A semiconductor structure including semiconductor fins, a gate over a middle portion of the semiconductor fins, and faceted semiconductor regions outside of the gate separated from gaps may be formed. The semiconductor structure may be formed by forming fins on a semiconductor substrate where each fin has a pair of sidewalls aligned parallel to the length of the fin, growing dummy semiconductor regions on the sidewalls of the fins, forming a sacrificial gate that covers a center portion of the fins and the dummy semiconductor regions, removing portions of the dummy semiconductor regions not covered by the sacrificial gate, and growing faceted semiconductor regions on the sidewalls of the portions of the fins not covered by the sacrificial gate. The faceted semiconductor regions may intersect to form gaps between the faceted semiconductor regions and the gate.
|
1. A method of forming a semiconductor structure, the method comprising:
forming fins on a semiconductor substrate, wherein each of the fins has a pair of sidewalls aligned parallel to the length of the fin;
growing dummy semiconductor regions on the sidewalls of the fins, wherein top surfaces of the dummy semiconductor regions are substantially coplanar with top surfaces of the fins;
forming a sacrificial gate that covers a center portion of the fins and the dummy semiconductor regions;
removing portions of the dummy semiconductor regions not covered by the sacrificial gate; and
growing faceted semiconductor regions on the sidewalls of the portions of the fins not covered by the sacrificial gate, the faceted semiconductor regions between the fins intersecting to form gaps between the faceted semiconductor regions and the sacrificial gate.
10. A method of making a finfet device, the method comprising:
forming fins on a semiconductor substrate, wherein each of the fins has a pair of sidewalls aligned parallel to the length of the fin;
merging the fins by selectively growing dummy semiconductor regions on the sidewalls of the fins, wherein top surfaces of the dummy semiconductor regions are substantially coplanar with top surfaces of the fins;
forming a sacrificial gate that covers a center portion of the fins and the dummy semiconductor regions;
replacing the portions of the dummy semiconductor regions not covered by the sacrificial gate with faceted semiconductor regions; the faceted semiconductor regions between the fins intersecting to form gaps between the faceted semiconductor regions and the sacrificial gate;
depositing a dielectric layer, wherein the dielectric layer fills the gaps between the faceted semiconductor regions and the sacrificial gate; and
replacing the sacrificial gate and remaining dummy semiconductor regions with a replacement metal gate.
2. The method of
4. The method of
5. The method of
6. The method of
7. The method of
8. The method of
depositing a dielectric layer, wherein the dielectric layer fills the gaps between the faceted semiconductor regions and the sacrificial gate; and
replacing the sacrificial gate and remaining dummy semiconductor regions with a replacement metal gate.
9. The method of
11. The method of
13. The method of
removing the dummy semiconductor regions not covered by the sacrificial gate; and
growing faceted semiconductor regions on the sidewalls of the portions of the fins not covered by the sacrificial gate, wherein the faceted semiconductor regions between the fins intersect to form gaps between the faceted semiconductor regions and the sacrificial gate.
14. The method of
15. The method of
16. The method of
|
The present invention relates to semiconductor devices, and particularly to fabricating multi-fin fin field effect transistor (finFET) devices with merged-fin source/drains and replacement gates.
FinFETs are an emerging technology which may provide solutions to field effect transistor (FET) scaling problems at, and below, the 22 nm node. FinFET structures include at least one narrow semiconductor fin gated on at least two sides of each of the at least one semiconductor fin. FinFETs including more than one fin may be referred to as multi-fin finFETs. FinFET structures may be formed on a semiconductor-on-insulator (SOI) substrate, because of the low source/drain diffusion, low substrate capacitance, and ease of electrical isolation by shallow trench isolation structures. FinFETs may be also formed on bulk substrates to reduce wafer cost and/or enable formation of certain devices in the bulk substrate.
Due in part to the relative instability of the gate dielectric layer deposited over the finFET and work function metal layer of the gate, a replacement metal gate, or gate-last, fabrication process may be used to form multi-fin finFETs, where a sacrificial gate is formed over the semiconductor fins prior to forming source/drain regions and depositing the dielectric layer over the finFET. The sacrificial gate is later removed and replaced by a replacement metal gate (RMG) potentially including a gate dielectric layer, a work function metal layer, and a metal electrode. Because the RMG is formed after the other components of the FET, it is not subjected to various potentially damaging processing steps, for example high-temperature anneals.
The present invention relates to multi-fin semiconductor structures and methods of forming the same. The semiconductor may include semiconductor fins, a gate over a middle portion of the semiconductor fins, and faceted semiconductor regions between the semiconductor fins outside of the gate. Gaps may exist between the faceted semiconductor regions and the gate so that the faceted semiconductor regions do not directly contact the gate.
In another embodiment of the invention, a semiconductor structure may be formed by forming fins on a semiconductor substrate, where each fin has a pair of sidewalls aligned parallel to the length of the fin, growing dummy semiconductor regions on the sidewalls of the fins, forming a sacrificial gate that covers a center portion of the fins and the dummy semiconductor regions, removing portions of the dummy semiconductor regions not covered by the sacrificial gate, and growing faceted semiconductor regions on the sidewalls of the portions of the fins not covered by the sacrificial gate. The faceted semiconductor regions may intersect to form gaps between the faceted semiconductor regions and the gate. After forming the faceted semiconductor regions, a dielectric layer may be deposited over the structure, so that the dielectric layer fills the gaps between the faceted semiconductor regions and the sacrificial gate, and the sacrificial gate and remaining dummy semiconductor regions may be replaced with a replacement metal gate.
In another embodiment of the invention, a finFET device may be formed by forming fins on a semiconductor substrate, where each fin has a pair of sidewalls aligned parallel to the length of the fin, merging the fins by selectively growing dummy semiconductor regions on the sidewalls of the fins, forming a sacrificial gate that covers a center portion of the fins and the dummy semiconductor regions, replacing the portions of the dummy semiconductor regions not covered by the sacrificial gate with faceted semiconductor regions separated from the sacrificial gate by gaps, depositing a dielectric layer that fills the gaps, and replacing the sacrificial gate and remaining dummy semiconductor regions with a replacement metal gate. The top surfaces of the dummy semiconductor regions may be substantially coplanar with the top surfaces of the semiconductor fins.
Elements of the figures are not necessarily to scale and are not intended to portray specific parameters of the invention. For clarity and ease of illustration, dimensions of elements may be exaggerated. The detailed description should be consulted for accurate dimensions. The drawings are intended to depict only typical embodiments of the invention, and therefore should not be considered as limiting the scope of the invention. In the drawings, like numbering represents like elements.
Exemplary embodiments now will be described more fully herein with reference to the accompanying drawings, in which exemplary embodiments are shown. This disclosure may, however, be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth herein. Rather, these exemplary embodiments are provided so that this disclosure will be thorough and complete and will fully convey the scope of this disclosure to those skilled in the art. In the description, details of well-known features and techniques may be omitted to avoid unnecessarily obscuring the presented embodiments.
For purposes of the description hereinafter, terms such as “upper”, “lower”, “right”, “left”, “vertical”, “horizontal”, “top”, “bottom”, and derivatives thereof shall relate to the disclosed structures and methods, as oriented in the drawing figures. Terms such as “above”, “overlying”, “atop”, “on top”, “positioned on” or “positioned atop” mean that a first element, such as a first structure, is present on a second element, such as a second structure, wherein intervening elements, such as an interface structure may be present between the first element and the second element. The term “direct contact” means that a first element, such as a first structure, and a second element, such as a second structure, are connected without any intermediary conducting, insulating or semiconductor layers at the interface of the two elements.
In the interest of not obscuring the presentation of embodiments of the present invention, in the following detailed description, some processing steps or operations that are known in the art may have been combined together for presentation and for illustration purposes and in some instances may have not been described in detail. In other instances, some processing steps or operations that are known in the art may not be described at all. It should be understood that the following description is rather focused on the distinctive features or elements of various embodiments of the present invention.
Embodiments of the invention include methods of forming multi-fin finFET structures having replacement metal gates and faceted source drain regions. Embodiments may include forming fins on a substrate, forming dummy semiconductor regions between the fins, forming a sacrificial gate above the fins and the dummy semiconductor regions, removing the dummy semiconductor regions from between the fins outside of the sacrificial gate, growing faceted source/drain regions on the fins outside of the sacrificial gate, depositing a dielectric layer, and replacing the sacrificial gate and dummy semiconductor regions beneath the sacrificial gate with a replacement metal gate. By forming the dummy semiconductor regions and using faceted source/drain regions, multi-fin finFET structures may be formed while avoiding the difficulties related to the three-dimensional topography of the structure, including complete removal of the sacrificial gate from between the fins and formation of a spacer on the sacrificial gate but not on the fins outside the sacrificial gate.
Referring to
The buried insulator layer 120 may be formed from any of several dielectric materials. Non-limiting examples include, for example, oxides, nitrides, oxynitrides of silicon, and combinations thereof. Oxides, nitrides and oxynitrides of other elements are also envisioned. In addition, the buried insulator layer 120 may include crystalline or non-crystalline dielectric material. The buried insulator layer 120 may be 100-500 nm thick, preferably about 200 nm.
The SOI layer 130 may be made of any of the several semiconductor materials possible for the base substrate 110. In general, the base substrate 110 and the SOI substrate layer 130 may include either identical or different semiconducting materials with respect to chemical composition, dopant concentration and crystallographic orientation. The SOI layer 130 may be doped with p-type dopants such as boron or doped with n-type dopants such as phosphorus and/or arsenic. The dopant concentration may range from approximately 1×1015 cm−3 to approximately 1×1019 cm−3, preferably approximately 1×1015 cm−3 to approximately 1×1016 cm−3. In one embodiment, the SOI layer is undoped. The SOI layer 130 may have a thickness ranging from approximately 5 nm to approximately 300 nm, preferably approximately 30 nm.
Referring to
Each of the fins 210 may have a pair of sidewalls 211, oriented parallel to the lengths of the fins 210, a pair of end surfaces 215, oriented perpendicular to the lengths of the fins 210, and a top surface 213. The crystal orientation of the SOI layer 130 may be such that the top surfaces 213 and the end surfaces 215 of the fins 210 have a (110) surface while the sidewalls 211 have a (100) surface.
Referring to
In an exemplary embodiment where the fins 210 are made of silicon, the dummy semiconductor regions 310 may be made of, for example, germanium or silicon-germanium alloys. In some embodiments, the silicon-germanium alloys may have a germanium concentration of approximately 5% to approximately 90% by weight, preferably approximately 30% to approximately 60%. In embodiments where the fins 210 are made of silicon-germanium, the dummy semiconductor regions 310 may also be made of silicon-germanium, but with a higher germanium concentration so that the dummy semiconductor regions 310 may still be etched selectively. Epitaxial germanium may be deposited using one or more germanium source gases such as germane, digermane, halogermane, dichlorogermane, trichlorogermane, tetrachlorogermane and combinations thereof. Epitaxial silicon-germanium may be deposited by adding to the germanium source gas a silicon source gas such as silane, disilane, trisilane, tetrasilane, hexachlorodisilane, tetrachlorosilane, dichlorosilane, trichlorosilane, methylsilane, dimethylsilane, ethylsilane, methyldisilane, dimethyldisilane, hexamethyldisilane and combinations thereof.
Referring to
Referring to
Referring to
The faceted semiconductor regions 510 may be formed by adjusting the process conditions of a selective epitaxy process. In this case, process conditions are such that the growth rate on (100) crystallographic orientation is significantly higher than the growth rate on (110) or (111) crystallographic orientations. Therefore, the growth rate on the sidewalls 211 (
In one embodiment, and preferably for pFETs, the faceted semiconductor regions 510 may be formed by epitaxial growth of silicon germanium (SiGe) with typical Ge concentration of approximately 30% to approximately 60%. In another embodiment, and preferably for nFETs, the faceted semiconductor regions 510 is formed by epitaxial growth of carbon-doped silicon (Si:C). In this case, Si:C is grown by flowing a Si containing gas such as SiH4 and a carbon containing gas such as CH4. In one embodiment, to form faceted structure a cyclic deposition and etch process is used. In the first step, a layer of Si:C is deposited by flowing silicon-containing and carbon-containing gases. In the next step, portions of the deposited layer are etched by flowing an etching gas, for example, HCl gas. These steps are repeated for a number of cycles until the desired thickness of the regions 510 is obtained. Process conditions such as the time for deposition and etch steps are adjusted to obtain (111) facets.
In some embodiments, the faceted semiconductor regions 510 may be in-situ doped during epitaxial growth by adding a dopant gas to the deposition gas (i.e., the Si-containing gas). Exemplary dopant gases may include a boron-containing gas such as BH3 for pFETs or a phosphorus- or arsenic-containing gas such as PH3 or AsH3 for nFETs.
Referring to
Referring to
Referring to
Referring to
The descriptions of the various embodiments of the present invention have been presented for purposes of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of the embodiment, the practical application or technical improvement over technologies found in the marketplace, or to enable other of ordinary skill in the art to understand the embodiments disclosed herein. It is therefore intended that the present invention not be limited to the exact forms and details described and illustrated but fall within the scope of the appended claims.
Khakifirooz, Ali, Adam, Thomas N., Cheng, Kangguo, Reznicek, Alexander
Patent | Priority | Assignee | Title |
10043806, | Oct 06 2015 | Samsung Electronics Co., Ltd. | Semiconductor devices and methods of manufacturing the same |
10411011, | Oct 06 2015 | Samsung Electronics Co., Ltd. | Semiconductor devices and methods of manufacturing the same |
10453936, | Oct 30 2017 | GLOBALFOUNDRIES U S INC | Methods of forming replacement gate structures on transistor devices |
10483369, | Oct 30 2017 | GLOBALFOUNDRIES U S INC | Methods of forming replacement gate structures on transistor devices |
11101367, | Jun 19 2015 | International Business Machines Corporation | Contact-first field-effect transistors |
11316029, | Apr 15 2020 | International Business Machines Corporation | Sacrificial fin for contact self-alignment |
11349013, | Oct 30 2017 | GLOBALFOUNDRIES U S INC | IC product comprising a novel insulating gate separation structure for transistor devices |
11522068, | Oct 30 2017 | GLOBALFOUNDRIES U S INC | IC product comprising an insulating gate separation structure positioned between end surfaces of adjacent gate structures |
11646358, | Apr 15 2020 | International Business Machines Corporation | Sacrificial fin for contact self-alignment |
11901440, | Sep 02 2021 | International Business Machines Corporation | Sacrificial fin for self-aligned contact rail formation |
9478642, | Nov 10 2014 | GLOBALFOUNDRIES U S INC | Semiconductor junction formation |
Patent | Priority | Assignee | Title |
7893492, | Feb 17 2009 | GLOBALFOUNDRIES U S INC | Nanowire mesh device and method of fabricating same |
8080838, | Jun 07 2006 | AURIGA INNOVATIONS, INC | Contact scheme for FINFET structures with multiple FINs |
8367498, | Oct 18 2010 | PARABELLUM STRATEGIC OPPORTUNITIES FUND LLC | Fin-like field effect transistor (FinFET) device and method of manufacturing same |
8796093, | Mar 14 2013 | GLOBALFOUNDRIES U S INC | Doping of FinFET structures |
20110073952, | |||
20110316081, | |||
20120018813, | |||
20120068264, | |||
20120256238, | |||
20130026539, | |||
20130095616, | |||
20140203370, | |||
20140312432, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 17 2013 | REZNICEK, ALEXANDER | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031244 | /0947 | |
Sep 18 2013 | KHAKIFIROOZ, ALI | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031244 | /0947 | |
Sep 18 2013 | CHENG, KANGGUO | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031244 | /0947 | |
Sep 18 2013 | ADAM, THOMAS N | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031244 | /0947 | |
Sep 20 2013 | International Business Machines Corporation | (assignment on the face of the patent) | / | |||
Jun 29 2015 | International Business Machines Corporation | GLOBALFOUNDRIES U S 2 LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036550 | /0001 | |
Sep 10 2015 | GLOBALFOUNDRIES U S INC | GLOBALFOUNDRIES Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036779 | /0001 | |
Sep 10 2015 | GLOBALFOUNDRIES U S 2 LLC | GLOBALFOUNDRIES Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036779 | /0001 | |
Nov 27 2018 | GLOBALFOUNDRIES Inc | WILMINGTON TRUST, NATIONAL ASSOCIATION | SECURITY AGREEMENT | 049490 | /0001 | |
Oct 22 2020 | GLOBALFOUNDRIES Inc | GLOBALFOUNDRIES U S INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 054633 | /0001 | |
Nov 17 2020 | WILMINGTON TRUST, NATIONAL ASSOCIATION | GLOBALFOUNDRIES Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 054636 | /0001 | |
Nov 17 2020 | WILMINGTON TRUST, NATIONAL ASSOCIATION | GLOBALFOUNDRIES U S INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 056987 | /0001 |
Date | Maintenance Fee Events |
Nov 15 2018 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Nov 16 2022 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 02 2018 | 4 years fee payment window open |
Dec 02 2018 | 6 months grace period start (w surcharge) |
Jun 02 2019 | patent expiry (for year 4) |
Jun 02 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 02 2022 | 8 years fee payment window open |
Dec 02 2022 | 6 months grace period start (w surcharge) |
Jun 02 2023 | patent expiry (for year 8) |
Jun 02 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 02 2026 | 12 years fee payment window open |
Dec 02 2026 | 6 months grace period start (w surcharge) |
Jun 02 2027 | patent expiry (for year 12) |
Jun 02 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |