A computer-assisted surgery system may have a robotic arm including a surgical tool and a processor communicatively connected to the robotic arm. The processor may be configured to receive, from a neural monitor, a signal indicative of a distance between the surgical tool and a portion of a patient's anatomy including nervous tissue. The processor may be further configured to generate a command for altering a degree to which the robotic arm resists movement based on the signal received from the neural monitor; and send the command to the robotic arm.
|
1. A computer-implemented method for controlling a surgical system, the method comprising:
receiving, from a neural monitor, a signal indicative of a distance between a surgical tool connected to a robotic arm and a portion of a patient's anatomy including nervous tissue; and
generating a command for altering a degree to which the robotic arm resists movement based on the signal received from the neural monitor, wherein generating the command comprises:
generating a first force value based on virtual haptic geometry associated with the patient's anatomy;
subtracting an applied force being applied to the robotic arm from the first force value to calculate a force error;
determining a neural monitor gain based on the signal received from the neural monitor;
generating a second force value proportional to the force error and the neural monitor gain; and
generating the command based on a combination of the first force value and the second force value.
17. A computer-implemented method for controlling a surgical system, the method comprising:
receiving, at a processor associated with a computer, a signal from a neural monitor indicative of a distance between a surgical tool connected to a robotic arm and a portion of a patient's anatomy including nervous tissue; and
determining, by the processor, a haptic feedback command based on the signal received from the neural monitor, wherein determining a haptic feedback command comprises:
determining a first force value based on virtual haptic geometry associated with the patient's anatomy;
subtracting an applied force being applied to the robotic arm from the first force value to calculate a force error;
determining a neural monitor gain based on the signal received from the neural monitor;
determining a second force value proportional to the force error and the neural monitor gain; and
determining the haptic feedback command based on a combination of the first force value and the second force value.
10. A computer-assisted surgery system comprising:
a robotic arm including a surgical tool; and
a processor communicatively connected to the robotic arm and configured to:
receive, from a neural monitor, a signal indicative of a distance between the surgical tool and a portion of a patient's anatomy including nervous tissue; and
generate a command for altering a degree to which the robotic arm resists movement based on the signal received from the neural monitor, wherein generating the command comprises:
generating a first force value based on virtual haptic geometry associated with the patient's anatomy;
subtracting an applied force being applied to the robotic arm from the first force value to calculate a force error;
determining a neural monitor gain based on the signal received from the neural monitor;
generating a second force value proportional to the force error and the neural monitor gain; and
generating the command based on a combination of the first force value and the second force value; and
send the command to the robotic arm.
2. The computer-implemented method of
generating a first torque value based on virtual haptic geometry associated with the patient's anatomy;
generating a second torque value based on the signal received from the neural monitor; and generating the command by combining the first torque value and the second torque value.
3. The computer-implemented method of
receiving a joint angular velocity of one or more joints of the robotic arm;
determining a second neural monitor gain based on the signal received from the neural monitor; and
generating the second torque value proportional to the second neural monitor gain and the joint angular velocity of the one or more joints of the robotic arm.
4. The computer-implemented method of
5. The computer-implemented method of
receiving an applied force signal indicative of an applied force being applied to the robotic arm;
generating a force feedback signal based on the applied force signal and the signal received from the neural monitor; and
generating the command based on the force feedback signal.
6. The computer-implemented method of
dynamically altering a haptic object impedance value based on the signal received from the neural monitor, the dynamically altered haptic object impedance value corresponding to virtual haptic geometry associated with the patient's anatomy; and
generating the command based on the dynamically altered haptic object impedance value.
7. The computer-implemented method of
dynamically altering a haptic object admittance value based on the signal received from the neural monitor, the dynamically altered haptic object admittance value corresponding to virtual haptic geometry associated with the patient's anatomy; and
generating the command based on the dynamically altered haptic object admittance value.
8. The computer-implemented method of
providing an electrical potential to the surgical tool;
measuring an electromyographic signal at another portion of the patient's anatomy innervated by the portion of the patient's anatomy including nervous tissue; and
generating the signal indicative of the distance between the surgical tool and the portion of the patient's anatomy including nervous tissue based on the electromyographic signal.
9. The computer-implemented method of
11. The computer-assisted surgery system of
provide an electrical potential to the surgical tool;
measure an electromyographic signal at another portion of the patient's anatomy innervated by the portion of the patient's anatomy including nervous tissue; and
generate the signal indicative of the distance between the surgical tool and the portion of the patient's anatomy including nervous tissue based on the electromyographic signal.
12. The computer-assisted surgery system of
generate a first torque value based on virtual haptic geometry associated with the patient's anatomy;
generate a second torque value based on the signal received from the neural monitor; and
generate the command by combining the first torque value and the second torque value.
13. The computer-assisted surgery system of
receive a joint angular velocity of one or more joints of the robotic arm;
determine a second neural monitor gain based on the signal received from the neural monitor; and generate the second torque value proportional to the second neural monitor gain and the joint angular velocity of the one or more joints of the robotic arm.
14. The computer-assisted surgery system of
receive an applied force signal indicative of an applied force being applied to the robotic arm;
generate a force feedback signal based on the applied force signal and the signal received from the neural monitor; and
generate the command based on the force feedback signal.
15. The computer-assisted surgery system of
dynamically alter a haptic object impedance value based on the signal received from the neural monitor, the dynamically altered haptic object impedance value corresponding to virtual haptic geometry associated with the patient's anatomy; and
generate the command based on the dynamically altered haptic object impedance value.
16. The computer-assisted surgery system of
dynamically alter a haptic object admittance value based on the signal received from the neural monitor, the dynamically altered haptic object admittance value corresponding to virtual haptic geometry associated with the patient's anatomy; and
generate the command based on the dynamically altered haptic object admittance value.
18. The computer-implemented method of
19. The computer-implemented method of
20. The computer-implemented method of
21. The computer-implemented method of
|
The present disclosure relates generally to surgical systems and, more particularly, to dynamically altering the haptic response of a surgical system based on output from a neural monitor.
Many surgical procedures depend on accurate drilling or resection of portions of a patient's bone. For example, in various spinal surgeries, a surgeon may be required to drill one or more holes in a patient's spine. However, if the surgeon drills a hole improperly, e.g., too deeply, at an incorrect trajectory or angle, etc., the surgeon may cause irreparable damage to the patient. For instance, a surgeon may be required to drill one or more pilot holes for pedicle screws to be inserted in the patient's spine. If the surgeon drills the pilot holes incorrectly, the surgeon may cause damage to the spinal cord, thereby injuring the patient.
In some surgeries, a surgeon may use a computer-assisted surgery system when drilling or resecting portions of the patient's bone. Moreover, the computer-assisted surgery system may include a haptic feedback system to constrain or inhibit the surgeon from manually moving the surgical tool beyond predefined virtual boundaries defined by haptic objects. The virtual boundaries may be established to prevent the surgeon from undesired interactions with a patient's anatomy. For example, the haptic boundaries may help to prevent the surgeon from improperly drilling or resecting the patient's bone.
However, a variety of factors such as inaccurately or improperly defined haptic boundaries, improper registration of the patient's bone to the computer-assisted surgery system, etc., may affect the accuracy of the computer-assisted surgery system. In some surgeries, such as various spinal surgeries, inaccuracies may lead to undesired interaction with the spinal cord or other nerves and injure the patient. Moreover, in some instances, such interaction may have disastrous consequences, such as full or partial paralysis, nerve damage, etc.
Patient monitoring systems are known that may be used to monitor electromyographic (EMG) activity of a patient to determine the proximity of a cutting tool or other instrument to a patient's nerve. For example, an electrical potential may be applied to the cutting tool, and EMG signals may be read from sensors placed in muscles or other tissue innervated by the nerves of concern. By comparing the electrical signal applied to the cutting tool with the signals from the sensors, the patient monitoring system may determine the distance between the cutting tool and a nerve. Moreover, certain systems may disable power to the cutting tool based on the determined distance.
However, enabling and disabling power to a cutting tool may adversely affect the quality and accuracy of the resection or drilling being performed, especially if the cutting tool continuously toggles between an enabled and disabled state. Moreover, it may be difficult to determine an acceptable threshold distance for disabling power to the cutting tool.
The presently disclosed systems and methods for neural monitor-based dynamic haptics are directed to overcoming one or more of the problems set forth above and/or other problems in the art.
According to one aspect, the present disclosure is directed to a computer-implemented method for controlling a surgical system. The method may include receiving, from a neural monitor, a signal indicative of a distance between a surgical tool connected to a robotic arm and a portion of a patient's anatomy including nervous tissue. A command may be generated for altering a degree to which the robotic arm resists movement based on the signal received from the neural monitor.
According to another aspect, the present disclosure is directed to a computer-assisted surgery system. The system may include a robotic arm, including a surgical tool, and a processor. The processor may be communicatively connected to the robotic arm and configured to receive, from a neural monitor, a signal indicative of a distance between the surgical tool and a portion of a patient's anatomy including nervous tissue. The processor may be further configured to generate a command for altering a degree to which the robotic arm resists movement based on the signal received from the neural monitor; and send the command to the robotic arm.
According to yet another aspect, the present disclosure is directed to a computer-implemented method for controlling a surgical system. The method may include receiving, at a processor associated with a computer, a signal from a neural monitor indicative of a distance between a surgical tool connected to a robotic arm and a portion of a patient's anatomy including nervous tissue. The method may also include determining, by the processor, a haptic feedback command based on the signal received from the neural monitor.
Reference will now be made in detail to exemplary embodiments of the present disclosure, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or similar parts.
As shown in
Exemplary embodiments of the present disclosure, discussed in greater detail below, may reduce the risk of injury to spinal cord 103, e.g., by detecting one or more electromyographic (EMG) signals to measure a distance between the cutting tool used to drill pilot holes 120a and 120b and dynamically altering a degree to which a robotic arm connected to the cutting tool resists movement based on the measured distance. This way, if a surgeon operates a cutting tool in dangerous proximity to spinal cord 103, the surgeon may experience haptic feedback from the robotic arm, preventing the surgeon from moving the cutting tool closer to spinal cord 103.
Moreover, as discussed above,
Robotic arm 204 can be used in an interactive manner by a surgeon to perform a surgical procedure, such as a spinal surgery, on a patient. As shown in
The force system and controller are configured to provide control or guidance to the surgeon during manipulation of the surgical tool. The force system is configured to provide at least some force to the surgical tool via articulated arm 206, and the controller is programmed to generate control signals for controlling the force system. In one embodiment, the force system includes actuators and a backdriveable transmission that provide haptic (or force) feedback to constrain or inhibit the surgeon from manually moving the surgical tool beyond predefined virtual boundaries defined by haptic objects as described, for example, in U.S. Pat. No. 8,010,180 and/or U.S. patent application Ser. No. 12/654,519 (U.S. Patent Application Pub. No. 2010/0170362), filed Dec. 22, 2009, each of which is hereby incorporated by reference herein in its entirety. According to one embodiment, CAS system 200 is the RIO® Robotic Arm Interactive Orthopedic System manufactured by MAKO Surgical Corp. of Fort Lauderdale, Fla. The force system and controller may be housed within robotic arm 204. Moreover, in certain embodiments, all or part of the force system may be housed within another component of CAS system 200, such as computer-assisted navigation system 202, for example.
Tracking system 201 may include any suitable device or system configured to track the relative locations, positions, orientations, and/or poses of the surgical tool 210 (coupled to robotic arm 204) and/or positions of registered portions of a patient's anatomy, such as bones. Such devices may employ optical, mechanical, or electromagnetic pose tracking technologies. According to one embodiment, tracking system 201 may comprise a vision-based pose tracking technology, wherein an optical detector, such as a camera or infrared sensor, is configured to determine the position of one or more optical transponders (not shown). Based on the position of the optical transponders, tracking system 201 may capture the pose (i.e., the position and orientation) information of a portion of the patient's anatomy that is registered to that transponder or set of transponders.
Navigation system 202 may be communicatively coupled to tracking system 201 and may be configured to receive tracking data from tracking system 201. Based on the received tracking data, navigation system 202 may determine the position and orientation associated with one or more registered features of the surgical environment, such as surgical tool 210 or portions of the patient's anatomy. Navigation system 202 may also include surgical planning and surgical assistance software that may be used by a surgeon or surgical support staff during the surgical procedure. For example, during the surgical procedure, navigation system 202 may display images related to the surgical procedure on one or both of the display devices 203a, 203b.
One or more constituent components of CAS system 200, such as navigation system 202 and/or robotic arm 204, may include or embody a processor-based system (such as a general or special-purpose computer) in which processes and methods consistent with the disclosed embodiments may be implemented. For example, as illustrated in
Processor 231 may include one or more microprocessors, each configured to execute instructions and process data to perform one or more functions associated with CAS system 200. As illustrated in
Computer-readable media, such as RAM 232, ROM 233, and storage device 234, may be configured to store computer-readable instructions that, when executed by processor 231, may cause CAS system 200 or one or more constituent components, such as navigation system 202 and/or robotic arm 204, to perform functions or tasks associated with CAS system 200. For example, computer readable media may include instructions for causing the CAS system 200 to perform one or more methods for dynamically altering a degree to which robotic arm 204 (e.g., articulated arm 206) resists movement based on a distance between surgical tool 210 and a portion of the patient's anatomy, such as spinal cord 103, that may be measured by a neural monitor, for example. In certain embodiments, the instructions may cause CAS system 200 to alter the degree to which robotic arm 204 resists movement by generating a damping torque based on the distance measured by the neural monitor. In other embodiments, the instructions may cause CAS system 200 to alter the degree to which robotic arm 204 resists movement by modifying an amount of force feedback being applied to robotic arm 204 based on the measured distance. In still other embodiments, the instructions may cause CAS system 200 to alter the degree to which robotic arm 204 resists movement by directly modifying a haptic object impedance value or haptic object admittance value based on the measured distance.
Computer-readable media may also contain instructions that cause tracking system 201 to capture positions of a plurality of anatomical landmarks associated with certain registered objects, such as surgical tool 210 or portions of a patient's anatomy, and cause navigation system 202 to generate virtual representations of the registered objects for display on I/O devices 236. Exemplary methods for which computer-readable media may contain instructions will be described in greater detail below. It is contemplated that each portion of a method described herein may have corresponding instructions stored in computer-readable media for causing one or more components of CAS system 200 to perform the method described.
I/O devices 236 may include one or more components configured to communicate information with a user associated with CAS system 200. For example, I/O devices 236 may include a console with an integrated keyboard and mouse to allow a user (e.g., a surgeon) to input parameters (e.g., surgeon commands 250) associated with CAS system 200. I/O devices 236 may also include a display, such as monitors 203a, 203b, including a graphical user interface (GUI) for outputting information on a monitor. I/O devices 236 may also include peripheral devices such as, for example, a printer for printing information associated with CAS system 236, a user-accessible disk drive (e.g., a USB port, a floppy, CD-ROM, or DVD-ROM drive, etc.) to allow a user to input data stored on a portable media device, a microphone, a speaker system, or any other suitable type of interface device. For example, I/O devices 236 may include an electronic interface that allows a user to input patient computed tomography (CT) data 260 into CAS system 200. This CT data may then be used to generate and manipulate virtual representations of portions of the patient's anatomy (e.g., bones) in software.
I/O devices 236 may also include one or more components configured to receive information about CAS system 200 and/or information related to a patient undergoing surgery. For example, I/O devices 236 may include one or more force sensors 270. Force sensors 270 may be configured to detect a force being applied to surgical tool 210 and/or articulated arm 206 of robotic arm 204 by the surgeon. Moreover, other sensors (not shown) may also be included that measure, e.g., a position, velocity, and/or acceleration of surgical tool 210 and/or articulated arm 206 and send this information to processor 231. Moreover, I/O devices 236 may include a neural monitor 280 which, as discussed in greater detail below, may generate and send a signal indicative of a distance between surgical tool 210 and a portion of a patient's anatomy including nervous tissue, such as spinal cord 103, for example.
Processor 231 may be configured to establish virtual haptic geometry associated with or relative to one or more features of a patient's anatomy. As explained, CAS system 200 may be configured to create a virtual representation of a surgical site that includes, for example, virtual representations of a patient's anatomy, a surgical instrument to be used during a surgical procedure, a probe tool for registering other objects within the surgical site, and any other such object associated with a surgical site. During surgery, processor 231 may send haptic feedback commands to robotic arm 204 based on the virtual haptic geometry. For example, processor 231 may determine a distance between surgical tool 210 and one or more virtual representations, and may generate haptic feedback commands based on the distance.
Processor 231 may also generate haptic feedback commands based on a measured distance between surgical tool 210 and a portion of a patient's anatomy, such as spinal cord 103. The distance may be measured, e.g., by neural monitor 280. In certain embodiments, the haptic feedback commands generated based on the distance measured by neural monitor 280 may be combined with the haptic feedback commands generated based on the distance from the virtual representations of the patient's anatomy, such that the haptic feedback command provided to robotic arm 204 is a combination of the two haptic feedback commands.
As the surgeon operates surgical tool 210, e.g., to drill pilot hole 120b, the electrical signal applied to distal end 211 may be used by neural monitor 280 to determine a distance, Δxn, between distal end 211 and spinal cord 103. For example, in addition to generating the electrical signal, neural monitor 280 may also include one or more sensors or probes located at or around spinal cord 103 and/or in or around muscles innervated by spinal cord 103. Neural monitor 280 may also include a reference sensor or probe in a location separated from spinal cord 103, e.g., on the patient's forehead. Neural monitor 280 may monitor the incoming signals received at these sensors or probes, and may compare the incoming signals to the electrical signal being applied to distal end 211. Based on this comparison, neural monitor 280 may determine a distance between distal end 211 (e.g., the cutting tip of surgical tool 210) and spinal cord 103. While spinal cord 103 is used in the embodiment discussed above, those skilled in the art will appreciate that a distance to any nerve or group of nerves may be determined by neural monitor 280 using similar techniques.
Neural monitor 280 may send signals to CAS system 200 that are indicative of the determined distance between distal end 211 (e.g., the cutting tip of surgical tool 210) and spinal cord 103. CAS system 200 may then dynamically vary the degree to which robotic arm 204 resists movement based on these signals. For example, processor 231 may receive the signals indicating the distance between distal end 211 and spinal cord 103, and, based on these signals, may generate and send one or more commands to robotic arm 204 such that a user operating articulating arm 206 or surgical tool 210 of robotic arm 204 experiences haptic feedback based on the distance between distal end 211 and spinal cord 103, as determined by neural monitor 280. In certain embodiments, the user may experience haptic feedback such that robotic arm 204 becomes more difficult to move as distal end 211 moves closer to spinal cord 103.
For example, in
Processor 231 may calculate a difference Δxd between the desired position and the actual position of surgical tool 210 (block 510). Processor 231 may then calculate a haptic object force fd based on difference Δxd (block 520). For example, processor 231 may calculate fd by multiplying difference Δxd by a haptic object impedance value Zd. In certain embodiments, haptic object impedance value Zd may be a fixed value for the haptic object to which it corresponds, e.g., haptic object impedance value Zd may be 3,000 N/m for a particular haptic object. In other embodiments, discussed in greater detail below, haptic object impedance value Zd may be variable.
In certain embodiments, haptic object impedance value Zd may include an inertia component M, a damping component B, and a stiffness component K. In this embodiment, processor 231 may also determine a first derivative and/or a second derivative of the difference values Δxd, and may calculate haptic object force fd based on the impedance components M, B, and/or K as well as Δxd and its first and/or second derivatives. For example, processor 231 may determine fd in accordance with the following equation:
fd=M(Δ{umlaut over (x)}d)+B(Δ{dot over (x)}d)+K(Δxd), (1)
where M, B, and K are each constant values. In one embodiment, M may be equal to zero, such that fd is determined based on a damping component B and a stiffness component K. Of course, in other embodiments, any combination of M, B, and K may be zero, such that fd is determined based on the remaining non-zero components.
After calculating haptic object force fd, processor 231 may calculate a haptic object torque τd to be applied to robotic arm 204, e.g. by one or more actuators at corresponding joints of robotic arm 204 (block 530). Thus, at block 530, processor 231 may utilize the Jacobian transpose to determine a haptic object torque τd that will generate a force at articulated arm 206 equal to haptic object force fa.
In certain embodiments, neural monitor torque τn may embody a virtual damping torque. For example, processor 231 may calculate neural monitor torque τn at block 560 as τn=−KN*qp, where qp represents the joint angular velocity of one or more joints of robotic arm 204 and KN represents the neural monitor gain. Joint angular velocity qp may be measured, e.g., by one or more sensors at robotic arm 204. Neural monitor gain KN may be variable based on the distance between surgical tool 210 and a portion of the patient's anatomy, such as spinal cord 103, as measured by neural monitor 280, for example. In one embodiment, KN may be represented as a piecewise function such as:
where KD is a maximum damping gain, xs is a predetermined minimum safe distance, and Δxn is the distance between distal end 211 of surgical tool 210 and spinal cord 103 measured by neural monitor 280. KD may be a predetermined constant value that may be selected to optimize the performance of CAS system 200. Safe distance xs may be determined based on, e.g., input from the surgeon. In certain embodiments, safe distance xs may be determined based on the accuracy of neural monitor 280. For example, if neural monitor 280 is capable of accurately determining a distance between distal end 211 and spinal cord 103 within y millimeters, then xs may be determined to be a value equal to (3*y) millimeters.
In another embodiment, KN may be defined in accordance with the following equation:
In equation (3), a threshold xf is defined such that KN is equal to the maximum damping gain KD when the distance Δxn less than xf. Thus, in equation (3), the maximum damping gain may be applied when distal end 211 is less than a predetermined distance xf away from spinal cord 103, resulting in an increased impedance at distances where Δxn is still greater than 0. Threshold xf may likewise be determined based on, e.g., input from the surgeon or other user and/or based on the accuracy of neural monitor 280.
Equations (2) and (3) are merely exemplary equations for determining the value of KN. In fact, KN may be expressed by any other equation such that KN increases as Δxn decreases over a particular range. For example, any number of linear and/or nonlinear functions may be used to represent an increase in impedance proportional to a decrease in distance between distal end 211 of surgical tool 210 and spinal cord 103. Moreover, while the embodiment discussed above calculates a virtual damping torque, those skilled in the art will appreciate that any combination of stiffness, inertia, and/or damping forces and torques may be introduced to CAS system 200 based on the distance between surgical tool 210 and spinal cord 103, as measured by neural monitor 280.
In exemplary embodiments of
For example, in
Moreover, in one embodiment, haptic object impedance value Zd may include several components, such as an inertia component M, a damping component B, and a stiffness component K. In this embodiment, processor 231 may also determine a first derivative and/or a second derivative of the difference values Δxd, and may calculate haptic object force fd based on the impedance components M, B, and/or K as well as Δxd and its first and/or second derivatives. For example, processor 231 may determine fd in accordance with equation (1), discussed above. In one embodiment, M may be equal to zero, such that fd is determined based on a damping component B and a stiffness component K.
Processor 231 may determine a difference between haptic object force fd and applied force fa to determine a force error value ef (block 630). Applied force fa may represent an amount of force being applied to robotic arm 204 by a user (e.g., a surgeon). For example, as discussed above with regard to
Processor 231 may then generate a modified force feedback value fn such that fn=ef*KN, where KN represents the neural monitor gain (block 640). Neural monitor gain KN may be variable based on the distance between surgical tool 210 and a portion of the patient's anatomy, such as spinal cord 103, as measured by neural monitor 280, for example. For example, in one embodiment, KN may be represented as a piecewise function such as:
where KF is a maximum force feedback gain, xs is a predetermined minimum safe distance, and Δxn is the distance between distal end 211 of surgical tool 210 and spinal cord 103. KF may be a predetermined constant value that may be selected to optimize the performance of CAS system 200. Safe distance xs may be determined based on, e.g., input from the surgeon. In certain embodiments, xs may be determined based on the accuracy of neural monitor 280. For example, if neural monitor 280 can accurately determine a distance between distal end 211 and spinal cord 103 within y millimeters, then xs may be determined to be a value equal to (3*y) millimeters.
Equation (3) is an exemplary equation for determining the value of KN. In fact, KN may be expressed by any other equation such that KN decreases as Δxn decreases over a particular range for embodiments associated with
Moreover, any number of linear and/or nonlinear functions may represent KN so as to generate an increased impedance proportional to a decrease in distance spinal cord 103. Moreover, in another embodiment, equation (4) may be modified to include a threshold xf defined such that the force feedback gain is zero when the distance between distal end 211 and spinal cord 103 is within the threshold distance xf. For example, KN may be represented as:
Still further, equation (5) may be modified to be a non-linear function of the distance between distal end 211 and spinal cord 103 such that:
where b is a scalar coefficient greater than 1. Those skilled in the art will appreciate that other equations may be used to represent KN, consistent with the spirit and scope of the disclosed embodiments.
After calculating the modified force feedback value fn as described above, processor 231 may generate a combined force value fc by adding a feedforward value of fd and the modified force feedback value fn (block 650). Processor 231 may then utilize the Jacobian transpose to determine a haptic feedback command τc with a torque value corresponding to the combined force value fc (block 660).
Processor 231 may provide haptic feedback command τc to the force system of robotic arm 204 (block 670). For example, block 670 in
For example, in
where Bmax is a maximum damping component value, xs is a predetermined minimum safe distance, xf is a threshold value, and Δxn is the distance between distal end 211 of surgical tool 210 and spinal cord 103. Bmax may be a predetermined constant value that may be selected to optimize the performance of CAS system 200. Safe distance xs and threshold xf may be determined based on, e.g., input from the surgeon or other user or based on the accuracy of neural monitor 280. While equation (7) defines B as having a value of 0 for Δxe>xs, B may also be defined to be some non-zero value Bmin for this range. For example, Bmin may represent a minimum damping present in robotic arm 204 and may be selected in a manner that optimizes the performance of CAS system 200. Moreover, equation (7) is merely an exemplary equation for representing B, and those skilled in the art will appreciate that B may be represented by other equations, such as a non-linear piecewise equation or any other linear or non-linear equations consistent with disclosed embodiments. Also, while stiffness component B is used in the example above, inertia component M and stiffness component K may also be represented by equations similar to those described above with respect to damping component B. By varying one or more of M, B, or K as a function of Δxn, processor 231 may calculate a variable haptic object impedance value Zd such that Zd also varies based on Δxn, the distance between surgical tool 210 and a portion of the patient's anatomy, such as spinal cord 103, as measured by neural monitor 280.
After calculating force fd, processor 231 may calculate a torque to be applied to robotic arm 204 as haptic feedback command τc (block 730). Thus, at block 730, processor 231 may utilize the Jacobian transpose to determine a torque τc with a value corresponding to the desired force value fd.
Processor 231 may then provide haptic feedback command τc to the force system of robotic arm 204 to control one or more actuators at corresponding joints of robotic arm 204 (block 740). For example, block 740 of
For example, in
Processor 231 may determine a desired position xd of surgical tool 210 based on the determined force error value ef (block 820). Desired position xd may include a point or set of points in three-dimensional space that represent the desired position of surgical tool 210. Processor 231 may determine desired position xd based on a haptic object admittance Zd−1. Haptic object admittance value Zd−1 may be defined such that xd may be determined in accordance with the following equation:
ef=M({umlaut over (x)}d)+B({dot over (x)}d)+K(xd). (8)
where M, B, and K are inertia, damping, and stiffness components, respectively. In embodiments associated with
Processor 231 may use desired position xd to determine one or more desired joint angular positions qd for the corresponding one or more joints of robotic arm 204 (block 830). For example, processor 231 may use one or more coordinate transform functions and/or inverse kinematics functions, f(xd), to translate the desired position xd in three-dimensional space to one or more joint angular positions qd, e.g., in angular space, that result in surgical tool 210 being positioned in desired position xd.
Processor 231 may send commands to one or more actuators in robotic arm 204 such that the actual joint angular positions q of robotic arm 204 (e.g., of articulated arm 206) equal their corresponding desired joint angular positions qd. Processor 231 may generate these commands using a feedback control loop such as inner position loop 840. For example, processor 231 may compare desired joint angular positions qd to actual joint angular positions q to determine a joint angular position error e=qd−q (block 841). Actual joint angular positions q may be measured by one or more sensors at robotic arm 204.
Processor 231 may determine a torque value for a haptic feedback command τc using, e.g., a proportional plus derivative controller (block 842). Processor 231 may then provide haptic feedback command τc to the force system of robotic arm 204 to control one or more actuators at corresponding joints of robotic arm 204 (block 843). For example, block 843 of
CAS system 200 may also determine a distance between distal end 211 and spinal cord 103 based on an EMG signal received from an innervated portion of the patient's anatomy (step 920). For example, the stimulating potential applied in step 910 may cause nerves in spinal cord 103 to innervate one or more muscles or other groups of tissue near or around spinal cord 103. One or more sensors associated with neural monitor 280 may detect EMG signals generated by the muscles or other tissue innervated by spinal cord 103. Based on an intensity of the EMG signal received, neural monitor 280 may determine a distance between distal end 211 and spinal cord 103.
Based on the determined distance, CAS system 200 may generate haptic feedback commands used to control robotic arm 204 (step 930). That is, CAS system 200 may dynamically alter the haptic feedback commands being sent to robotic arm 204 based on a determined distance between distal end 211 and spinal cord 103. For example, CAS system 200 may dynamically vary the degree to which robotic arm 204 resists movement based on the signals received from neural monitor 280, e.g., according to one or more of the embodiments discussed above with regard to
Once the command is generated, CAS system 200 may send the command to robotic arm 204 (step 940). For example, CAS system 200 may send the command via an I/O device to the force system or the control system of robotic arm 204. Robotic arm 204 may then send corresponding commands to one or more actuators in robotic arm 204 to control movement and/or forces within robotic arm 204 based on the received haptic feedback command.
CAS system 200 may also receive state information from robotic arm 204 (step 950). For example, as discussed above, robotic arm 204 may include one or more sensors, such as applied force sensors, joint angular position sensors, joint angular velocity sensors, or any other sensors, to determine a state of robotic arm 204. Signals from one or more of these sensors may be fed back to CAS system 200. For example, in embodiments discussed above with respect to
CAS system 200 may continuously repeat steps 910-950 such that CAS system 200 continuously monitors a distance between distal end 211 of surgical tool 210 and spinal cord 103, and dynamically generates and sends haptic feedback commands to robotic arm 204 based on the determined distance.
The presently disclosed systems and methods provide a solution that enables a computer-assisted surgical system to dynamically alter a degree to which a robotic arm of the system resists movement based on a distance between a surgical tool of the robotic arm and a portion of the patient's anatomy, such as a spinal cord, detected by a neural monitor. By dynamically altering the degree to which the robotic arm resists movement, systems and method consistent with disclosed embodiments may provide haptic feedback to a surgeon operating the robotic arm based on a measured proximity to the spinal cord or other nerves. As a result, the disclosed systems and methods may prevent a surgeon from unwanted interaction with or damage to the patient's spinal cord or other nerves.
Moreover, as discussed above, systems and methods consistent with the disclosed embodiments may dynamically alter a degree to which the robotic arm resists movement in several different ways. For example, exemplary systems and methods may alter the degree to which a robotic arm resists movement by generating a damping torque based on the distance measured by the neural monitor. Further, such systems and methods may alter the degree to which a robotic arm resists movement by modifying an amount of force feedback being applied to the robotic arm based on the measured distance. Still further, such systems and methods may alter the degree to which a robotic arm resists movement by directly modifying a haptic object impedance or haptic object admittance value based on the measured distance.
It will be apparent to those skilled in the art that various modifications and variations can be made to the disclosed systems and associated methods for neural monitor-based dynamic haptics. Other embodiments of the present disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the present disclosure. It is intended that the specification and examples be considered as exemplary only, with a true scope of the present disclosure being indicated by the following claims and their equivalents.
Kang, Hyosig, Lightcap, Chris Alan
Patent | Priority | Assignee | Title |
10159534, | Nov 30 2011 | MedTech S.A. | Robotic-assisted device for positioning a surgical instrument relative to the body of a patient |
10292778, | Apr 24 2014 | Globus Medical, Inc. | Surgical instrument holder for use with a robotic surgical system |
10350013, | Jun 21 2012 | Globus Medical, Inc | Surgical tool systems and methods |
10357184, | Jun 21 2012 | Globus Medical, Inc | Surgical tool systems and method |
10357257, | Jul 14 2014 | KB Medical SA | Anti-skid surgical instrument for use in preparing holes in bone tissue |
10420616, | Jan 18 2017 | Globus Medical, Inc. | Robotic navigation of robotic surgical systems |
10448910, | Feb 03 2016 | Globus Medical, Inc.; Globus Medical, Inc | Portable medical imaging system |
10485617, | Jun 21 2012 | Globus Medical, Inc. | Surgical robot platform |
10531927, | Jun 21 2012 | Globus Medical, Inc. | Methods for performing invasive medical procedures using a surgical robot |
10546423, | Feb 03 2015 | Globus Medical, Inc. | Surgeon head-mounted display apparatuses |
10548620, | Jan 15 2014 | Globus Medical, Inc. | Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery |
10555782, | Feb 18 2015 | Globus Medical, Inc. | Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique |
10569794, | Oct 13 2015 | Globus Medical, Inc. | Stabilizer wheel assembly and methods of use |
10573023, | Apr 09 2018 | Globus Medical, Inc | Predictive visualization of medical imaging scanner component movement |
10580217, | Feb 03 2015 | Globus Medical, Inc. | Surgeon head-mounted display apparatuses |
10624710, | Jun 21 2012 | Globus Medical, Inc. | System and method for measuring depth of instrumentation |
10639112, | Jun 21 2012 | Globus Medical, Inc. | Infrared signal based position recognition system for use with a robot-assisted surgery |
10646280, | Jun 21 2012 | Globus Medical, Inc.; Globus Medical, Inc | System and method for surgical tool insertion using multiaxis force and moment feedback |
10646283, | Feb 19 2018 | Globus Medical, Inc | Augmented reality navigation systems for use with robotic surgical systems and methods of their use |
10646298, | Jul 31 2015 | Globus Medical, Inc | Robot arm and methods of use |
10650594, | Feb 03 2015 | Globus Medical Inc. | Surgeon head-mounted display apparatuses |
10653497, | Apr 11 2016 | Globus Medical, Inc | Surgical tool systems and methods |
10660712, | Apr 01 2011 | Globus Medical Inc. | Robotic system and method for spinal and other surgeries |
10667876, | Nov 30 2011 | MedTech S.A. | Robotic-assisted device for positioning a surgical instrument relative to the body of a patient |
10675094, | Jul 21 2017 | Globus Medical Inc.; Globus Medical, Inc | Robot surgical platform |
10687779, | Feb 03 2016 | Globus Medical, Inc | Portable medical imaging system with beam scanning collimator |
10687905, | Aug 31 2015 | KB Medical SA | Robotic surgical systems and methods |
10758315, | Jun 21 2012 | Globus Medical Inc.; Globus Medical, Inc | Method and system for improving 2D-3D registration convergence |
10765438, | Jul 14 2014 | KB Medical SA | Anti-skid surgical instrument for use in preparing holes in bone tissue |
10786313, | Aug 12 2015 | Globus Medical, Inc. | Devices and methods for temporary mounting of parts to bone |
10799298, | Jun 21 2012 | Globus Medical, Inc | Robotic fluoroscopic navigation |
10806471, | Jan 18 2017 | Globus Medical, Inc. | Universal instrument guide for robotic surgical systems, surgical instrument systems, and methods of their use |
10813704, | Oct 04 2013 | KB Medical, SA | Apparatus and systems for precise guidance of surgical tools |
10828116, | Apr 24 2014 | KB Medical, SA | Surgical instrument holder for use with a robotic surgical system |
10828120, | Jun 19 2014 | KB Medical SA | Systems and methods for performing minimally invasive surgery |
10835326, | Jun 21 2012 | Globus Medical Inc. | Surgical robot platform |
10835328, | Jun 21 2012 | Globus Medical, Inc. | Surgical robot platform |
10842453, | Feb 03 2016 | Globus Medical, Inc. | Portable medical imaging system |
10842461, | Jun 21 2012 | Globus Medical, Inc | Systems and methods of checking registrations for surgical systems |
10849580, | Feb 03 2016 | Globus Medical Inc. | Portable medical imaging system |
10864057, | Jan 18 2017 | KB Medical, SA | Universal instrument guide for robotic surgical systems, surgical instrument systems, and methods of their use |
10866119, | Mar 14 2016 | Globus Medical, Inc.; Globus Medical, Inc | Metal detector for detecting insertion of a surgical device into a hollow tube |
10874466, | Jun 21 2012 | Globus Medical, Inc. | System and method for surgical tool insertion using multiaxis force and moment feedback |
10893912, | Feb 16 2006 | Globus Medical, Inc | Surgical tool systems and methods |
10898252, | Nov 09 2017 | Globus Medical, Inc | Surgical robotic systems for bending surgical rods, and related methods and devices |
10912617, | Jun 21 2012 | Globus Medical, Inc. | Surgical robot platform |
10925681, | Jul 31 2015 | Globus Medical Inc. | Robot arm and methods of use |
10939968, | Feb 11 2014 | Globus Medical Inc. | Sterile handle for controlling a robotic surgical system from a sterile field |
10945742, | Jul 14 2014 | Globus Medical Inc. | Anti-skid surgical instrument for use in preparing holes in bone tissue |
10973594, | Sep 14 2015 | Globus Medical, Inc. | Surgical robotic systems and methods thereof |
11026756, | Jun 21 2012 | Globus Medical, Inc. | Surgical robot platform |
11039893, | Oct 21 2016 | Globus Medical, Inc. | Robotic surgical systems |
11045179, | May 20 2019 | Globus Medical, Inc | Robot-mounted retractor system |
11045267, | Jun 21 2012 | Globus Medical, Inc | Surgical robotic automation with tracking markers |
11058378, | Feb 03 2016 | Globus Medical, Inc. | Portable medical imaging system |
11062522, | Feb 03 2015 | Global Medical Inc | Surgeon head-mounted display apparatuses |
11066090, | Oct 13 2015 | Globus Medical, Inc | Stabilizer wheel assembly and methods of use |
11071594, | Mar 16 2017 | KB Medical SA | Robotic navigation of robotic surgical systems |
11100668, | Apr 09 2018 | Globus Medical, Inc. | Predictive visualization of medical imaging scanner component movement |
11103316, | Dec 02 2014 | KB Medical SA | Robot assisted volume removal during surgery |
11103317, | Jun 21 2012 | Globus Medical, Inc. | Surgical robot platform |
11109922, | Jun 21 2012 | Globus Medical, Inc. | Surgical tool systems and method |
11116576, | Mar 15 2013 | Globus Medical, Inc | Dynamic reference arrays and methods of use |
11134862, | Nov 10 2017 | Globus Medical, Inc | Methods of selecting surgical implants and related devices |
11135015, | Jul 21 2017 | Globus Medical, Inc.; Globus Medical, Inc | Robot surgical platform |
11135022, | Jun 21 2012 | Globus Medical, Inc. | Surgical robot platform |
11153555, | May 08 2020 | Globus Medical, Inc | Extended reality headset camera system for computer assisted navigation in surgery |
11172997, | Oct 04 2013 | KB Medical, SA | Apparatus and systems for precise guidance of surgical tools |
11176750, | Feb 03 2015 | Globus Medical, Inc. | Surgeon head-mounted display apparatuses |
11179213, | May 18 2018 | AURIS HEALTH, INC | Controllers for robotically-enabled teleoperated systems |
11191598, | Jun 21 2012 | Globus Medical, Inc. | Surgical robot platform |
11202681, | Apr 01 2011 | Globus Medical, Inc. | Robotic system and method for spinal and other surgeries |
11207150, | Feb 19 2020 | Globus Medical, Inc.; Globus Medical, Inc | Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment |
11217028, | Feb 03 2015 | Globus Medical, Inc. | Surgeon head-mounted display apparatuses |
11253216, | Apr 28 2020 | Globus Medical, Inc | Fixtures for fluoroscopic imaging systems and related navigation systems and methods |
11253320, | Jul 21 2017 | Globus Medical Inc. | Robot surgical platform |
11253327, | Jun 21 2012 | Globus Medical, Inc | Systems and methods for automatically changing an end-effector on a surgical robot |
11266470, | Feb 18 2015 | KB Medical SA | Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique |
11278360, | Nov 16 2018 | Globus Medical, Inc | End-effectors for surgical robotic systems having sealed optical components |
11284949, | Jun 21 2012 | Globus Medical, Inc. | Surgical robot platform |
11298186, | Aug 02 2018 | POINT ROBOTICS SINGAPORE PTE LTD | Surgery assistive system and method for obtaining surface information thereof |
11298196, | Jun 21 2012 | Globus Medical, Inc | Surgical robotic automation with tracking markers and controlled tool advancement |
11317971, | Jun 21 2012 | Globus Medical, Inc | Systems and methods related to robotic guidance in surgery |
11317973, | Jun 09 2020 | Globus Medical, Inc | Camera tracking bar for computer assisted navigation during surgery |
11317978, | Mar 22 2019 | Globus Medical, Inc | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
11331153, | Jun 21 2012 | Globus Medical, Inc. | Surgical robot platform |
11337742, | Nov 05 2018 | Globus Medical Inc | Compliant orthopedic driver |
11337769, | Jul 31 2015 | Globus Medical, Inc | Robot arm and methods of use |
11357548, | Nov 09 2017 | Globus Medical, Inc | Robotic rod benders and related mechanical and motor housings |
11382549, | Mar 22 2019 | Globus Medical, Inc.; Globus Medical, Inc | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
11382666, | Nov 09 2017 | Globus Medical, Inc | Methods providing bend plans for surgical rods and related controllers and computer program products |
11382699, | Feb 10 2020 | Globus Medical, Inc | Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery |
11382700, | May 08 2020 | Globus Medical, Inc | Extended reality headset tool tracking and control |
11382713, | Jun 16 2020 | Globus Medical, Inc | Navigated surgical system with eye to XR headset display calibration |
11395706, | Jun 21 2012 | Globus Medical Inc. | Surgical robot platform |
11399900, | Jun 21 2012 | Globus Medical, Inc. | Robotic systems providing co-registration using natural fiducials and related methods |
11413101, | Feb 20 2018 | Verb Surgical Inc. | Correcting a robotic surgery user interface device tracking input |
11419616, | Mar 22 2019 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
11426178, | Sep 27 2019 | Globus Medical, Inc | Systems and methods for navigating a pin guide driver |
11426245, | Mar 06 2002 | MAKO Surgical Corp. | Surgical guidance system and method with acoustic feedback |
11439444, | Jul 22 2021 | Globus Medical, Inc. | Screw tower and rod reduction tool |
11439471, | Jun 21 2012 | Globus Medical, Inc. | Surgical tool system and method |
11461983, | Feb 03 2015 | Globus Medical, Inc. | Surgeon head-mounted display apparatuses |
11464581, | Jan 28 2020 | Globus Medical, Inc | Pose measurement chaining for extended reality surgical navigation in visible and near infrared spectrums |
11510684, | Oct 14 2019 | Globus Medical, Inc.; Globus Medical, Inc | Rotary motion passive end effector for surgical robots in orthopedic surgeries |
11510750, | May 08 2020 | Globus Medical, Inc | Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications |
11523784, | Feb 03 2016 | Globus Medical, Inc. | Portable medical imaging system |
11523785, | Sep 24 2020 | Globus Medical, Inc.; Globus Medical, Inc | Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement |
11529195, | Jan 18 2017 | Globus Medical Inc. | Robotic navigation of robotic surgical systems |
11534179, | Jul 14 2014 | Globus Medical, Inc. | Anti-skid surgical instrument for use in preparing holes in bone tissue |
11571171, | Sep 24 2019 | Globus Medical, Inc | Compound curve cable chain |
11571265, | Mar 22 2019 | Globus Medical Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
11589771, | Jun 21 2012 | Globus Medical, Inc | Method for recording probe movement and determining an extent of matter removed |
11602402, | Dec 04 2018 | Globus Medical, Inc | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
11607149, | Jun 21 2012 | Globus Medical Inc. | Surgical tool systems and method |
11622794, | Jul 22 2021 | Globus Medical, Inc. | Screw tower and rod reduction tool |
11628023, | Jul 10 2019 | Globus Medical, Inc | Robotic navigational system for interbody implants |
11628039, | Apr 11 2016 | Globus Medical Inc. | Surgical tool systems and methods |
11668588, | Mar 14 2016 | Globus Medical Inc. | Metal detector for detecting insertion of a surgical device into a hollow tube |
11672622, | Jul 31 2015 | Globus Medical, Inc. | Robot arm and methods of use |
11684431, | Jun 21 2012 | Globus Medical, Inc. | Surgical robot platform |
11684433, | Jun 21 2012 | Globus Medical Inc. | Surgical tool systems and method |
11690687, | Jun 21 2012 | Globus Medical Inc. | Methods for performing medical procedures using a surgical robot |
11690697, | Feb 19 2020 | Globus Medical, Inc. | Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment |
11694355, | Apr 09 2018 | Globus Medical, Inc. | Predictive visualization of medical imaging scanner component movement |
11701177, | Sep 24 2014 | DEPUY IRELAND UNLIMITED COMPANY | Surgical planning and method |
11717350, | Nov 24 2020 | Globus Medical, Inc | Methods for robotic assistance and navigation in spinal surgery and related systems |
11734901, | Feb 03 2015 | Globus Medical, Inc. | Surgeon head-mounted display apparatuses |
11737696, | Mar 22 2019 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
11737766, | Jan 15 2014 | Globus Medical Inc. | Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery |
11737831, | Sep 02 2020 | Globus Medical, Inc | Surgical object tracking template generation for computer assisted navigation during surgical procedure |
11744598, | Mar 22 2019 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
11744648, | Apr 01 2011 | Globus Medicall, Inc. | Robotic system and method for spinal and other surgeries |
11744655, | Dec 04 2018 | Globus Medical, Inc | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
11751927, | Nov 05 2018 | Globus Medical Inc. | Compliant orthopedic driver |
11751950, | Aug 12 2015 | Globus Medical Inc. | Devices and methods for temporary mounting of parts to bone |
11763531, | Feb 03 2015 | Globus Medical, Inc. | Surgeon head-mounted display apparatuses |
11771499, | Jul 21 2017 | Globus Medical Inc. | Robot surgical platform |
11779408, | Jan 18 2017 | Globus Medical, Inc. | Robotic navigation of robotic surgical systems |
11786144, | Nov 10 2017 | Globus Medical, Inc. | Methods of selecting surgical implants and related devices |
11786324, | Jun 21 2012 | Globus Medical, Inc. | Surgical robotic automation with tracking markers |
11793570, | Jun 21 2012 | Globus Medical, Inc | Surgical robotic automation with tracking markers |
11793583, | Apr 24 2014 | Globus Medical Inc. | Surgical instrument holder for use with a robotic surgical system |
11793588, | Jul 23 2020 | Globus Medical, Inc | Sterile draping of robotic arms |
11794338, | Nov 09 2017 | Globus Medical, Inc | Robotic rod benders and related mechanical and motor housings |
11801022, | Feb 03 2016 | Globus Medical, Inc. | Portable medical imaging system |
11806084, | Mar 22 2019 | Globus Medical, Inc | System for neuronavigation registration and robotic trajectory guidance, and related methods and devices |
11806100, | Oct 21 2016 | KB Medical, SA | Robotic surgical systems |
11813030, | Mar 16 2017 | Globus Medical, Inc. | Robotic navigation of robotic surgical systems |
11819283, | Jun 21 2012 | Globus Medical Inc. | Systems and methods related to robotic guidance in surgery |
11819365, | Jun 21 2012 | Globus Medical, Inc. | System and method for measuring depth of instrumentation |
11832863, | Nov 05 2018 | Globus Medical, Inc. | Compliant orthopedic driver |
11838493, | May 08 2020 | Globus Medical Inc. | Extended reality headset camera system for computer assisted navigation in surgery |
11839435, | May 08 2020 | Globus Medical, Inc. | Extended reality headset tool tracking and control |
11844532, | Oct 14 2019 | Globus Medical, Inc. | Rotary motion passive end effector for surgical robots in orthopedic surgeries |
11850009, | Jul 06 2021 | Globus Medical, Inc | Ultrasonic robotic surgical navigation |
11850012, | Mar 22 2019 | Globus Medical, Inc | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
11857149, | Jun 21 2012 | Globus Medical, Inc | Surgical robotic systems with target trajectory deviation monitoring and related methods |
11857266, | Jun 21 2012 | Globus Medical, Inc | System for a surveillance marker in robotic-assisted surgery |
11857273, | Jul 06 2021 | Globus Medical, Inc | Ultrasonic robotic surgical navigation |
11864745, | Jun 21 2012 | Globus Medical, Inc | Surgical robotic system with retractor |
11864839, | Jun 21 2012 | Globus Medical, Inc | Methods of adjusting a virtual implant and related surgical navigation systems |
11864857, | Sep 27 2019 | Globus Medical, Inc. | Surgical robot with passive end effector |
11872000, | Aug 31 2015 | Globus Medical, Inc | Robotic surgical systems and methods |
11877807, | Jul 10 2020 | Globus Medical, Inc | Instruments for navigated orthopedic surgeries |
11883117, | Jan 28 2020 | Globus Medical, Inc. | Pose measurement chaining for extended reality surgical navigation in visible and near infrared spectrums |
11883119, | Feb 20 2018 | Verb Surgical Inc. | Correcting a robotic surgery user interface device tracking input |
11883217, | Feb 03 2016 | Globus Medical, Inc | Portable medical imaging system and method |
11890066, | Sep 30 2019 | Globus Medical, Inc | Surgical robot with passive end effector |
11890122, | Sep 24 2020 | Globus Medical, Inc. | Increased cone beam computed tomography volume length without requiring stitching or longitudinal c-arm movement |
11896314, | Sep 02 2011 | Stryker Corporation | Surgical instrument including housing, a cutting accessory that extends from the housing and actuators that establish the position of the cutting accessory relative to the housing |
11896363, | Mar 15 2013 | Globus Medical Inc. | Surgical robot platform |
11896446, | Jun 21 2012 | Globus Medical, Inc | Surgical robotic automation with tracking markers |
11911112, | Oct 27 2020 | Globus Medical, Inc | Robotic navigational system |
11911115, | Dec 20 2021 | Globus Medical, Inc | Flat panel registration fixture and method of using same |
11911225, | Jun 21 2012 | Globus Medical Inc. | Method and system for improving 2D-3D registration convergence |
11918304, | Dec 20 2021 | Globus Medical, Inc | Flat panel registration fixture and method of using same |
11918313, | Mar 15 2019 | Globus Medical Inc. | Active end effectors for surgical robots |
11918316, | May 18 2018 | Auris Health, Inc. | Controllers for robotically enabled teleoperated systems |
11920957, | Mar 14 2016 | Globus Medical, Inc. | Metal detector for detecting insertion of a surgical device into a hollow tube |
11931052, | Oct 08 2021 | NuVasive, Inc | Assemblies, systems, and methods for a neuromonitoring drill bit |
11941814, | Nov 04 2020 | Globus Medical, Inc | Auto segmentation using 2-D images taken during 3-D imaging spin |
11944325, | Mar 22 2019 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
11963755, | Jun 21 2012 | Globus Medical Inc. | Apparatus for recording probe movement |
11969224, | Dec 04 2018 | Globus Medical, Inc. | Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems |
11974822, | Jun 21 2012 | Globus Medical Inc. | Method for a surveillance marker in robotic-assisted surgery |
11974886, | Apr 11 2016 | Globus Medical Inc. | Surgical tool systems and methods |
11986333, | Feb 03 2016 | Globus Medical Inc. | Portable medical imaging system |
11992373, | Dec 10 2019 | Globus Medical, Inc | Augmented reality headset with varied opacity for navigated robotic surgery |
12064189, | Dec 13 2019 | Globus Medical, Inc. | Navigated instrument for use in robotic guided surgery |
12070276, | Jun 09 2020 | Globus Medical, Inc | Surgical object tracking in visible light via fiducial seeding and synthetic image registration |
12070285, | Jun 21 2012 | Globus Medical, Inc. | Systems and methods for automatically changing an end-effector on a surgical robot |
12070286, | Jan 08 2021 | Globus Medical, Inc | System and method for ligament balancing with robotic assistance |
12076091, | Oct 27 2020 | Globus Medical, Inc | Robotic navigational system |
12076095, | Feb 18 2015 | Globus Medical, Inc. | Systems and methods for performing minimally invasive spinal surgery with a robotic surgical system using a percutaneous technique |
12076097, | Jul 10 2019 | Globus Medical, Inc. | Robotic navigational system for interbody implants |
12082886, | Apr 05 2017 | Globus Medical Inc. | Robotic surgical systems for preparing holes in bone tissue and methods of their use |
12096994, | Apr 01 2011 | KB Medical SA | Robotic system and method for spinal and other surgeries |
12103480, | Mar 18 2022 | Globus Medical, Inc | Omni-wheel cable pusher |
12114939, | Oct 04 2013 | KB Medical SA | Apparatus, systems, and methods for precise guidance of surgical tools |
12115028, | May 08 2020 | Globus Medical, Inc. | Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications |
12121240, | Oct 14 2019 | Globus Medical, Inc. | Rotary motion passive end effector for surgical robots in orthopedic surgeries |
12121278, | Nov 05 2018 | Globus Medical, Inc. | Compliant orthopedic driver |
12127803, | Mar 22 2019 | Globus Medical, Inc. | System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices |
12133772, | Dec 10 2019 | Globus Medical, Inc | Augmented reality headset for navigated robotic surgery |
12150728, | Apr 14 2021 | Globus Medical, Inc | End effector for a surgical robot |
12161427, | Jun 08 2022 | Globus Medical, Inc | Surgical navigation system with flat panel registration fixture |
12161433, | Jan 08 2021 | Globus Medical, Inc | System and method for ligament balancing with robotic assistance |
12178523, | Apr 19 2021 | Globus Medical, Inc | Computer assisted surgical navigation system for spine procedures |
12184636, | Oct 04 2021 | Globus Medical, Inc; Globus Medical, Inc. | Validating credential keys based on combinations of credential value strings and input order strings |
9592096, | Nov 30 2011 | MEDTECH | Robotic-assisted device for positioning a surgical instrument relative to the body of a patient |
9775682, | Mar 06 2002 | MAKO Surgical Corp. | Teleoperation system with visual indicator and method of use during surgical procedures |
ER1981, | |||
ER6213, | |||
ER6903, | |||
ER7184, | |||
ER8094, | |||
ER8328, |
Patent | Priority | Assignee | Title |
7717932, | Oct 27 2005 | Medtronic Xomed, Inc | Instrument and system for surgical cutting and evoked potential monitoring |
8010180, | Mar 06 2002 | MAKO Surgical Corp.; Mako Surgical Corporation | Haptic guidance system and method |
20040128026, | |||
20070239187, | |||
20080010705, | |||
20100170362, | |||
20100198219, | |||
20110270120, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 28 2011 | LIGHTCAP, CHRIS ALAN | MAKO SURGICAL CORP | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027715 | /0416 | |
Dec 29 2011 | MAKO Surgical Corp. | (assignment on the face of the patent) | / | |||
Jan 06 2012 | KANG, HYOSIG | MAKO SURGICAL CORP | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027715 | /0416 |
Date | Maintenance Fee Events |
Sep 13 2018 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 14 2022 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 31 2018 | 4 years fee payment window open |
Oct 01 2018 | 6 months grace period start (w surcharge) |
Mar 31 2019 | patent expiry (for year 4) |
Mar 31 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 31 2022 | 8 years fee payment window open |
Oct 01 2022 | 6 months grace period start (w surcharge) |
Mar 31 2023 | patent expiry (for year 8) |
Mar 31 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 31 2026 | 12 years fee payment window open |
Oct 01 2026 | 6 months grace period start (w surcharge) |
Mar 31 2027 | patent expiry (for year 12) |
Mar 31 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |