5459
CGTTTCTACCACCGCATCC
GGATGCGGTGGTAGAAACG
5460
GTTTCTACCACCGCATCCT
AGGATGCGGTGGTAGAAAC
5461
TTTCTACCACCGCATCCTC
GAGGATGCGGTGGTAGAAA
5462
TTCTACCACCGCATCCTCA
TGAGGATGCGGTGGTAGAA
5463
TCTACCACCGCATCCTCAC
GTGAGGATGCGGTGGTAGA
5464
CTACCACCGCATCCTCACT
AGTGAGGATGCGGTGGTAG
5465
TACCACCGCATCCTCACTG
CAGTGAGGATGCGGTGGTA
5466
ACCACCGCATCCTCACTGG
CCAGTGAGGATGCGGTGGT
5467
CCACCGCATCCTCACTGGG
CCCAGTGAGGATGCGGTGG
5468
CACCGCATCCTCACTGGGC
GCCCAGTGAGGATGCGGTG
5469
ACCGCATCCTCACTGGGCT
AGCCCAGTGAGGATGCGGT
5470
CCGCATCCTCACTGGGCTC
GAGCCCAGTGAGGATGCGG
5471
CGCATCCTCACTGGGCTCA
TGAGCCCAGTGAGGATGCG
5472
GCATCCTCACTGGGCTCAC
GTGAGCCCAGTGAGGATGC
5473
CATCCTCACTGGGCTCACT
AGTGAGCCCAGTGAGGATG
5474
ATCCTCACTGGGCTCACTG
CAGTGAGCCCAGTGAGGAT
5475
TCCTCACTGGGCTCACTGC
GCAGTGAGCCCAGTGAGGA
5476
CCTCACTGGGCTCACTGCA
TGCAGTGAGCCCAGTGAGG
5477
CTCACTGGGCTCACTGCAG
CTGCAGTGAGCCCAGTGAG
5478
TCACTGGGCTCACTGCAGG
CCTGCAGTGAGCCCAGTGA
5479
CACTGGGCTCACTGCAGGC
GCCTGCAGTGAGCCCAGTG
5480
ACTGGGCTCACTGCAGGCA
TGCCTGCAGTGAGCCCAGT
5481
CTGGGCTCACTGCAGGCAT
ATGCCTGCAGTGAGCCCAG
5482
TGGGCTCACTGCAGGCATG
CATGCCTGCAGTGAGCCCA
5483
GGGCTCACTGCAGGCATGC
GCATGCCTGCAGTGAGCCC
5484
GGCTCACTGCAGGCATGCT
AGCATGCCTGCAGTGAGCC
5485
GCTCACTGCAGGCATGCTG
CAGCATGCCTGCAGTGAGC
5486
CTCACTGCAGGCATGCTGA
TCAGCATGCCTGCAGTGAG
5487
TCACTGCAGGCATGCTGAA
TTCAGCATGCCTGCAGTGA
5488
CACTGCAGGCATGCTGAAC
GTTCAGCATGCCTGCAGTG
5489
ACTGCAGGCATGCTGAACA
TGTTCAGCATGCCTGCAGT
5490
CTGCAGGCATGCTGAACAA
TTGTTCAGCATGCCTGCAG
5491
TGCAGGCATGCTGAACAAG
CTTGTTCAGCATGCCTGCA
5492
GCAGGCATGCTGAACAAGG
CCTTGTTCAGCATGCCTGC
5493
CAGGCATGCTGAACAAGGG
CCCTTGTTCAGCATGCCTG
5494
AGGCATGCTGAACAAGGGG
CCCCTTGTTCAGCATGCCT
5495
GGCATGCTGAACAAGGGGC
GCCCCTTGTTCAGCATGCC
5496
GCATGCTGAACAAGGGGCC
GGCCCCTTGTTCAGCATGC
5497
CATGCTGAACAAGGGGCCT
AGGCCCCTTGTTCAGCATG
5498
ATGCTGAACAAGGGGCCTC
GAGGCCCCTTGTTCAGCAT
5499
TGCTGAACAAGGGGCCTCC
GGAGGCCCCTTGTTCAGCA
5500
GCTGAACAAGGGGCCTCCA
TGGAGGCCCCTTGTTCAGC
5501
CTGAACAAGGGGCCTCCAA
TTGGAGGCCCCTTGTTCAG
5502
TGAACAAGGGGCCTCCAAC
GTTGGAGGCCCCTTGTTCA
5503
GAACAAGGGGCCTCCAACC
GGTTGGAGGCCCCTTGTTC
5504
AACAAGGGGCCTCCAACCT
AGGTTGGAGGCCCCTTGTT
5505
ACAAGGGGCCTCCAACCTT
AAGGTTGGAGGCCCCTTGT
5506
CAAGGGGCCTCCAACCTTC
GAAGGTTGGAGGCCCCTTG
5507
AAGGGGCCTCCAACCTTCT
AGAAGGTTGGAGGCCCCTT
5508
AGGGGCCTCCAACCTTCTG
CAGAAGGTTGGAGGCCCCT
5509
GGGGCCTCCAACCTTCTGC
GCAGAAGGTTGGAGGCCCC
5510
GGGCCTCCAACCTTCTGCC
GGCAGAAGGTTGGAGGCCC
5511
GGCCTCCAACCTTCTGCCC
GGGCAGAAGGTTGGAGGCC
5512
GCCTCCAACCTTCTGCCCT
AGGGCAGAAGGTTGGAGGC
5513
CCTCCAACCTTCTGCCCTC
GAGGGCAGAAGGTTGGAGG
5514
CTCCAACCTTCTGCCCTCC
GGAGGGCAGAAGGTTGGAG
5515
TCCAACCTTCTGCCCTCCT
AGGAGGGCAGAAGGTTGGA
5516
CCAACCTTCTGCCCTCCTG
CAGGAGGGCAGAAGGTTGG
5517
CAACCTTCTGCCCTCCTGC
GCAGGAGGGCAGAAGGTTG
5518
AACCTTCTGCCCTCCTGCC
GGCAGGAGGGCAGAAGGTT
5519
ACCTTCTGCCCTCCTGCCA
TGGCAGGAGGGCAGAAGGT
5520
CCTTCTGCCCTCCTGCCAA
TTGGCAGGAGGGCAGAAGG
5521
CTTCTGCCCTCCTGCCAAA
TTTGGCAGGAGGGCAGAAG
5522
TTCTGCCCTCCTGCCAAAA
TTTTGGCAGGAGGGCAGAA
5523
TCTGCCCTCCTGCCAAAAG
CTTTTGGCAGGAGGGCAGA
5524
CTGCCCTCCTGCCAAAAGA
TCTTTTGGCAGGAGGGCAG
5525
TGCCCTCCTGCCAAAAGAT
ATCTTTTGGCAGGAGGGCA
5526
GCCCTCCTGCCAAAAGATC
GATCTTTTGGCAGGAGGGC
5527
CCCTCCTGCCAAAAGATCT
AGATCTTTTGGCAGGAGGG
5528
CCTCCTGCCAAAAGATCTG
CAGATCTTTTGGCAGGAGG
5529
CTCCTGCCAAAAGATCTGG
CCAGATCTTTTGGCAGGAG
5530
TCCTGCCAAAAGATCTGGG
CCCAGATCTTTTGGCAGGA
5531
CCTGCCAAAAGATCTGGGG
CCCCAGATCTTTTGGCAGG
5532
CTGCCAAAAGATCTGGGGA
TCCCCAGATCTTTTGGCAG
5533
TGCCAAAAGATCTGGGGAG
CTCCCCAGATCTTTTGGCA
5534
GCCAAAAGATCTGGGGAGT
ACTCCCCAGATCTTTTGGC
5535
CCAAAAGATCTGGGGAGTG
CACTCCCCAGATCTTTTGG
5536
CAAAAGATCTGGGGAGTGT
ACACTCCCCAGATCTTTTG
5537
AAAAGATCTGGGGAGTGTG
CACACTCCCCAGATCTTTT
5538
AAAGATCTGGGGAGTGTGA
TCACACTCCCCAGATCTTT
5539
AAGATCTGGGGAGTGTGAG
CTCACACTCCCCAGATCTT
5540
AGATCTGGGGAGTGTGAGG
CCTCACACTCCCCAGATCT
5541
GATCTGGGGAGTGTGAGGA
TCCTCACACTCCCCAGATC
5542
ATCTGGGGAGTGTGAGGAG
CTCCTCACACTCCCCAGAT
5543
TCTGGGGAGTGTGAGGAGA
TCTCCTCACACTCCCCAGA
5544
CTGGGGAGTGTGAGGAGAG
CTCTCCTCACACTCCCCAG
5545
TGGGGAGTGTGAGGAGAGG
CCTCTCCTCACACTCCCCA
5546
GGGGAGTGTGAGGAGAGGG
CCCTCTCCTCACACTCCCC
5547
GGGAGTGTGAGGAGAGGGT
ACCCTCTCCTCACACTCCC
5548
GGAGTGTGAGGAGAGGGTG
CACCCTCTCCTCACACTCC
5549
GAGTGTGAGGAGAGGGTGG
CCACCCTCTCCTCACACTC
5550
AGTGTGAGGAGAGGGTGGC
GCCACCCTCTCCTCACACT
5551
GTGTGAGGAGAGGGTGGCA
TGCCACCCTCTCCTCACAC
5552
TGTGAGGAGAGGGTGGCAT
ATGCCACCCTCTCCTCACA
5553
GTGAGGAGAGGGTGGCATC
GATGCCACCCTCTCCTCAC
5554
TGAGGAGAGGGTGGCATCA
TGATGCCACCCTCTCCTCA
5555
GAGGAGAGGGTGGCATCAG
CTGATGCCACCCTCTCCTC
5556
AGGAGAGGGTGGCATCAGG
CCTGATGCCACCCTCTCCT
5557
GGAGAGGGTGGCATCAGGA
TCCTGATGCCACCCTCTCC
5558
GAGAGGGTGGCATCAGGAG
CTCCTGATGCCACCCTCTC
5559
AGAGGGTGGCATCAGGAGC
GCTCCTGATGCCACCCTCT
5560
GAGGGTGGCATCAGGAGCT
AGCTCCTGATGCCACCCTC
5561
AGGGTGGCATCAGGAGCTG
CAGCTCCTGATGCCACCCT
5562
GGGTGGCATCAGGAGCTGC
GCAGCTCCTGATGCCACCC
5563
GGTGGCATCAGGAGCTGCT
AGCAGCTCCTGATGCCACC
5564
GTGGCATCAGGAGCTGCTC
GAGCAGCTCCTGATGCCAC
5565
TGGCATCAGGAGCTGCTCA
TGAGCAGCTCCTGATGCCA
5566
GGCATCAGGAGCTGCTCAG
CTGAGCAGCTCCTGATGCC
5567
GCATCAGGAGCTGCTCAGG
CCTGAGCAGCTCCTGATGC
5568
CATCAGGAGCTGCTCAGGC
GCCTGAGCAGCTCCTGATG
5569
ATCAGGAGCTGCTCAGGCT
AGCCTGAGCAGCTCCTGAT
5570
TCAGGAGCTGCTCAGGCTT
AAGCCTGAGCAGCTCCTGA
5571
CAGGAGCTGCTCAGGCTTG
CAAGCCTGAGCAGCTCCTG
5572
AGGAGCTGCTCAGGCTTGG
CCAAGCCTGAGCAGCTCCT
5573
GGAGCTGCTCAGGCTTGGC
GCCAAGCCTGAGCAGCTCC
5574
GAGCTGCTCAGGCTTGGCG
CGCCAAGCCTGAGCAGCTC
5575
AGCTGCTCAGGCTTGGCGG
CCGCCAAGCCTGAGCAGCT
5576
GCTGCTCAGGCTTGGCGGA
TCCGCCAAGCCTGAGCAGC
5577
CTGCTCAGGCTTGGCGGAG
CTCCGCCAAGCCTGAGCAG
5578
TGCTCAGGCTTGGCGGAGG
CCTCCGCCAAGCCTGAGCA
5579
GCTCAGGCTTGGCGGAGGG
CCCTCCGCCAAGCCTGAGC
5580
CTCAGGCTTGGCGGAGGGA
TCCCTCCGCCAAGCCTGAG
5581
TCAGGCTTGGCGGAGGGAG
CTCCCTCCGCCAAGCCTGA
5582
CAGGCTTGGCGGAGGGAGC
GCTCCCTCCGCCAAGCCTG
5583
AGGCTTGGCGGAGGGAGCG
CGCTCCCTCCGCCAAGCCT
5584
GGCTTGGCGGAGGGAGCGG
CCGCTCCCTCCGCCAAGCC
5585
GCTTGGCGGAGGGAGCGGC
GCCGCTCCCTCCGCCAAGC
5586
CTTGGCGGAGGGAGCGGCA
TGCCGCTCCCTCCGCCAAG
5587
TTGGCGGAGGGAGCGGCAT
ATGCCGCTCCCTCCGCCAA
5588
TGGCGGAGGGAGCGGCATG
CATGCCGCTCCCTCCGCCA
5589
GGCGGAGGGAGCGGCATGG
CCATGCCGCTCCCTCCGCC
5590
GCGGAGGGAGCGGCATGGG
CCCATGCCGCTCCCTCCGC
5591
CGGAGGGAGCGGCATGGGC
GCCCATGCCGCTCCCTCCG
5592
GGAGGGAGCGGCATGGGCG
CGCCCATGCCGCTCCCTCC
5593
GAGGGAGCGGCATGGGCGA
TCGCCCATGCCGCTCCCTC
5594
AGGGAGCGGCATGGGCGAT
ATCGCCCATGCCGCTCCCT
5595
GGGAGCGGCATGGGCGATG
CATCGCCCATGCCGCTCCC
5596
GGAGCGGCATGGGCGATGT
ACATCGCCCATGCCGCTCC
5597
GAGCGGCATGGGCGATGTC
GACATCGCCCATGCCGCTC
5598
AGCGGCATGGGCGATGTCA
TGACATCGCCCATGCCGCT
5599
GCGGCATGGGCGATGTCAC
GTGACATCGCCCATGCCGC
5600
CGGCATGGGCGATGTCACT
AGTGACATCGCCCATGCCG
5601
GGCATGGGCGATGTCACTC
GAGTGACATCGCCCATGCC
5602
GCATGGGCGATGTCACTCA
TGAGTGACATCGCCCATGC
5603
CATGGGCGATGTCACTCAG
CTGAGTGACATCGCCCATG
5604
ATGGGCGATGTCACTCAGC
GCTGAGTGACATCGCCCAT
5605
TGGGCGATGTCACTCAGCC
GGCTGAGTGACATCGCCCA
5606
GGGCGATGTCACTCAGCCC
GGGCTGAGTGACATCGCCC
5607
GGCGATGTCACTCAGCCCC
GGGGCTGAGTGACATCGCC
5608
GCGATGTCACTCAGCCCCT
AGGGGCTGAGTGACATCGC
5609
CGATGTCACTCAGCCCCTT
AAGGGGCTGAGTGACATCG
5610
GATGTCACTCAGCCCCTTC
GAAGGGGCTGAGTGACATC
5611
ATGTCACTCAGCCCCTTCC
GGAAGGGGCTGAGTGACAT
5612
TGTCACTCAGCCCCTTCCC
GGGAAGGGGCTGAGTGACA
5613
GTCACTCAGCCCCTTCCCG
CGGGAAGGGGCTGAGTGAC
5614
TCACTCAGCCCCTTCCCGG
CCGGGAAGGGGCTGAGTGA
5615
CACTCAGCCCCTTCCCGGT
ACCGGGAAGGGGCTGAGTG
5616
ACTCAGCCCCTTCCCGGTC
GACCGGGAAGGGGCTGAGT
5617
CTCAGCCCCTTCCCGGTCC
GGACCGGGAAGGGGCTGAG
5618
TCAGCCCCTTCCCGGTCCG
CGGACCGGGAAGGGGCTGA
5619
CAGCCCCTTCCCGGTCCGC
GCGGACCGGGAAGGGGCTG
5620
AGCCCCTTCCCGGTCCGCC
GGCGGACCGGGAAGGGGCT
5621
GCCCCTTCCCGGTCCGCCC
GGGCGGACCGGGAAGGGGC
5622
CCCCTTCCCGGTCCGCCCG
CGGGCGGACCGGGAAGGGG
5623
CCCTTCCCGGTCCGCCCGC
GCGGGCGGACCGGGAAGGG
5624
CCTTCCCGGTCCGCCCGCT
AGCGGGCGGACCGGGAAGG
5625
CTTCCCGGTCCGCCCGCTT
AAGCGGGCGGACCGGGAAG
5626
TTCCCGGTCCGCCCGCTTC
GAAGCGGGCGGACCGGGAA
5627
TCCCGGTCCGCCCGCTTCC
GGAAGCGGGCGGACCGGGA
5628
CCCGGTCCGCCCGCTTCCC
GGGAAGCGGGCGGACCGGG
5629
CCGGTCCGCCCGCTTCCCT
AGGGAAGCGGGCGGACCGG
5630
CGGTCCGCCCGCTTCCCTC
GAGGGAAGCGGGCGGACCG
5631
GGTCCGCCCGCTTCCCTCC
GGAGGGAAGCGGGCGGACC
5632
GTCCGCCCGCTTCCCTCCT
AGGAGGGAAGCGGGCGGAC
5633
TCCGCCCGCTTCCCTCCTT
AAGGAGGGAAGCGGGCGGA
5634
CCGCCCGCTTCCCTCCTTC
GAAGGAGGGAAGCGGGCGG
5635
CGCCCGCTTCCCTCCTTCA
TGAAGGAGGGAAGCGGGCG
5636
GCCCGCTTCCCTCCTTCAT
ATGAAGGAGGGAAGCGGGC
5637
CCCGCTTCCCTCCTTCATG
CATGAAGGAGGGAAGCGGG
5638
CCGCTTCCCTCCTTCATGA
TCATGAAGGAGGGAAGCGG
5639
CGCTTCCCTCCTTCATGAT
ATCATGAAGGAGGGAAGCG
5640
GCTTCCCTCCTTCATGATT
AATCATGAAGGAGGGAAGC
5641
CTTCCCTCCTTCATGATTT
AAATCATGAAGGAGGGAAG
5642
TTCCCTCCTTCATGATTTC
GAAATCATGAAGGAGGGAA
5643
TCCCTCCTTCATGATTTCC
GGAAATCATGAAGGAGGGA
5644
CCCTCCTTCATGATTTCCA
TGGAAATCATGAAGGAGGG
5645
CCTCCTTCATGATTTCCAT
ATGGAAATCATGAAGGAGG
5646
CTCCTTCATGATTTCCATT
AATGGAAATCATGAAGGAG
5647
TCCTTCATGATTTCCATTA
TAATGGAAATCATGAAGGA
5648
CCTTCATGATTTCCATTAA
TTAATGGAAATCATGAAGG
5649
CTTCATGATTTCCATTAAA
TTTAATGGAAATCATGAAG
5650
TTCATGATTTCCATTAAAG
CTTTAATGGAAATCATGAA
5651
TCATGATTTCCATTAAAGT
ACTTTAATGGAAATCATGA
5652
CATGATTTCCATTAAAGTC
GACTTTAATGGAAATCATG
5653
ATGATTTCCATTAAAGTCT
AGACTTTAATGGAAATCAT
5654
TGATTTCCATTAAAGTCTG
CAGACTTTAATGGAAATCA
5655
GATTTCCATTAAAGTCTGT
ACAGACTTTAATGGAAATC
5656
ATTTCCATTAAAGTCTGTT
AACAGACTTTAATGGAAAT
5657
TTTCCATTAAAGTCTGTTG
CAACAGACTTTAATGGAAA
5658
TTCCATTAAAGTCTGTTGT
ACAACAGACTTTAATGGAA
5659
TCCATTAAAGTCTGTTGTT
AACAACAGACTTTAATGGA
5660
CCATTAAAGTCTGTTGTTT
AAACAACAGACTTTAATGG
5661
CATTAAAGTCTGTTGTTTT
AAAACAACAGACTTTAATG
5662
ATTAAAGTCTGTTGTTTTG
CAAAACAACAGACTTTAAT
5663
TTAAAGTCTGTTGTTTTGT
ACAAAACAACAGACTTTAA
5664
TAAAGTCTGTTGTTTTGTG
CACAAAACAACAGACTTTA
TABLE 2
Human and Mouse Hairless Polymorphisms
mRNA
Accession
Postion
Gene
(bp)
number
(nt)
From/To
Comments
Human Hairless
5699
NM_005144
867
C/A
Homo sapiens hairless
homolog (mouse) (HR),
1330
T/G
transcript variant 1, mRNA
1677
C/T
1686
C/T
2437
C/A
2491
G/A
2671
G/A
2672
C/T
2786
T/C
3058
T/C
3064
A/G
3208
C/T
3253
G/A
3340
G/A
3695
C/T
3812
A/T
3851
C/T
3854
C/T
4545
A/G
4715
C/G
4820
C/A
Mouse hairless
5599
NM_021877
402
A/G
Mus musculus hairless (hr),
mRNA
535
C/A
1603
G/A
1681
A/G
1895
C/T
2251
G/A
2482
T/C
2569
T/C
2917
T/C
3232
C/T
3371
A/T
3610
C/A
4065
T/G
TABLE 3
Exemplary siRNA target sequences in
mammalian hairless mRNAs
(shown as cDNA sequences)
Start
Sequence
Region
Mouse (Mus musculus) hairless (hr),
mRNA, NM_021877
2023
GCAGGAGACACCGGAGACAATCATA
ORF
(SEQ ID NO: 11373)
2495
GGACTCTTCAACACCCACTGGAGAT
ORF
(SEQ ID NO: 11374)
2713
CCAAGTCTGGGCCAAGTTTGACATT
ORF
(SEQ ID NO: 11375)
2831
CCACAACCTTCCTGCAATGGAGATT
ORF
(SEQ ID NO: 11376)
2844
GCAATGGAGATTCCAATCGGACCAA
ORF
(SEQ ID NO: 11377)
3042
CCAGTGATGACCGCATTACCAACAT
ORF
(SEQ ID NO: 11378)
3085
GCAGGTAGTAGAACGGAAGATCCAA
ORF
(SEQ ID NO: 11379)
3750
CCTGGTATCGAGCACAGAAAGATTT
ORF
(SEQ ID NO: 11380)
4068
GCACAATCAGTGTCACTCAGCACTT
ORF
(SEQ ID NO: 11381)
Homo sapiens hairless homolog (mouse)
(HR), transcript variant 1, mRNA, NM_005144
2151
GCGGAACCTGGGTTGTTTGGCTTAA
ORF
(SEQ ID NO: 11382)
2831
GGACACATCGATAGGGAACAAGGAT
ORF
(SEQ ID NO: 11383)
3626
CCCAACTCCACAACCTTCCTGCAAT
ORF
(SEQ ID NO: 11384)
3796
GCCATGAGCGAATACACATGGCCTT
ORF
(SEQ ID NO: 11385)
4092
CCTGTGTTGGTGTCAGGGATCCAAA
ORF
(SEQ ID NO: 11386)
Rat (Rattus norvegicus) hairless (hr)
mRNA, NM-024364
913
CCAAGATTCTAGAGCGAGCTCCCTT
ORF
(SEQ ID NO: 11387)
2045
GGATTCCTGTGCCACTTCTGAGGAA
ORF
(SEQ ID NO: 11388)
2601
CCACAACTTTCCTGCAATGGAGATT
ORF
(SEQ ID NO: 11389)
2614
GCAATGGAGATTCCAATCGGACCAA
ORF
(SEQ ID NO: 11390)
2729
GCTGCTAGCCTCTACAGCTGTCAAA
ORF
(SEQ ID NO: 11391)
2765
GCATGAGCGGATTCACATGGCCTTT
ORF
(SEQ ID NO: 11392)
2812
CCAGTGATGACCGCATTACCAACAT
ORF
(SEQ ID NO: 11393)
2855
GCAGGTAGTAGAACGGAAGATCCAA
ORF
(SEQ ID NO: 11394)
3520
CCTGGTACCGAGCACAGAAAGATTT
ORF
(SEQ ID NO: 11395)
3838
GCACAATCAGTGTCACTCAGCACTT
ORF
(SEQ ID NO: 11396)
Monkey (Macaca mulatto) hairless mRNA,
complete cds, AF_361864
1152
GCACTCGGAGCAGTTTGAATGTCCA
ORF
(SEQ ID NO: 11397)
1344
GGACACATCGATAGGGAACAAGGAG
ORF
(SEQ ID NO: 11398)
2025
GCACCAGGTCTGGGTCAAGTTTGAT
ORF
(SEQ ID NO: 11399)
2172
CCACAGGACCAAGAGCATCAAAGAG
ORF
(SEQ ID NO: 113400)
2605
CCTGTGTTGGTGTCAGGGATCCAAA
ORF
(SEQ ID NO: 11401)
Pig (Sus scrofa) hairless mRNA,
partical cds, AY279972
490
CAGATATGGGCAGCCTATGGTGTGA
ORF
(SEQ ID NO: 11402)
918
CCTGGTAAGCACAGTGAGCATCACT
ORF
(SEQ ID NO: 11403)
921
GGTAAGCACAGTGAGCATCACTCAG
ORF
(SEQ ID NO: 11404)
926
GCACAGTGAGCATCACTCAGCACTT
ORF
(SEQ ID NO: 11405)
927
CACAGTGAGCATCACTCAGCACTTC
ORF
(SEQ ID NO: 11406)
Sheep (Ovis aries)hairless mRNA,
partial cds, AY130969
366
GGATCCTGAGCATAATGGTGGCCAT
ORF
(SEQ ID NO: 11407)
1140
GCTTACTCGACACTCTGAGCAGTTT
ORF
(SEQ ID NO: 11408)
1798
GGACTGTTCAATACCCACTGGAGAT
ORF
(SEQ ID NO: 11409)
1967
CCCAGTTTGTCTCCAGTCAGCCTTT
ORF
(SEQ ID NO: 11410)
2016
CCAGGTCTGGGTCAAGTTTGACATT
ORF
(SEQ ID NO: 11411)
TABLE 4
Human hairless target/siRNA sequences
human hairless NM_005144
Loop: 475-615
Loop: 651-752
Loop: 951-1137
Loop: 1968-2183
Loop: 2348-2568
Loop: 2769-2806
Loop: 3024-3365
Loop: 3069-3277
Loop: 4577-4698
Loop: 3605-3724
Loop: 4861-5079
Loop: 310-436
Loop: 1953-2248
Loop: 919-1265
Loop: 4286-4465
Loop: 2373-2555
Loop: 4853-5284
Loop: 1916-2288
Loop: 2739-2863
Loop: 4874-5043
Loop: 3047-3318
Loop: 959-1123
Loop: 4477-4534
Loop: 871-1302
Loop: 4325-4459
Loop: 4913-5029
Loop: 940-1166
Loop: 1946-2277
Loop: 4086-4199
Loop: 5093-5247
TABLE 5
Mouse hairless target/siRNA sequences
mouse hairless NM_021877
Loop: 318-523
Loop: 2422-2459
Loop: 1870-1913
Loop: 5010-5089
Loop: 3614-3736
Loop: 20-23
Loop: 1048-1390
Loop: 1122-1304
Loop: 3434-3550
Loop: 3257-3337
Loop: 4272-4504
Loop: 3009-3024
Loop: 4879-4967
Loop: 668-845
Loop: 4050-4222
Loop: 1702-1800
Loop: 3364-3567
Loop: 1015-1029
Loop: 4730-4780
Loop: 1712-1792
Loop: 4540-4566
Loop: 4070-4135
Loop: 1220-1260
Loop: 3579-3701
Loop: 445-459
Loop: 3491-3516
Loop: 205-238
Loop: 1691-1926
Loop: 2320-2337
Loop: 896-951
Loop: 2212-2244
Loop: 5156-5179
Loop: 2850-3948
Loop: 1141-1201
Loop: 2588-2648
Loop: 403-518
Loop: 3370-3407
Loop: 412-510
Loop: 4517-4594
Loop: 659-871
Loop: 1087-1103
Loop: 1600-1624
Loop: 4389-4461
Loop: 3423-3561
Loop: 713-812
Loop: 176-302
Loop: 1073-1336
Loop: 675-837
Loop: 4395-4417
Loop: 1082-1316
Loop: 4152-4215
Loop: 2877-2944
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5160328, | Aug 07 1991 | Conmed Corporation | Hydrogel bandage |
5230896, | Oct 12 1989 | McNeil AB | Transdermal nicotine delivery system |
5254346, | Feb 23 1988 | TOVEY, DAVID CHARLES WILSON | Occlusive body for administering a physiologically active substance |
5260066, | Jan 16 1992 | SRCHEM Incorporated | Cryogel bandage containing therapeutic agent |
5334711, | Jun 20 1991 | Europaisches Laboratorium fur Molekularbiologie (EMBL) | Synthetic catalytic oligonucleotide structures |
5627053, | Mar 29 1994 | Ribozyme Pharmaceuticals, Inc | 2'deoxy-2'-alkylnucleotide containing nucleic acid |
5667798, | Dec 30 1993 | HARROGATE HOLDINGS NEW JERSEY INC | Transdermal drug delivery system |
5672695, | Oct 12 1990 | Max-Planck-Gesellschaft zur Forderung der Wissenschaften e.V. | Modified ribozymes |
5714162, | Sep 16 1994 | LTS Lohmann Therapie-Systeme | Scopolamine patch |
5716824, | Apr 20 1995 | Ribozyme Pharmaceuticals, Inc | 2'-O-alkylthioalkyl and 2-C-alkylthioalkyl-containing enzymatic nucleic acids (ribozymes) |
5804683, | May 14 1992 | Ribozyme Pharmaceuticals, Inc. | Deprotection of RNA with alkylamine |
5831071, | May 14 1992 | Ribozyme Pharmaceuticals, Inc | Synthesis deprotection analysis and purification of RNA and ribozymes |
5854038, | Jan 22 1993 | Regents of the University of Colorado, The | Localization of a therapeutic agent in a cell in vitro |
5914126, | May 20 1997 | AntiCancer, Inc. | Methods to deliver macromolecules to hair follicles |
5998203, | Apr 16 1996 | Ribozyme Pharmaceuticals, Inc | Enzymatic nucleic acids containing 5'-and/or 3'-cap structures |
6001311, | Feb 05 1997 | METRIGEN, INC | Apparatus for diverse chemical synthesis using two-dimensional array |
6008400, | Jun 09 1995 | Regents of the University of Colorado, The | Orthoester reagents for use as protecting groups in oligonucleotide synthesis |
6080127, | Nov 22 1996 | AntiCancer, Inc. | Skin vibration method for topical targeted delivery of beneficial agents into hair follicles |
6087341, | Feb 12 1998 | BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, THE | Introduction of nucleic acid into skin cells by topical application |
6111086, | Feb 27 1998 | DHARMACON, INC | Orthoester protecting groups |
6117657, | Sep 02 1993 | Ribozyme Pharmaceuticals, Inc. | Non-nucleotide containing enzymatic nucleic acid |
6248878, | Dec 24 1996 | Ribozyme Pharmaceuticals, Inc | Nucleoside analogs |
6300074, | Jun 11 1990 | GILEAD SCIENCES, INC | Systematic evolution of ligands by exponential enrichment: Chemi-SELEX |
6348348, | Apr 07 1998 | CARNEGIE INSTITUTION OF WASHINGTON, THE | Human hairless gene and protein |
6353098, | May 14 1992 | Ribozyme Pharmaceuticals, Inc. | Synthesis, deprotection, analysis and purification of RNA and ribozymes |
6362323, | Sep 02 1993 | Ribozyme Pharmaceuticals, Inc. | Non-nucleotide containing nucleic acid |
6437117, | May 14 1992 | Ribozyme Pharmaceuticals, Inc. | Synthesis, deprotection, analysis and purification for RNA and ribozymes |
6469158, | May 14 1992 | Ribozyme Pharmaceuticals, Inc | Synthesis, deprotection, analysis and purification of RNA and ribozymes |
6506559, | Dec 23 1997 | UNIVERSITY OF MASSACHUSETTS, THE | Genetic inhibition by double-stranded RNA |
6989442, | Jul 12 2002 | Sirna Therapeutics, Inc | Deprotection and purification of oligonucleotides and their derivatives |
8329667, | Apr 23 2004 | The Trustees of Columbia University in the City of New York | Inhibition of hairless protein mRNA |
20040086945, | |||
20050054598, | |||
WO1846, | |||
WO44895, | |||
WO44914, | |||
WO63364, | |||
WO66604, | |||
WO104313, | |||
WO129058, | |||
WO136646, | |||
WO138551, | |||
WO142443, | |||
WO149844, | |||
WO153475, | |||
WO168836, | |||
WO170944, | |||
WO170949, | |||
WO172774, | |||
WO175164, | |||
WO192513, | |||
WO2055692, | |||
WO2055693, | |||
WO2083891, | |||
WO238805, | |||
WO244321, | |||
WO3070918, | |||
WO3074654, | |||
WO2005045036, | |||
WO8902439, | |||
WO9101362, | |||
WO9207065, | |||
WO9315187, | |||
WO9323569, | |||
WO9506731, | |||
WO9511910, | |||
WO9726270, | |||
WO9813526, | |||
WO9907409, | |||
WO9914226, | |||
WO9932619, | |||
WO9938965, | |||
WO9949029, | |||
WO9953050, | |||
WO9954459, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 10 2012 | The Trustees of Columbia University in the City of New York | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Sep 24 2018 | REM: Maintenance Fee Reminder Mailed. |
Mar 11 2019 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Feb 03 2018 | 4 years fee payment window open |
Aug 03 2018 | 6 months grace period start (w surcharge) |
Feb 03 2019 | patent expiry (for year 4) |
Feb 03 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 03 2022 | 8 years fee payment window open |
Aug 03 2022 | 6 months grace period start (w surcharge) |
Feb 03 2023 | patent expiry (for year 8) |
Feb 03 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 03 2026 | 12 years fee payment window open |
Aug 03 2026 | 6 months grace period start (w surcharge) |
Feb 03 2027 | patent expiry (for year 12) |
Feb 03 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |