An active matrix microdisplay system is provided. The microdisplay system includes an array of micro-emitters. The microdisplay system also includes an array of cmos driving circuits. Each of the cmos driving circuits is coupled to a respective micro-emitter for controlling current to each respective micro-emitter. Each driving circuit includes metal-oxide-semiconductor field-effect transistor (mosfet) devices, where the mosfet devices comprise p-type metal-oxide-semiconductors (PMOSs) or n-type metal-oxide-semiconductors (NMOSs).
|
20. An active matrix microdisplay system comprising:
an array of micro-emitters wherein optically active regions of the micro-emitters comprise at least one III-nitride semiconductor;
an array of cmos driving circuits, each of the cmos driving circuits coupled to a respective micro-emitter for controlling current to each respective micro-emitter, each driving circuit comprising metal-oxide-semiconductor field-effect transistor (mosfet) devices;
wherein each cmos driving circuit of the array of cmos driving circuits is capable of supplying an adjustable driving current of greater than 0.01 μA and wherein the adjustable driving current is determined by a voltage held on a sample-and-hold capacitor; the driving current being provided to a micro-emitter through an output mosfet of the driving circuit.
25. An active matrix microdisplay system comprising:
an array of micro-emitters wherein optically active regions of the micro-emitters comprise at least one III-nitride semiconductor;
an array of cmos driving circuits, each of the cmos driving circuits coupled to a respective micro-emitter for controlling current to each respective micro-emitter, each driving circuit comprising metal-oxide-semiconductor field-effect transistor (mosfet) devices;
wherein each cmos driving circuit of the array of cmos driving circuits is capable of supplying an adjustable driving current through an output transistor of greater than 0.01 μA and wherein the adjustable driving current is determined by a voltage held on a sample-and-hold capacitor;
and wherein the voltage held on the sample-and-hold capacitor is determined at least in part by characterizing the output transistor.
1. A microdisplay control circuitry for controlling an array of micro-emitters of an active matrix microdisplay, each of the micro-emitters in the array having an optically active region, the control circuitry comprising:
(i) an 8-bit shift register circuit configured to divide an input clock signal of a first frequency into eight offset clock signals of a second frequency, wherein the second frequency is ⅛ of the first frequency;
(ii) a plurality of digital sample-and-hold circuits configured to process an 8-bit pixel data of the first frequency in parallel to convert the 8-bit digital pixel data of the first frequency to eight digital pixel data of the second frequency;
(iii) a plurality of idacs configured to receive the eight digital pixel data of the second frequency and to generate eight analog outputs;
(iv) a plurality of buffers configured to receive the eight analog outputs and output eight buffered analog pixel data; and
(v) a plurality of analog sample-and-hold circuits each configured to control an output current through a transistor to a micro-emitter of the array of micro-emitters according to a pixel datum of the eight buffered analog pixel data.
2. The control circuitry of
3. The control circuitry of
4. The control circuitry of
5. The control circuitry of
6. The control circuitry of
7. The control circuitry of
8. The control circuitry of
9. The control circuitry of
10. The control circuitry of
11. The control circuitry of
12. The control circuitry of
13. The control circuitry of
14. The control circuitry of
16. The control circuitry of
17. The control circuitry of
18. The active matrix microdisplay of
19. The active matrix microdisplay of
21. The active matrix microdisplay of
22. The active matrix microdisplay of
23. The active matrix microdisplay of
24. The active matrix microdisplay of
|
This application is a nonprovisional of, and claims the benefit of the filing date of U.S. Provisional Patent Application No. 61/316,755, filed Mar. 23, 2009, entitled “CMOS IC for Micro-emitter Based Microdisplay”, the entire content of which is incorporated herein by reference.
The U.S. Government has certain rights in this invention pursuant to a grant by the Department of Defense Contract No. W909MY-09-C-0014 awarded by the U.S. Army.
The invention relates generally to microdisplay devices. More specifically, the invention relates to design and fabrication of complementary metal-oxide-semiconductor (CMOS) integrated circuit (IC) driver and control circuitry for micro-emitter based microdisplays.
Microdisplays have many military and civilian applications, such as head-mounted displays, hand-held projectors, heads-up displays, and other near-to-eye applications. Microdisplays with high resolution, power efficiency, reliability, and other merits may enable various high-performance portable applications. One category of microdisplays is modulating microdisplays, such as liquid crystal or digital mirror device (DMD) based displays. These are relatively mature in terms of technology, driven by the commercial markets of projection TV and other applications. These modulating microdisplays are blanket illuminated by separated light sources and modulated incident light on a pixel-by-pixel basis, with intrinsically low power efficiency. Due at least in part to this mode of operation, the field-of-view, brightness, and contrast of these modulation-based microdisplays are limited.
Another category is emissive microdisplays, which should provide high power efficiency that is a critical requirement for portable near-to-eye (NTE) head mounted systems or dismounted mobile systems, especially for field applications. Currently, emissive microdisplay technology is typically based on color-filtering organic light emitting diode (OLED) technology. Although dramatic progress has been made in the OLED field in the last 20 years, the electro-optical performance, power efficiency and lifetime of OLEDs are still inferior to their inorganic counterparts, LEDs. Color-filtering OLED microdisplays suffer not only from a shorter life span but also from nonuniform degradation of luminance for various colors over their lifespan. Furthermore, because of technical difficulties such as conflicting temperatures that may be required for growth of different color organic thin films, and incompatibility with conventional photolithography micro-patterning processes, full-color OLED microdisplays with high resolution based on side-by-side patterned red-green-blue (RGB) sub-pixels have not been demonstrated.
Present day, technically mature approaches utilize filtering of white OLEDs. A white OLED may be grown on a pre-patterned substrate without the necessity for post-deposition patterning, but approximately ⅔ or more of the white light source output must be removed by a filter to obtain the required RGB primary colors. For example, up to 90% of optical power from a white OLED may have to be filtered out in order to obtain a sufficiently saturated red sub-pixel. In such a case, the white OLED must be driven up to ten times brighter than the required pixel brightness, which substantially shortens a lifetime of the microdisplay. Degradation is further enhanced by the heat generated when the filters absorb light at wavelengths other than the intended color. Even with its inherent power inefficiency, color filtering OLED microdisplays represent the most widely commercialized emissive microdisplay technology used in military and commercial systems.
Recent developments have been made in inorganic LED. The electro-optical performance, power efficiency and lifetime of inorganic LEDs are still superior to their organic counterparts, OLEDs. Inorganic semiconductor materials promise a compact, robust, and reliable system. For example, in U.S. Pat. No. 6,410,940 ('940), a monochrome microdisplay based on semiconductor micro-emitters is disclosed that can provide high brightness and efficiency, high reliability and long lifetime. The '940 display is not full-color, however. In U.S. Patent Publication No. 2009/0078955 (≦955), a full-color microdisplay based on semiconductor micro-emitters is disclosed. In U.S. Patent Publication No. 2009/0075843 ('843), a semiconductor micro-emitter array is used in a biological sensor system. The system or a portable (or handheld) sensor integrates a micro-emitter array based on InAlGaN materials with a DNA or protein micro-array and a detector array that analyzes DNA sequences for detection of diseases/biological and chemical molecules. The entire contents of the foregoing '940 patent and '955 and '843 patent publications are herein incorporated by reference.
However, the fabrication of semiconductor micro-emitters is not compatible with silicon integrated circuits that provide current needed to light up or drive micro-emitters. Thus, microdisplays formed from such micro-emitters cannot be directly constructed on such IC chips.
There still remains a need for developing techniques for driving high resolution semiconductor micro-emitter based microdisplays having pixel size below 100 μm.
The present invention provides a high resolution microdisplay based on semiconductor micro-emitter arrays. The present invention also provides the design and fabrication of an active matrix microdisplay driver implemented in a digital CMOS process. Design of the active matrix microdisplay driver can be done entirely in PMOS, or a combination of PMOS and NMOS with an adjustable driving current of greater than 0.01 μA per micro-emitter for a micro-emitter array. Parallel data processing may be used in the design to fulfill the timing requirements of a VGA display at 60 Hz. The micro-emitter array is fabricated using III-V semiconductors. The micro-emitter array can be integrated with the active matrix microdisplay driver or CMOS IC driver by using flip-chip bonding to form high resolution microdisplays that may be used for applications, such as portable DNA/protein micro-array.
In one embodiment, an active matrix microdisplay system is provided. The microdisplay system includes an array of micro-emitters. The microdisplay system also includes an array of CMOS driving circuits. Each of the CMOS driving circuits is coupled to a respective micro-emitter for controlling current to each respective micro-emitter. Each driving circuit includes metal-oxide-semiconductor field-effect transistor (MOSFET) devices, where the MOSFET devices comprise p-type metal-oxide-semiconductors (PMOSs) or n-type metal-oxide-semiconductors (NMOSs).
In another embodiment, a microdisplay control circuitry for controlling an array of micro-emitters of an active matrix microdisplay is provided. Each of the micro-emitters in the array has an optically active region. The control circuitry includes (i) an 8-bit shift register circuit configured to divide an input clock signal of a first frequency into eight offset clock signals of a second frequency, where the second frequency is ⅛ of the first frequency; (ii) a plurality of digital sample-and-hold circuits configured to process an 8-bit pixel data of the first frequency in parallel to convert the 8-bit digital pixel data of the first frequency to eight digital pixel data of the second frequency; (iii) a plurality of IDACs configured to receive the eight digital pixel data of the second frequency and to generate eight analog outputs; (iv) a plurality of buffers configured to receive the eight analog outputs and output eight buffered analog pixel data; and (v) a plurality of analog sample-and-hold circuits configured to output currents according to the eight buffered analog pixel data.
According to embodiments of the present invention, active matrix displays are used instead of passive matrix displays. Active matrix displays requires less data current for micro-emitters partly because current flows through each micro-emitter continuously except when the micro-emitter is addressed, which reduces energy consumption and thus increases energy efficiency of a battery for the microdisplay. Conversely, in passive matrix displays, a large pulse of current for a short period is needed.
According to embodiments of the present invention, parallel data processing are used in control circuitry. This parallel processing allows each current digital-to-analog converters (IDAC) to have an extended operation time within 320 ns instead of 40 ns. The IDACs convert digital data to analog current. This parallel processing also reduces the bandwidth needed for the buffers by a factor of eight.
According to embodiments of the present invention, PMOS capacitors are used instead of polysilicon capacitors. Polysilicon capacitor is more expensive than PMOS capacitors, because polysilicon capacitors require one more step in silicon process than PMOS capacitors. Also, when a CMOS pixel driver includes all PMOS devices, the micro-emitter can be put into a single N-well so that process well spacing is not necessary, which minimizes area for the pixel driver.
Illustrative embodiments of the present invention are described in detail below with reference to the attached drawing figures, which are incorporated by reference herein and wherein:
Disclosed is a semiconductor microdisplay (μDisplay), which is formed by integrating a micro-emitter array with a silicon complementary metal-oxide-semiconductor (CMOS) active matrix driver or CMOS integrated circuit (IC) driver using flip-chip bonding or aligned wafer bonding. The present invention, in particular, provides design and fabrication of an active matrix μDisplay driving circuit implemented in a 0.6 micrometer CMOS process.
Emerging applications of microdisplays require energy efficiency so that reasonable operation time can be attained with the use of a battery. This energy efficiency can be achieved by using the active matrix μDisplay driving circuit, in which each micro-emitter is addressed or driven individually. Therefore, the CMOS driving circuit for micro-emitter based microdisplay uses the active matrix approach. For an active matrix microdisplay, each micro-emitter requires its driver so that each CMOS driver or driving circuit stores data and drives each micro-emitter of the microdisplay. Several requirements are needed for the CMOS driving circuit. First, the CMOS driving circuit for each micro-emitter may have the same pitch as the micro-emitter. Second, the driver or driving circuit needs capability of signal processing. For a VGA standard, which has 640×480 pixels (a total of 307,200 pixels), or even quarter VGA (QVGA) standard, which has 160×120 pixels (a total of 19,200 pixels), it is not feasible to address or drive each pixel by using discrete components in such a small area of the microdisplay. Minimal interface between the CMOS microdisplay and the controller is required. A high performance microdisplay for video information may require a highly integrated CMOS active matrix driver or driving circuit associated with a processor.
All active matrix pixel designs use metal-oxide-semiconductor field-effect transistors (MOSFETs) to control currents through micro-emitters. One may use a p-type metal-oxide-semiconductor (PMOS) device at anodes of micro-emitters or an n-type metal-oxide-semiconductor (NMOS) device at cathodes of micro-emitters. According to embodiments of the present invention, one may characterize the MOSFET and apply an appropriate voltage to the gate of PMOS or NMOS device to draw a desired current. One may also force the desired current through the MOSFET in a diode configuration and store the gate voltage with a PMOS or NMOS capacitor.
CMOS IC driver 114 includes a number of individual pixel driving circuits 106 for each pixel or micro-emitter 112 of microdisplay 108. In a particular embodiment, for a quarter VGA that has 160×120 pixels or micro-emitters 112, CMOS IC driver 114 includes 160×120 driving circuits 106 for providing current to each pixel 112 to light up the micro-emitters 112.
Control circuitry 116 receives inputs of a clock signal 104 of 25.175 MHz and eight parallel digital pixel data (voltage) 102 at a rate of 25.175 MHz to control CMOS IC driver 114 for lighting up microdisplay 108. Control circuitry 116 includes an 8-bit shift register for converting a clock signal of 25.175 MHz into eight offset clock signals of 3.14 MHz. Cross-sectional views of the micro-emitter based microdisplay system 100 are illustrated in
A p-type semiconductor 210 is in contact with active region 204 and has substantially the same size or width as active region 204. Each of active regions 204 and each of p-type semiconductors are separated by an insulator 212. N-contact electrode 214 and p-contact electrode 220 are attached to CMOS IC driver 114 that includes a number of CMOS pixel driving circuit 106. P-contact electrode 220 is connected to p type semiconductor 210 through indium bonding 216. N-contact electrode 214 of CMOS IC driver 114 is connected to n-contact pads 218 that are attached to n-type semiconductor 206. Active regions 204 share a common anode (n-type contact 218) with independently controllable cathode (p-type contact 210). The composition of active region 204 may be adjusted so that the micro-emitter based microdisplay 108 emits different colors. Front surface 206 of microdisplay 108, where the images are displayed, is the top surface of substrate 202.
In one embodiment, array of micro-emitters 112 may be based on III-nitride semiconductors. Active region 204 may be an InGaN/GaN optical active region that contains a single indium concentration for monochrome microdisplays or different indium concentrations in three InGaN/GaN active regions to emit red-green-blue (RGB) for full-color microdisplays.
In another embodiment, as described in U.S. patent Publication 20090078955, microdisplay 108 may also be based on the hybrid integration of InGaN semiconductors for blue and green emissions and AlGaInP semiconductors for red emission. The RGB micro-emitter array chip may be a vertically stacked 3D architecture based on wafer bonding, which is vertically integrated with a silicon CMOS active matrix driver or CMOS IC driver to form a full-color microdisplay system.
In a further embodiment, the full-color microdisplay may be formed by three side-by-side monochrome microdisplays emitting RGB colors which serve as primary color sub-pixels, to produce a single compound color pixel. The optical active region of the micro-emitters may contain AlInGaN materials with different aluminum and indium compositions emitting varying colors for the excitation of biological molecules. High efficiency InGaN for blue and green emissions and AlGaInP for red emission guarantee high power efficiency. The narrow bandwidth of RGB colors provides a color gamut exceeding current standards.
Microdisplay 108 may be integrated on silicon CMOS IC driver 114 by using flip-chip bonding. Flip-chip bonding is based on indium metal bumps 216, as illustrated in
According to embodiments of the present invention, the semiconductor in
CMOS IC driver 114 also includes 160×120 pixel driving circuits or drivers 106 under microdisplay 108 that includes an array of micro-emitters or pixels 112. The COMS IC driver controls the current through micro-emitters 112.
Control circuitry 116 further includes eight horizontal 20-bit shift registers 310A on the top of microdisplay 108 and eight horizontal 20-bit shift registers 310B near the bottom of microdisplay 108 and one vertical 120-bit shift register 310C. Each of 20-bit shift registers 310A-310B generates twenty subset clock signals of 157 kHz from each one of offset clock signals 306A-H of 3.14 MHz, which is divided by 20 such that analog sample-and-hold circuits 312A- or 312B operate at 157 kHz. Thus, one hundred and sixty subset clock signals of 157 kHz are generated from eight horizontal shift registers 310A or 310B. Horizontal 20-bit shift registers 310A or 310B control which analog sample-and-hold circuits capture analog pixel data 318A-H. Vertical 120-bit shift register controls to switch from one row of pixels 112 to the next row of pixels 112.
Control circuitry 116 has nine inputs that control microdisplay 108, including one clock signal 104 at 25.175 MHz and eight parallel digital pixel data 102 that all change at a rate of 25.175 MHz. The clock signal 104 of 25.175 MHz goes into an 8-bit shift register 302 that generates eight offset clock signals 304A-H of 3.14 MHz. Each of offset clock signals 304A-H is provided to each respective 8-bit digital sample-and-hold circuits 306A-H. All 8-bit digital pixel data 102 are passed to the data input of each of 8-bit digital sample-and-hold circuits 306A-H.
8-bit digital sample-and-hold circuits 306A-H take sample sequentially, which is controlled by offset clock signals 304A-H. More specifically, the first digital sample-and-hold circuit 306A captures the first 8-bit digital pixel data 102. The next digital sample-and-hold circuit 306B captures the second 8-bit digital pixel data 102. Then, the third digital sample-and-hold circuit 306C captures the third 8-bit digital pixel data 102, and so on. The output of each of 8-bit digital sample-and-hold circuits 306A-H changes as soon as the input of each digital pixel data 102 is sampled. Eight digital sample-and-hold circuits 306A-H are eight D-Flip Flops (DFF) in parallel.
Eight offset clocks 304A-H allow each of digital sample-and-hold circuits 306A-H to only capture every eighth digital pixel data 102. Digital sample-and-hold circuits 306A-H or DFFs need to operate at the highest desired frequency for 8-bit shift register 302, e.g. 25.175 MHz. Each of digital sample-and-hold circuits 306A-H outputs 8-bit pixel data to the input of a respective IDAC 308A-H. The output of digital sample-and-hold circuits 306A-H provides 8-bit data to each respective IDAC 308A-H. The output of each of IDACs 408A-H is buffered in the respective buffer to generate buffered analog pixel data or voltages 318A-H, which are input to one eighth of a total or one hundred and sixty analog sample-and-hold circuits 312A or 312B. The sampling function of analog sample-and-hold circuits is controlled by one of eight horizontal 20-bit shift registers 310A or 310B which has the same clock signal of the digital sample-and-hold, i.e. 3.14 MHz.
The respective analog sample-and-hold circuits 312A or 312B capture analog pixel data 318A-H based on the output of horizontal 20-bit shift registers 310A-310B. Once an entire row of analog sample-and-hold circuits 312A or 312B has captured its analog data 318A-H, vertical 120-bit shift register 310C switches to the next row of pixels 112 of microdisplay 108. For example, each of analog data 318A-H of a first row of analog sample-and-hold circuits 312A is programmed into each corresponding pixel 112, while a second row of analog sample-and-hold circuits 312B is programmed with analog pixel data 318A-H. This programming continues until the second row of analog sample-and-hold circuits capture their data. Then, vertical shift register 310C switches to the next row of pixels 112 of microdisplay 108, which is connected to the freshly programmed second row of analog sample-and-hold circuits 312B, while the first row of analog sample-and-hold circuits 312A starts over capturing the next row of analog pixel data 318A-H. This cycle continues in a loop in order to generate an optical image that refreshes fast enough to be unnoticeable to human eyes.
According to embodiments of the present invention, parallel data processing are used in control circuitry 116. Eight IDACs 308A-H and eight buffers 314A-H are used so that each IDAC and each buffer process every eighth pixel data. This parallel processing allows each IDAC to have an extended operation time within 320 ns instead of 40 ns for a typical VGA. This parallel processing also reduces the bandwidth needed for each buffer by a factor of eight. This design greatly reduces the power consumption of microdisplay and complexity required to achieve high bandwidth. Analog sample-and-hold circuits 312A-B can be designed with an extended sampling time of eight times.
There are two states of operation for CMOS pixel 112. A first state is when a pixel is addressed or driven by a desired current. A second state is when the pixel sustains the desired current through pixel 112. Specifically, PMOS devices or switches M1-M4 are controlled by ROW and ROW signals that come from the 120-bit vertical shift register 310C. ROW and ROW signals are binary numbers 1 or 0. In the first state, ROW is low such that switches M2 and M3 are closed, but switch M4 is open. Device M1 is configured as a diode with its drain connected to current Idata 402, which is generated by a respective analog sample-and-hold circuit 312A or 312B to control how much current to draw from a battery or VDD to flow through micro-emitter 112. A required gate voltage for the desired current is stored on M5. In the second state, ROW is high while reverse of ROW (i.e. ROW) is low such that switches M2 and M3 are open, but switch M4 is closed. Therefore, a path from the drain of M1 to the anode of LED or micro-emitter 112 is formed. The gate of M1 is now biased only by the voltage stored on capacitor M5, so that the gate to source voltage of M1 sets the current of LED or micro-emitter 112 to the desired current that is mirrored, for example, by current mirror 700 as illustrated in
Pixel 112 is programmed by turning on switches M2 and M3 (i.e. M2 and M4 are close) and by turning off M4, i.e. M4 is open. Programming current Idata is forced through M1. M5 acts as a capacitor to store the voltage at the gate of M1. When switches M2 and M3 are turned off, and M4 is turned on, the gate to source voltage of M1 remains constant. Therefore, the same current Idata flows through M4 to micro-emitter 112.
PMOS device M5 is configured as capacitor by shorting drain 408 and source 410 that is connected to source 414 of M1, as illustrated in
In a particular embodiment, all PMOS devices M1-M4 have identical or same width, which allows common nodes of the M1-M4 devices to share gates, drains, or sources to reduce pixel driver area. M1-M4 may have the same length or different lengths. All M1-M5 may fit into a square of 15 μm by 15 μm. Although PMOS device is used at anodes of micro-emitter 112 in this embodiment, NMOS device may be used at cathodes of micro-emitters in an alternative embodiment. CMOS pixel driver 106 may include a combination of NMOS and PMOS devices in another embodiment.
It is important that switch M1 or current controller M1 operates in a saturation region, because it is difficult to guarantee that the drain to source voltage is the same in both the addressing and sustaining stages when current controller M1 is configured as a diode or connected to the anode of micro-emitter 112. This is apparent in the following equation for a saturation drain current of a long channel; MOSFET:
where ID is the drain current, k′ is a process dependent constant, w and l are the width and length of a transistor, respectively, Vgs is the voltage from gate to source and Vt is threshold voltage. Note that the voltage from drain to source does not appear in the above equation.
PMOS capacitor M5 has a comparable capacity to a polysilicon capacitor, but a smaller size.
In an alternative embodiment, a segmented DAC may be used. However, the segmented DAC adds significant complexity and area. The segmented IDAC requires eight 5-bit binary DACs and additional control circuits for thermometer decoding. The segmented IDAC also requires larger area than the current mirror 700 as illustrated in
One row of pixels 112 is addressed at a time, while the other rows of pixels 112 sustain their respective currents. This is accomplished by having two rows of sample-and-hold circuits 800 as illustrated in
The duration of each state is controlled by the amount of time required to program one row of analog sample-and-hold circuits 312A-B. For a typical VGA active matrix microdisplay, each analog sample-and-hold circuit 312A or 312B needs to be programmed in a mere 40 ns. This stringent timing requirement also extends to IDACs and IDAC buffers. Currently, designing segmented DACs and high bandwidth buffers are used to meet such stringent requirements. For example, for a 0.6 μm CMOS technology, high supply voltage is needed to provide enough voltage to drive each of micro-emitters. However, both the required size of a segmented DAC and the high bandwidth are very difficult to achieve. Control circuitry 116 uses parallel data processing such that each of IDACs 308A-H has an operation time within 320 ns instead of 40 ns and each of buffers 314A-H reduces its bandwidth by a factor of eight.
During normal operation one row that includes one hundred and sixty analog sample-and-hold circuits 312A or 312B is programmed one at a time with the analog pixel data from the IDAC (through the buffers). During this time all M1 devices act as an open circuit, so that this row of analog sample-and-hold circuits 312A or 312B that is being programmed one at a time is not connected to the pixel driving circuits 106. While a top row of sample-and-hold circuits 312A is programmed one at a time with analog pixel data 318A-H, a bottom row that includes 160 analog sample-and-hold circuits 312B is connected to one full row of 160 pixel driving circuits 106 through the switch (acting as a short circuit) at the drain of each M′1. Analog sample-and-hold circuits 312A that have been previously programmed with buffered analog pixel data 318A-H provide current Idata. Each of analog pixel data or voltage 318A-H is stored on NMOS capacitors M′3 and M′4 at the gate of a NMOS M′1 which is matched to the output of IDACs 308A-H. This stored voltage creates current Idata through M′1. Current Idata is then programmed to pixel driving circuits 106 for the current row of pixels. While one row of analog sample-and-hold circuits 312A programs an entire row of pixels all at one time with stored analog data 318A-H, the other row of analog sample-and-hold circuits 312B is disconnected from pixel driving circuits 106 and is being programmed with the next row of analog pixel data 318A-H to be stored until it is time to program the row of pixels with that analog pixel data 318A-H.
In an alternative embodiment, analog sample-and-hold circuits 312A-B may also be designed with PMOS capacitors and PMOS switches. It is critical that these circuits 312A-B be as small as possible to ensure alignment with micro-emitters or pixels. In a particular embodiment, each of analog sample-and-hold circuits 312A-B may have a dimension 30 μm×60 μm.
Having described several embodiments, it will be recognized by those skilled in the art that various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the invention, for example, variations in dimensions and compositions of LED, material selections, p-type or n-type semiconductors, pixel sizes and number of pixels, or frequency of clock signals etc. Additionally, a number of well known processes and elements have not been described in order to avoid unnecessarily obscuring the present invention. Accordingly, the above description should not be taken as limiting the scope of the invention.
It should thus be noted that the matter contained in the above description or shown in the accompanying drawings should be interpreted as illustrative and not in a limiting sense. The following claims are intended to cover all generic and specific features described herein, as well as all statements of the scope of the present method and system, which, as a matter of language, might be said to fall there between.
Li, Jing, Fan, Zhaoyang, Jiang, Hongxing, Lin, Jingyu, Day, Jacob, Lie, Donald
Patent | Priority | Assignee | Title |
10177178, | Jul 05 2017 | GLOBALFOUNDRIES U S INC | Assembly of CMOS driver wafer and LED wafer for microdisplay |
10353205, | Oct 31 2016 | Tectus Corporation | Femtoprojector optical systems |
10381176, | Jun 12 2013 | Rohinni, LLC | Keyboard backlighting with deposited light-generating sources |
10388641, | Oct 19 2017 | Tectus Corporation | Ultra-dense LED projector |
10580348, | Mar 10 2016 | Samsung Display Co., Ltd. | Display device including light-emitting diodes |
10593832, | Dec 27 2013 | Apple Inc. | LED with internally confined current injection area |
10629393, | Jan 15 2016 | Rohinni, LLC | Apparatus and method of backlighting through a cover on the apparatus |
10649239, | May 30 2018 | Tectus Corporation | Eyeglasses with embedded femtoprojectors |
10673414, | Feb 05 2018 | Tectus Corporation | Adaptive tuning of a contact lens |
10680069, | Aug 03 2018 | Infineon Technologies Austria AG | System and method for a GaN-based start-up circuit |
10762836, | Feb 18 2016 | Apple Inc | Electronic display emission scanning using row drivers and microdrivers |
10768515, | Dec 12 2017 | Tectus Corporation | Method for manufacturing ultra-dense LED projector using thinned gallium nitride |
10818449, | Jan 15 2016 | Rohinni, LLC | Apparatus and method of backlighting through a cover on the apparatus |
10827135, | Nov 26 2018 | BAE Systems Information and Electronic Systems Integration Inc. | BDI based pixel for synchronous frame-based and asynchronous event-driven readouts |
10923023, | Jan 26 2016 | Stacked hybrid micro LED pixel architecture | |
11067879, | Dec 12 2017 | Tectus Corporation | Ultra-dense LED projector using thinned gallium nitride |
11101405, | Dec 27 2013 | Apple Inc. | LED with internally confined current injection area |
11460723, | Dec 04 2018 | Texas Tech University System | Semiconductor optical phased arrays (OPA's) and methods related thereto |
11538431, | Jun 29 2020 | GOOGLE LLC | Larger backplane suitable for high speed applications |
11568802, | Oct 13 2017 | GOOGLE LLC | Backplane adaptable to drive emissive pixel arrays of differing pitches |
11626062, | Feb 18 2020 | GOOGLE LLC | System and method for modulating an array of emissive elements |
11637219, | Apr 12 2019 | GOOGLE LLC | Monolithic integration of different light emitting structures on a same substrate |
11710445, | Jan 24 2019 | GOOGLE LLC | Backplane configurations and operations |
11721796, | Mar 29 2021 | Tectus Corporation | LED displays fabricated using hybrid bonding |
11747658, | Dec 04 2018 | Texas Tech University System | Semiconductor optical phased arrays (OPA's) and methods related thereto |
11810509, | Jul 14 2021 | GOOGLE LLC | Backplane and method for pulse width modulation |
11847957, | Jun 28 2019 | GOOGLE LLC | Backplane for an array of emissive elements |
9450147, | Dec 27 2013 | Apple Inc | LED with internally confined current injection area |
9583466, | Dec 27 2013 | Apple Inc | Etch removal of current distribution layer for LED current confinement |
Patent | Priority | Assignee | Title |
5264835, | Jul 21 1988 | PROXIMA CORPORATION, A DELAWARE CORPORATION | Enhanced color display system and method of using same |
6410940, | Jun 15 2000 | Kansas State University Research Foundation | Micro-size LED and detector arrays for minidisplay, hyper-bright light emitting diodes, lighting, and UV detector and imaging sensor applications |
6600471, | Jul 28 2000 | SMAL CAMERA TECHNOLOGIES, INC | Precise MOS imager transfer function control for expanded dynamic range imaging |
20090075843, | |||
20090078955, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 28 2010 | DAY, JACOB | III-N TECHNOLOGY, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025962 | /0540 | |
Mar 30 2010 | LI, JING | III-N TECHNOLOGY, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025962 | /0540 | |
Mar 30 2010 | LIE, DONALD | III-N TECHNOLOGY, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025962 | /0540 | |
Mar 30 2010 | FAN, ZHAOYANG | III-N TECHNOLOGY, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025962 | /0540 | |
Mar 30 2010 | LIN, JINGYU | III-N TECHNOLOGY, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025962 | /0540 | |
Mar 30 2010 | JIANG, HONGXING | III-N TECHNOLOGY, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025962 | /0540 | |
Mar 12 2011 | III-N Technology, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Nov 15 2018 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Nov 16 2022 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 02 2018 | 4 years fee payment window open |
Dec 02 2018 | 6 months grace period start (w surcharge) |
Jun 02 2019 | patent expiry (for year 4) |
Jun 02 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 02 2022 | 8 years fee payment window open |
Dec 02 2022 | 6 months grace period start (w surcharge) |
Jun 02 2023 | patent expiry (for year 8) |
Jun 02 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 02 2026 | 12 years fee payment window open |
Dec 02 2026 | 6 months grace period start (w surcharge) |
Jun 02 2027 | patent expiry (for year 12) |
Jun 02 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |