A method and system is provided for combining information from a plurality of source images to form a fused image. The fused image is generated by the combination of the source images based on both local features and global features computed from the source images. Local features are computed for local regions in each source image. For each source image, the computed local features are further processed to form a local weight matrix. Global features are computed for the source images. For each source image, the computed global features are further processed to form a global weight vector. For each source image, its corresponding local weight matrix and its corresponding global weight vector are combined to form a final weight matrix. The source images are then weighted by the final weight matrices to generate the fused image.

Patent
   9053558
Priority
Jul 26 2013
Filed
Jul 26 2013
Issued
Jun 09 2015
Expiry
Nov 01 2033
Extension
98 days
Assg.orig
Entity
Small
4
55
currently ok
1. A method of producing a fused image, comprising the steps of:
a) receiving, at a computing device, a plurality of source images;
b) determining, at the computing device, a local feature matrix for each of the source images, for a feature of each of the source images;
c) determining, at the computing device, a local weight matrix for each of the source images, using the local feature matrix associated with the source image;
d) determining, at the computing device, a global weight vector for each of the source images;
e) determining, at the computing device, a final weight matrix for each of the source images, using the local weight matrix and global weight vector associated with the source image; and
f) using the final weight matrices for the source images to combine the source images into a fused image.
26. A system for fusing images, comprising:
a) a computing device having a processor and a memory; the memory configured to store a plurality of source images;
b) processing means for fusing an image, comprising:
i. means for determining a local feature matrix for each of the source images, for a feature of each of the source images;
ii. means for determining a local weight matrix for each of the source images, using the local feature matrix associated with the source image;
iii. means for determining a global weight vector for each of the source images;
iv. means for determining a final weight matrix for each of the source images, using the local weight matrix and global weight vector associated with the source image; and
v. means for using the final weight matrices for the source images to combine the source images into a fused image.
2. The method of claim 1 wherein in step b) a plurality of scales are included when determining the local feature matrix for each of the source images.
3. The method of claim 2 wherein in step b) a local contrast value is determined for each of the source images.
4. The method of claim 3 wherein the local contrast value is modulated by a sigmoid shaped function.
5. The method of claim 3 wherein each local contrast value has a magnitude, and the magnitude is used to determine the local feature matrix.
6. The method of claim 5 wherein in step c), Ĉkn denotes a local feature matrix for the kth source image at the nth scale, and Ĉkn is expressed as:
[ C ^ k n ] ind = { [ C ~ k n ] ind , n = 0 ; func ( [ C ~ k n ] ind , [ [ C ~ k n ] ind , [ [ C ~ k n ] f ] ind ) , 1 n N c - 1.
wherein Nc is a predefined number of scales used in determining the local feature matrices, {tilde over (C)}kn is a matrix of the magnitudes of the local contrast values; [M]ind denotes an element of a matrix M, where the location of the element in the matrix M is indicated by an index vector ind; [M]↓f denotes an operator of down sampling a matrix M by a factor f in each dimension; and func(•,•) is a set function.
7. The method of claim 6 wherein func(•,•) is a maximum function for selection of the maximum of first and second input values, so that Ĉkn is expressed as:
[ C ^ k n ] ind = { [ C ~ k n ] ind , n = 0 ; max ( [ C ~ k n ] ind , [ [ C ~ k n - 1 ] f ] ind ) , 1 n N c - 1.
8. The method of claim 3 wherein in step b) the local contrast values are expressed as:
[ C k n ] ind = { [ ψ G k n ] ind , if [ ϕ G k n ] ind < θ ; [ ψ G k n ] ind / [ ϕ G k n ] ind , otherwise .
wherein Ckn denotes the matrix of local contrast values determined for a k th source image Ik at a n th scale; [M]ind denotes an element of a matrix M, where the location of the element in the matrix M is indicated by an index vector ind; ψ denotes a filter; φ denotes a low-pass filter; {circle around (×)} denotes an operator of convolution; Gkn denotes the n th scale of the k th source image; and θ is a free parameter.
9. The method of claim 3 wherein color saturation is used with the local contrast values.
10. The method of claim 1, wherein in step c) a plurality of scales are included when determining the local weight matrix for each of the source images.
11. The method of claim 10 wherein a local similarity matrix is constructed to store similarity values between adjacent image regions.
12. The method of claim 11 wherein a local similarity pyramid is constructed for each local similarity matrix.
13. The method of claim 12 wherein a set function is used to compute the local similarity pyramids.
14. The method of claim 12 wherein a binary function is used to compute the local similarity pyramids.
15. The method of claim 14 wherein the binary function is:

[Wdn+1]ind=min([Wdn]2*ind,[Wdn]2*ind→d)
wherein Wdn denotes the similarity matrix for the direction d at the n th scale; [M]ind denotes an element of a matrix M, where a location of this element in the matrix M is indicated by an index vector ind; [M]ind→d denotes a matrix element that is closest to the matrix element [M]ind in the direction d; and * denotes the operator of multiplication.
16. The method of claim 1 wherein in step d):
d.1) at least a global feature is determined for at least one source image;
d.2) the global feature is transformed using a pre-defined function; and
d.3) a global weight vector is constructed for each source image using the transformed global feature.
17. The method of claim 16 wherein the global feature is an average luminance of all of the source images.
18. The method of claim 17 wherein the average luminance, L, is transformed to obtain two global weights denoted by V0 and V1, by two non-liner functions:

V000exp(− L)

V111exp(− L)
wherein α0, α1, β0, and β1 are free parameters.
19. The method of claim 18 wherein, the global weight vector, Vk for the kth source image, is constructed by concatenating V0 and V1, so that Vk=(V0,V1).
20. The method of claim 18 wherein a final weight matrix Xk is computed by combining the global weight vectors (Vk s) and the local weight matrices (Uk s) using:

Xk=[Vk]0Uk−[Vk]1
wherein [T]i denotes the i th element in a vector T.
21. The method of claim 16 wherein the global feature is an average luminance of each source image.
22. The method of claim 21 wherein global weight, V2,k is calculated by
V 2 , k = { δ L _ k , L _ k > η ; 0 , otherwise .
wherein Lk denotes the average luminance of the k th source image, and δ and η are free parameters.
23. The method of claim 22 wherein, the global weight vector, Vk for the kth source image, is constructed by concatenating V0 and V1, and V2,k, so that Vk=(V0,V1,V2,k) wherein V0 and V1 are global weights determined by two non-liner functions:

V000exp(− L)

V111exp(− L)
wherein α0, α1, β0, and β1 are free parameters.
24. The method of claim 23 wherein a final weight matrix Xk is computed by combining the global weight vectors (Vk s) and the local weight matrices (Uk s) using:

Xk=[Vk]0Uk−[Vk]1+[Vk]2
and wherein [T]i denotes the i th element in a vector T.
25. The method of claim 1 wherein in step e) the local weight matrix and global weight vector for each source image are combined using a predetermined combination function.
27. The system of claim 26 further comprising an image source for providing the source images.
28. The system of claim 27 wherein the image source is an image sensor.
29. The system of claim 28 wherein the means for fusing an image is stored within processor executable instructions of the computing device.
30. The system of claim 28 wherein the means for fusing an image are within a software module.
31. The system of claim 28 wherein the means for fusing an image are within a hardware module in communication with the processor.

The present disclosure relates to the field of image processing, and in particular to a method and system for combining information from a plurality of images to form a single image.

Image fusion has been found useful in many applications. A single recorded image from an image sensor may contain insufficient details of a scene due to the incompatibility between the image sensor's capture range and the characteristics of the scene. For example, because a natural scene can have a high dynamic range (HDR) that exceeds the dynamic range of an image sensor, a single recorded image is likely to exhibit under- or over-exposure in some regions, which leads to detail loss in those regions. Image fusion can solve such problems by combining local details from a plurality of images recorded by an image sensor under different settings of an imaging device, such as under different exposure settings, or from a plurality of images recorded by different image sensors, each of which captures some but not all characteristics of the scene.

One type of image fusion method known in the art is based on multi-scale decomposition (MSD). Two types of commonly used MSD schemes include pyramid transform, such as Laplacian pyramid transform, and wavelet transform, such as discrete wavelet transform. Images are decomposed into multi-scale representations (MSRs), each of which contain an approximation scale generated by low-pass filtering and one or more detail scales generated by high-pass or band-pass filtering. The fused image is reconstructed by inverse MSD from a combined MSR.

Another type of image fusion method known in the art computes local features at the original image scale, and then, by solving an optimization problem, generates the fused image or the fusion weights, which are to be used as weighting factors when the images are linearly combined. Another type of image fusion methods divides images into blocks and generates a fused image by optimizing one or more criteria within each block.

Another type of method that can achieve a similar effect, as image fusion methods do when fusing images taken under different exposure settings, is the two-phase procedure of HDR reconstruction and tone mapping. An HDR image is reconstructed from the input images, and then the dynamic range of this HDR image is compressed in the tone mapping phase. However, the above types of methods may impose high spatial computational cost and/or high temporal computational cost, or introduce artifacts into a fused image due to non-linear transformations of pixel values or due to operations performed only in small local regions.

Accordingly, what is needed is a method and system that effectively and efficiently combines useful information from images, especially in the case of fusing images taken under different exposure settings.

A method of producing a fused image is provided, including the steps of: providing a plurality of source images; determining a local feature matrix for each of the source images, for a feature of each of the source images; determining a local weight matrix for each of the source images, using the local feature matrix associated with the source image; determining a global weight vector for each of the source images; determining a final weight matrix for each of the source images, using the local weight matrix and global weight vector associated with the source image; and using the final weight matrices for the source images to combine the source images into a fused image.

A plurality of scales may be included when determining the local feature matrix for each of the source images. A local contrast value may be determined for each of the source images, the local contrast value modulated by a sigmoid shaped function. Each local contrast value has a magnitude, and the magnitude may be used to determine the local feature matrix.

Color saturation may be used with the local contrast values. A plurality of scales may be included when determining the local weight matrix for each of the source images. A local similarity matrix may be constructed to store similarity values between adjacent image regions. A local similarity pyramid may be constructed for each local similarity matrix. A binary function or set function may be used to compute the local similarity pyramids.

One or more global features may be determined for at least one source image; the global feature may be transformed using a pre-defined function; and a global weight vector may be constructed for each source image using the transformed global feature.

The local weight matrix and the global weight vector for each source image may be combined using a predetermined combination function. The global feature may be an average luminance of all of the source images or an average luminance of each source image.

A system for fusing images is provided, including: a computing device having a processor and a memory; the memory configured to store a plurality of source images; means for fusing an image, having: means for determining a local feature matrix for each of the source images, for a feature of each of the source images; means for determining a local weight matrix for each of the source images, using the local feature matrix associated with the source image; means for determining a global weight vector for each of the source images; means for determining a final weight matrix for each of the source images, using the local weight matrix and global weight vector associated with the source image; and means for using the final weight matrices for the source images to combine the source images into a fused image.

An image source may provide the source images. The image source may be an image sensor. The means for fusing an image may be stored within processor executable instructions of the computing device. The means for fusing an image may be within a software module or a hardware module in communication with the processor.

FIG. 1 is a flow chart illustrating a procedure of combining a plurality of images into a single fused image according to an aspect of the present disclosure.

FIG. 2 is a flow chart illustrating the procedure of computing local feature matrices according to an aspect of the present disclosure.

FIG. 3 is a flow chart illustrating the procedure of computing local weight matrices according to an aspect of the present disclosure.

FIG. 4 is a flow chart illustrating the procedure of computing global weight vectors according to an aspect of the present disclosure.

FIG. 5 is a block diagram illustrating an image fusion system according to an aspect of the present disclosure.

FIG. 1 illustrates the procedure 100 of combining a plurality of source images into a single fused image. An “image” herein refers to a matrix of image elements. A matrix can be a one-dimensional (1D) matrix or a multi-dimensional matrix. Examples of an image element include but are not limited to a pixel in the 1D case, a pixel in the two-dimensional (2D) case, a voxel in the three-dimensional (3D) case, and a doxel, or dynamic voxel, in the four-dimensional (4D) case. A “source image” herein refers to an image to be inputted to an image fusion procedure. A “fused image” herein refers to an image that is the output of an image fusion procedure.

For the ease of exposition, the description hereafter generally directs to the case wherein source images are taken under different exposure settings, and the source images are 2D images. However, with no or minimal modifications, the method and system of the present disclosure can be applied in cases in which source images are taken under other settings or by different imaging devices, such as images taken under different focus settings, images taken by different medical imaging devices, and images taken by one or more multispectral imaging devices; or in cases in which source images are in dimensions other than 2D.

In step 105, a plurality of source images is obtained from one or more image sensors or from one or more image storage devices. The source images are of the same size; if not, they can be scaled to the same size. In step 110, for each source image, a local feature matrix is computed. A local feature herein represents a certain characteristic of an image region, such as the brightness in an image region or the color variation in an image region. An “image region” herein refers to a single image element or a group of image elements. Each element of a local feature matrix is a numerical value that represents a local feature. In step 115, for each source image, a local weight matrix is computed using the local feature matrices from step 110. A “weight matrix” herein refers to a matrix, in which each element is a numerical value that corresponds to an image region in a source image and determines the amount of contribution from that image region to a fused image. In step 120, for each source image, a global weight vector is computed. In step 125, for each source image, its local weight matrix and its global weight vector are combined to form a final weight matrix.

In step 130, the fused image is generated by combining the source images based on the final weight matrices. Such a combination can be performed as a weighted average of the source images using the final weight matrices as weighting factors. Let K denote the number of source images, where K≧2. Let Ik denote the k th source image, where 0≦k≦K−1. Let Xk denote the k th final weight matrix, which is of the same size as the source images. Let Ī denote the fused image. Let □ denote the operator of element-wise multiplication. Then, the weighted average for forming the fused image can be expressed using the following equation:

I _ = k = 0 K - 1 X k •I k ( 1 )
If the value of an image element in the fused image exceeds a pre-defined dynamic range, it can be either scaled or truncated to meet that range.

Although in FIG. 1, step 120 is depicted to be performed after step 110 and step 115, it can be performed before step 115 or before step 110, or in parallel with step 110 or step 115 or with both.

Computing Local Feature Matrices

FIG. 2 further illustrates step 110 of computing local feature matrices. One or more local features can be considered, depending on the characteristics of the source images and on the individual application scenarios. Examples of a local feature include but are not limited to local contrast in an image region, color saturation in an image region, hue in an image region, brightness/luminance in an image region, color contrast in an image region, average local contrast in an image region, average color saturation in an image region, average hue in an image region, average luminance in an image region, average color contrast in an image region, variation of local contrast in an image region, variation of color saturation in an image region, hue variation in an image region, luminance variation in an image region, variation of color contrast in an image region, and color variation in an image region. The local feature computation (step 110) is performed in a multi-scale fashion, which captures local features at different scales. In addition, because the total number of image elements in source images can be very large, local feature matrices computed in a multi-scale fashion also help to reduce the computational cost in subsequent processing. An alternative is to perform the local feature computation only at a single scale, but this excludes the benefit of using local features from different scales and may incur higher computational cost in subsequent processing.

The computation of local feature matrices is first performed for each source image at its original scale, with reference to step 205. When a single local feature is considered, there is only one local feature matrix computed for each source image in step 205. When multiple local features are considered, a local feature matrix is initially computed for each local feature in each source image in step 205. In step 210, a coarser-scale image is computed for each source image. In step 215, a single local feature matrix (in the case that one local feature is considered) or multiple local feature matrices (in the case that multiple local features are considered) are computed at the current coarser scale. In step 220, the current coarser-scale local feature matrix or matrices are updated using information from those at the previous finer scale. Steps 210, 215, and 220 are repeated until a pre-defined or pre-computed number of scales are reached in step 225. Step 230 checks whether multiple local features are considered. If multiple local features are considered, then, for each source image, its multiple local feature matrices at the current coarsest scale are combined into a single local feature matrix, as depicted in step 235. Finally, the local feature matrices at the current coarsest scale are normalized in step 240.

For example, in an aspect, step 110, the step of computing local feature matrices, can be performed as follows, considering a single local feature.

Local contrast is used as the single local feature, which is applicable to both color and grayscale source images. Local contrast represents the local luminance variation with respect to the surrounding luminance, and local details are normally associated with local variations. Therefore, taking local contrast in the luminance channel as a local feature helps to preserve local details. Alternatively, local luminance variation can be considered alone without taking into account the surrounding luminance. However, in this way, image regions with the same amount of local luminance variation are treated equally regardless of their surrounding luminance. Therefore, some image regions with high local contrast may not be effectively differentiated from other image regions with low local contrast, which may impair the quality of the fused image. Local contrast is normally defined as the ratio between the band-pass or high-pass filtered image and the low-pass filtered image. However, under such a definition, under-exposed image regions, which are normally noisy, may produce stronger responses than well-exposed image regions. This makes under-exposed image regions contribute more to the fused image and reduce the overall brightness. Thus, if the response from the low-pass filter in an image region is below a threshold θ, the response from the band-pass or high-pass filter in that image region, instead of the ratio, is taken as the local contrast value in order to suppress noise. This computation of local contrast values is performed for each source image at its original scale, with reference to step 205.

For a grayscale image, its intensities or luminance values are normalized to the range [0,1], and then the computation of local contrast values is directly performed on the normalized luminance values. For a color image, a grayscale or luminance image can be extracted, and then the computation of local contrast values is performed on this extracted grayscale image. There are various known methods to extract the luminance image from a color image, such as converting the color image to the LHS (luminance, hue, saturation) color space and then taking the “L” components.

Let Ck0 denote the matrix of local contrast values computed for the k th source image Ik at its original scale, i.e., the 0th scale. Let [M]ind denote an element of a matrix M, where the location of this element in the matrix M is indicated by an index vector ind. For example, in the 2D case, ind can be expressed as ind=(i,j), and then [M]i,j represents the element in the i th row and j th column in matrix M. Let ψ denote a band-pass or high-pass filter, such as Laplacian filter. Let φ denote a low-pass filter, such as Gaussian filter. Let {circle around (×)} denote the operator of convolution. Then, the computation of local contrast values in step 205 can be expressed as the following equation:

[ C k 0 ] ind = { [ ψ I k ] ind , if [ ϕ I k ] ind < θ ; [ ψ I k ] ind / [ ϕ I k ] ind , otherwise . ( 2 )

The response of a band-pass filter can be approximated by the difference between the original image and the response of a low-pass filter. Therefore, the computation of local contrast values in step 205 can also be expressed as:

[ C k 0 ] ind = { [ I k ] ind - [ ϕ I k ] ind , if [ ϕ I k ] ind < θ ; ( [ I k ] ind - [ ϕ I k ] ind ) / [ ϕ I k ] ind , otherwise . ( 3 )
The matrix of the magnitudes of the local contrast values, denoted by {tilde over (C)}k0, can be taken as one local feature matrix at the original scale.

In step 210, a coarser-scale image of each source image is computed by down sampling the image by a pre-defined factor f in each dimension. Normally, f is taken to be two (2) or a power of two (2). For example, when f=2, the down sampling can be performed as filtering the image with a low-pass filter and then selecting every other element in each dimension or as directly selecting every other element in each dimension. Let Nc denote the pre-defined number of scales used in computing local feature matrices, where Nc≧2. Let Gkn denote the n th scale of the k th source image, where 0≦n≦Nc−1. Let [M]↓f denote the operator of down sampling a matrix M by a factor f in each dimension. Then, computing a coarser scale of each source image can be expressed by the following equation:

G k n = { I k , n = 0 ; [ G k n - 1 ] f 1 n N c - 1. ( 4 )

In step 215, the same local feature computation performed in step 205 is performed, except that now the computation is performed at a coarser scale of each source image. Let Ckn denote the matrix of local contrast values computed for the k th source image Ik at its n th scale. Then, Ckn can be computed using the following equation:

[ C k n ] ind = { [ ψ G k n ] ind , if [ ϕ G k n ] ind < θ ; [ ψ G k n ] ind / [ ϕ G k n ] ind , otherwise . ( 5 )

The response of a band-pass filter can be approximated by the difference between the original image and the response of a low-pass filter. Therefore, the computation of local contrast values in step 215 can also be expressed as:

[ C k n ] ind = { [ G k n ] ind - [ ϕ G k n ] ind , if [ ϕ G k n ] ind < θ ; ( [ G k n ] ind - [ ϕ G k n ] ind ) / [ ϕ G k n ] ind , otherwise . ( 6 )
The matrix of the magnitudes of the local contrast values at the n th scale, denoted by {tilde over (C)}kn, can be taken as one local feature matrix at the n th scale, where 0≦n≦Nc−1.

In steps 205 and 215, an alternative to directly taking the matrix {tilde over (C)}kn of the magnitudes of the local contrast values as a local feature matrix at the n th scale is taking a modulated version of {tilde over (C)}kn, in order to further suppress noise in image regions with high luminance variations. This modulation can be performed by applying a sigmoid shaped function to {tilde over (C)}kn. One such sigmoid shaped function is the logistic psychometric function (proposed in García-Pérez and Alcalá-Quintana 2007, “The Transducer Model For Contrast Detection And Discrimination: Formal Relations, Implications, and an Empirical Test”, Spatial Vision, vol. 20, nos. 1-2, pp. 5-43, 2007) in which case {tilde over (C)}kn is modulated by the following equation:

[ C ~ k n ] ind = 0.5 + 0.5 1 + exp ( - ( log ( [ C ~ k n ] ind ) + 1.5 ) / 0.11 ) ( 7 )
where exp (•) is an exponential function and log (•) is a logarithmic function.

In order to obtain the best representative information from finer scales, {tilde over (C)}kn is updated using the information from {tilde over (C)}kn−1 for any n>1, as depicted in step 220. This information update can be performed using a set function. A “set function” herein refers to a function, the input of which is a set of variables. When the input set to the set function has two elements, a binary function can be used. A “binary function” herein refers to a set function, the input of which is an ordered pair of variables. Let Ĉkn denote the updated matrix of the magnitudes of the local contrast values at the n th scale Ĉkn can be taken as one local feature matrix at the n th scale, where 0≦n≦Nc−1. Let func (•,•) denote a set function. Then, Ĉkn can be expressed using the following equation:

[ C ^ k n ] ind = { [ C ~ k n ] ind , n = 0 ; func ( [ C ~ k n ] ind , [ [ C ~ k n - 1 ] f ] ind ) , 1 n N c - 1. ( 8 )
For example, func(•,•) can be a maximum function, which is to choose the maximum from two input values. Then, Ĉkn can be expressed using the following equation:

[ C ^ k n ] ind = { [ C ~ k n ] ind , n = 0 ; max ( [ C ~ k n ] ind , [ [ C ~ k n - 1 ] f ] ind ) , 1 n N c - 1. ( 9 )

Steps 210, 215, and 220 are repeated until Nc, a pre-defined number of scales, is reached (step 225). Because a single local feature is considered, after step 230, step 240 is performed. The normalization is an element-wise normalization across all local feature matrices at the current coarsest scale. Let Ykn denote the normalized local feature matrix associated with the n th scale of the k th source image. Then, YkNc−1 denotes the output from step 240 for the k th source image. The computation of YkNc−1 can be expressed using the following equation:

[ Y k N c - 1 ] ind = [ C ^ k N c - 1 ] ind m = 0 K - 1 [ C ^ m N c - 1 ] ind ( 10 )

As another example, in an alternative embodiment, step 110, the step of computing local feature matrices, can be performed as follows, considering two local features.

For color source images, two local features can be considered: local contrast and color saturation. Since local contrast only works in the luminance channel, using local contrast alone may not produce satisfactory results for color images in some cases, for example where high local contrast is achieved at the cost of low colorfulness or color saturation. Objects captured at proper exposures normally exhibit more saturated colors. Therefore, color saturation can be used as another local feature complementary to local contrast for color source images.

The computation of local contrast values in steps 205, 210, 215, 220, and 225 is the same as that described in the previous embodiment, where a single local feature is considered in step 110 of computing local feature matrices. The computation of color saturation values in steps 205, 210, 215, 220, and 225 and the computation in steps 230, 235, and 240 are described below.

Let Skn denote the matrix of color saturation values computed for the k th source image Ik at the n th scale. Let Rdkn, Grkn, and Blkn denote the red channel, the green channel, and the blue channel of the k th source image Ik at the n th scale, respectively. Then, in steps 205 and 215, Skn can be computed for each source image following the color saturation definition in the LHS color space, as expressed in the following equation:

[ S k n ] ind = 1 - min ( [ Rd k n ] ind , [ Gr k n ] ind , [ Bl k n ] ind ) ( [ Rd k n ] ind + [ Gr k n ] ind + [ Bl k n ] ind ) / 3 ( 11 )

Other alternatives include but are not limited to the definition of color saturation in the HSV (hue, saturation, value) color space and the definition of color saturation in the CIELAB (International Commission on Illumination 1976 L*a*b*) color space.

In step 210, a coarser-scale image of each source image is computed in the same way as described in the previous embodiment. Steps 210, 215, and 220 are repeated until Nc, a pre-defined number of scales, is reached in step 225. Because two local features are considered, after step 230, step 235 is performed. The two local feature matrices for each source image at the coarsest scale are combined using a binary function comb (•,•). For example, comb (•,•) can be the multiplication function. Let CfkNc−1 denote the combined local feature matrix for the k th source image at the (Nc−1) th scale. Then, CfkNc−1 can be computed using the following equation:
[CfkNc−1]ind=comb([ĈkNc−1]ind,[SkNc−1]ind)=[ĈkNc−1]ind[SkNc−1]ind  (12)

In step 240, element-wise normalization is performed on the combined local feature matrices. The normalized local feature matrix YkNc−1 associated with the (Nc−1)th scale of the k th source image can be computed using the following equation:

[ Y k N c - 1 ] ind = [ Cf k N c - 1 ] ind m = 0 K - 1 [ Cf m N c - 1 ] ind ( 13 )
Computing Local Weight Matrices

FIG. 3 further illustrates step 115 of computing local weight matrices. The computation is performed in a hierarchical manner in order to achieve higher computational speed with lower memory usage. An alternative is to perform the computation only at a single scale without the hierarchy, but this may incur higher computational cost. In step 305, one or more local similarity matrices are computed at the original scale (i.e., the 0th scale). Each element in a local similarity matrix is a similarity value, which represents the degree of similarity between adjacent image regions in the source images.

In step 310, for each local similarity matrix computed from step 305, a local similarity pyramid is constructed. The local similarity matrix at a coarser scale of a local similarity pyramid is computed by reducing its previous finer scale. Although standard down sampling schemes can be used, a reduction scheme that respects boundaries between dissimilar image regions in the source images is preferred, as will be described below. The local similarity pyramids have the same height (i.e., number of scales), which can be pre-defined or pre-computed. The height of local similarity pyramids, denoted by Ns, is larger than Nc, the pre-defined number of scales used in step 110 of computing local feature matrices. A local similarity matrix at the n th scale of a local similarity pyramid corresponds to the local feature matrices at the n th scale, where 0≦n≦Nc−1.

In step 315, the local feature matrices at scale Nc−1 from step 110 are further reduced to a coarser scale taking into account the local similarity matrix or matrices. In step 315, a local feature matrix at the current scale is first updated based on the local similarity matrix or matrices at the same scale and is then reduced in spatial resolution. Although standard down sampling schemes can be used, the purpose of using local similarity matrix or matrices in step 315 is to respect boundaries between dissimilar image regions in the source images. An element in a coarser-scale local feature matrix can be computed as a weighted average of its corresponding matrix elements in the finer-scale local feature matrix. The weighting factors used in such weighted average can be determined based on the local similarity matrix or matrices at the finer scale. Step 315 is repeated until scale Ns−1, the coarsest scale of local similarity pyramids, is reached (step 320).

In step 325, the local feature matrices at the current scale are smoothed. Smoothed local feature matrices help to remove unnatural seams in the fused image. For example, the smoothing can be performed by applying one or more of the following schemes: a low-pass filter, such as Gaussian filter, a relaxation scheme, such as Gauss-Seidel relaxation, or an edge-preserving filter, such as bilateral filter. A smoothing scheme that uses local similarity matrix or matrices may be used, for the same reason as mentioned above for step 315, which is to respect boundaries between dissimilar image regions in the source images. At each scale, a smoothing scheme can be applied zero, one, or more times. Step 330 checks whether the finest scale of the local similarity pyramids (i.e., the 0th scale) is reached. If the 0th scale is not reached, step 335 is performed; otherwise, step 340 is performed.

In step 335, the local feature matrices at the current scale are expanded to a finer scale, and this finer scale becomes the current scale for subsequent processing. A standard up sampling scheme can be used for this expansion operation, which is to perform interpolation between adjacent matrix elements. In addition, a scheme that employs local similarity matrix or matrices can be used, in order to respect boundaries between dissimilar image regions in the source images. An element in a finer-scale local feature matrix can be computed as a weighted average of its corresponding matrix elements in the coarser-scale local feature matrix. The weighting factors used in such weighted average can be determined based on the local similarity matrix or matrices at the finer scale. Steps 325 and 335 are repeated until the 0th scale is reached (step 330). In step 340, the finest-scale local feature matrices are normalized to form the local weight matrices.

For example, in an aspect, step 115, the step of computing local weight matrices, can be performed as follows.

In step 305, each local similarity matrix captures local similarities along one direction. One or more similarity matrices can be used. For d-dimensional images, any direction in the d-dimensional space can be considered, such as the horizontal direction, the vertical direction, and the diagonal directions. Let Wdn denote the similarity matrix for the direction d at the n th scale. Let [M]ind→d denote the matrix element that is closest to the matrix element [M]ind in the direction d. Then, Wd0 can be computed using the following equation:

[ W d 0 ] ind = k = 0 K - 1 exp ( - dist ( [ I k ] ind , [ I k ] ind d ) σ ) ( 14 )
where dist(•,•) denotes a binary function that computes the distance of two input entities, and σ is a free parameter. For example, dist(•,•) can be the function of computing Euclidean distance, the function of computing Manhattan distance, or the function of computing Mahalanobis distance. Wd0 can be computed based on all source images, as expressed in Equation 14, or it can be computed based on some of the source images.

For the 2D case, two local similarity matrices that capture local similarities along two directions can be considered: a horizontal similarity matrix that stores the similarity values between adjacent image regions along the horizontal direction, and a vertical similarity matrix that stores the similarity values between adjacent image regions along the vertical direction. Let Whn denote the horizontal similarity matrix at the n th scale. Then, Wh0 can be computed using the following equation:

[ W h 0 ] i , j = k = 0 K - 1 exp ( - dist ( [ I k ] i , j , [ I k ] i , j + 1 ) σ ) ( 15 )
Let Wvn denote the vertical similarity matrix at the n th scale. Then, Wv0 can be computed using the following equation:

[ W v 0 ] i , j = k = 0 K - 1 exp ( - dist ( [ I k ] i , j - [ I k ] i + 1 , j ) σ ) ( 16 )

The horizontal and vertical similarity matrices can be computed based on all source images, as expressed in Equation 15 and Equation 16, or they can be computed based on some of the source images.

In step 310, for each local similarity matrix computed from step 305, a local similarity pyramid is constructed. A coarser-scale similarity matrix can be computed using a set function. When the input set to the set function has two elements, a binary function can be used. One such binary function can be the minimum function, and then, the reduction scheme for reducing local similarity matrices at the n th scale, where 0≦n≦Ns−2, can be expressed in the following equations:
[Wdn+1]ind=min([Wdn]2*ind,[Wdn]2*ind→d)  (17)
where * denotes the operator of multiplication.

For the 2D case, the horizontal similarity matrix at a coarser scale of the horizontal similarity pyramid and the vertical similarity matrix at a coarser scale of the vertical similarity pyramid can be computed using a binary function. One such binary function can be the minimum function, and then, the reduction scheme for reducing local similarity matrices at the n th scale, where 0≦n≦Ns−2, can be expressed in the following equations:
[Whn+1]i,j=min([Whn]2i,2j,[Whn]2i,2j+1)  (18)
[Wvn+1]i,j=min([Wvn]2i,2j,[Wvn]2i+1,2j)  (19)

In step 315, the local feature matrices at scale Nc−1 from step 110 are further reduced to a coarser scale taking into account the local similarity matrices. Rather than the previously described reduction schemes, a modified version of the restriction operator of the multi-grid linear system solver (as in Grady et al., “A Geometric Multi-Grid Approach to Solving the 2D Inhomogeneous Laplace Equation With Internal Dirichlet Boundary Conditions”, IEEE International Conference on Image Processing, vol. 2, pp. 642-645, 2005) can be used as the reduction scheme for the local feature matrices. This reduction scheme for reducing a local feature matrix Ykn at the n th scale, where Nc−1≦n≦Ns−2, can be expressed in the following three equations for the 2D case:

[ Y k n ] 2 i , 2 j + 1 = [ Y k n ] 2 i , 2 j + 1 + [ W h n ] 2 i , 2 j [ Y k n ] 2 i , 2 j + [ W h n ] 2 i , 2 j + 1 [ Y k n ] 2 i , 2 j + 2 [ W h n ] 2 i , 2 j + [ W h n ] 2 i , 2 j + 1 ( 20 ) [ Y k n ] 2 i + 1 , 2 j = [ Y k n ] 2 i + 1 , 2 j + [ W v n ] 2 i , 2 j [ Y k n ] 2 i , 2 j + [ W v n ] 2 i + 1 , 2 j [ Y k n ] 2 i + 2 , 2 j [ W v n ] 2 i , 2 j + [ W v n ] 2 i + 1 , 2 j ( 21 ) [ Y k n + 1 ] i , j = [ Y k n ] 2 i + 1 , 2 j + 1 + [ W h n ] 2 i + 1 , 2 j [ Y k n ] 2 i + 1 , 2 j + [ W h n ] 2 i + 1 , 2 j + 1 [ Y k n ] 2 i + 1 , 2 j + 2 [ W h n ] 2 i + 1 , 2 j [ W h n ] 2 i + 1 , 2 j + 1 + [ W v n ] 2 i , 2 j + 1 [ W v n ] 2 i + 1 , 2 j + 1 + [ W v n ] 2 i , 2 j + 1 [ Y k n ] 2 i , 2 j + 1 + [ W v n ] 2 i + 1 , 2 j + 1 [ Y k n ] 2 i + 2 , 2 j + 1 [ W h n ] 2 i + 1 , 2 j [ W h n ] 2 i + 1 , 2 j + 1 + [ W v n ] 2 i , 2 j + 1 [ W v n ] 2 i + 1 , 2 j + 1 ( 22 )

Padding to Whn, Wvn, and Ykn can be added, when a matrix index is out of range. Step 315 is repeated until scale Ns−1 is reached (step 320).

In step 325, the local feature matrices at the n th scale can be smoothed based on the local similarity matrices at that scale using the following equation for the 2D case:

[ Y k n ] i , j = [ Y k n ] i , j [ W h n ] i , j - 1 + [ W h n ] i , j + [ W v n ] i - 1 , j + [ W v n ] i , j + γ [ W h n ] i , j - 1 [ Y k n ] i , j - 1 + [ W h n ] i , j [ Y k n ] i , j + 1 [ W h n ] i , j - 1 + [ W h n ] i , j + [ W v n ] i - 1 , j + [ W v n ] i , j + γ [ W v n ] i - 1 , j [ Y k n ] i - 1 , j + [ W v n ] i , j [ Y k n ] i + 1 , j [ W h n ] i , j - 1 + [ W h n ] i , j + [ W v n ] i - 1 , j + [ W v n ] i , j ( 23 )
where γ is a free parameter.

Step 330 checks whether the finest scale of the local similarity pyramids (i.e., the 0th scale) is reached. If the 0th scale is not reached, step 335 is performed; otherwise, step 340 is performed. In step 335, the local feature matrices at the n th scale are expanded to a finer scale. Rather than the previously described expansion schemes, a modified version of the prolongation operator of the multi-grid linear system solver can be used as an expansion scheme for the local feature matrices. This expansion scheme for expanding a local feature matrix Ykn at the n th scale, where 1≦n≦Ns−1, can be expressed in the following four equations for the 2D case:

[ Y k n - 1 ] 2 i + 1 , 2 j + 1 = [ Y k n ] i , j ( 24 ) [ Y k n - 1 ] 2 i + 1 , 2 j = [ W h n - 1 ] 2 i + 1 , 2 j - 1 [ Y k n - 1 ] 2 i + 1 , 2 , j - 1 + [ W h n - 1 ] 2 i + 1 , 2 j [ Y k n - 1 ] 2 i + 1 , 2 j + 1 [ W h n - 1 ] 2 i + 1 , 2 j - 1 + [ W h n - 1 ] 2 i + 1 , 2 j ( 25 ) [ Y k n - 1 ] 2 i , 2 j + 1 = [ W v n - 1 ] 2 i - 1 , 2 j + 1 [ Y k n - 1 ] 2 i - 1 , 2 j + 1 + [ W v n - 1 ] 2 i , 2 j + 1 [ Y k n - 1 ] 2 i + 1 , 2 j + 1 [ W v n - 1 ] 2 i - 1 , 2 j + 1 + [ W v n - 1 ] 2 i , 2 j + 1 ( 26 ) [ Y k n - 1 ] 2 i , 2 j = [ W h n - 1 ] 2 i , 2 j - 1 [ Y k n - 1 ] 2 i , 2 j - 1 + [ W h n - 1 ] 2 i , 2 j [ Y k n - 1 ] 2 i , 2 j + 1 [ W h n - 1 ] 2 i , 2 j - 1 + [ W h n - 1 ] 2 i , 2 j + [ W v n - 1 ] 2 i - 1 , 2 j + [ W v n - 1 ] 2 i , 2 j + [ W v n - 1 ] 2 i - 1 , 2 j [ Y k n - 1 ] 2 i - 1 , 2 j + [ W v n - 1 ] 2 i , 2 j [ Y k n - 1 ] 2 i + 1 , 2 j [ W h n - 1 ] 2 i , 2 j - 1 + [ W h n - 1 ] 2 i , 2 j + [ W v n - 1 ] 2 i - 1 , 2 j + [ W v n - 1 ] 2 i , 2 j ( 27 )
Padding to Whn−1, Wvn−1, and Ykn−1 can be added, when a matrix index is out of range.

Steps 325 and 335 are repeated until the finest scale of the local similarity pyramids (i.e., the 0th scale) is reached (step 330). In step 340, element-wise normalization is performed on the finest-scale local feature matrices to form the local weight matrices. The local weight matrix Uk associated with the 0th scale of the k th source image can be computed using the following equation:

[ U k ] ind = [ Y k 0 ] ind m = 0 K - 1 [ Y m 0 ] ind ( 28 )
Computing Global Weight Vectors and Computing Final Weight Matrices

FIG. 4 further illustrates step 120 of computing global weight vectors. In step 405, one or more global features are computed for individual source images and/or for some source images and/or for all source images. A global feature herein represents a certain characteristic of one or more source images. Examples of a global feature include but are not limited to average luminance of one, some or all source images, average color saturation of one, some, or all source images, difference between the average luminance of one non-empty set of source images and that of another non-empty set of source images, and difference between the average color saturation of one non-empty set of source images and that of another non-empty set of source images. In step 410, the global features are transformed using pre-defined function(s). Unlike local weight matrices, which only affect local characteristics of the fused image, these global weight vectors affect global characteristics of the fused image. In step 415, a global weight vector for each source image can be constructed by concatenating the global weights associated with that source image. The elements of a global weight vector can be stored as a vector or in a matrix.

In order for both local features and global features to contribute to the fused image, the local weight matrices and the global weight vectors are combined using a pre-defined function to form a final weight matrix for each source image, as depicted in step 125 in FIG. 1.

For example, in an aspect, steps 120 and 125 can be performed as follows, where the global weight vectors contribute to enhanced global contrast of the fused image.

In step 405, the average luminance of all source images is computed. Let L denote the average luminance of all source images. In step 410, L can be transformed by two non-liner functions, which results in two global weights, denoted by V0 and V1. The two non-linear functions can take the following forms:
V000exp(− L)  (29)
V111exp(− L)  (30)
where α0, α1, β0, and β1 are free parameters. Let Vk denote the global weight vector for the k th source image. In step 415, Vk can be constructed by concatenating V0 and V1, i.e., Vk=(V0,V1).

In step 125, the global weight vectors (Vk's) and the local weight matrices (Uk's) are combined to generate the final weight matrices (Xk's). Let [T]i denote the i th element in a vector T. The combination function can take the following form:
Xk=[Vk]0Uk−[Vk]1  (31)

In this embodiment, the contribution of the global feature L to the fused image is enhanced global contrast. If L is low, it indicates that the amount of under-exposed image regions in the source images may be large. Hence, in step 410, Equation 26 results in a larger V0 and Equation 27 results in a larger V1, when β0 and β1 are positive. When global weight vectors are combined with local weight matrices in step 125 using Equation 28, [Vk]0 helps to increase the global contrast of a fused image, i.e., to extend the dynamic range of a fused image; and [Vk]1 helps to select the middle portion of the extended dynamic range avoiding over- or under-exposure in a fused image.

As another example, in an alternative embodiment, steps 120 and 125 can be performed as follows, where global weight vectors contribute to both enhanced global contrast and enhanced brightness in the fused image.

In step 405, the average luminance of each source image and the average luminance of all source images are computed. Let Lk denote the average luminance of the k th source image, and let L still denote the average luminance of all source images. In step 410, L is transformed in the same way as previously described, which results in two global weights, V0 and V1. Let V2,k denote the global weight computed from Lk. V2,k can be computed by transforming Lk using the following function:

V 2 , k = { δ L _ k , L _ k > η ; 0 , otherwise . ( 32 )
where δ and η are free parameters. In step 415, Vk can be constructed by concatenating V0, V1, and V2,k, i.e., Vk=(V0,V1,V2,k).

In step 125, a final weight matrix Xk can be computed by combining the global weight vectors (Vk's) and the local weight matrices (Uk's) in the following way:
Xk=[Vk]0Uk−[Vk]1+[Vk]2  (33)

In this embodiment, the contribution of the global feature L to the fused image is the same as that in the previous embodiment, i.e., enhanced global contrast. The contribution of the global feature Lk to the fused image is enhanced brightness. V2,k's computed from Equation 29 in step 405 favor those image regions from source images with higher average luminance values, i.e., from brighter source images, when δ is positive. When global weight vectors are combined with local weight matrices in step 125 using Equation 30, image regions with more local features in those brighter source images can receive higher weights from the final weight matrices, so that those image regions look brighter in a fused image.

A System

FIG. 5 depicts an exemplary image fusion system 500. The image fusion system 500 includes image source(s) 505, a computing device 510, and display(s) 545. The image source(s) 505 can be one or more image sensors or one or more image storage devices. Examples of the computing device 510 include but are not limited to a personal computer, server, computer cluster, and a smart phone. The computing device 510 includes three interconnected components: processor(s) 515, an image fusion module 520, and memory 525. Processor(s) 515 can be a single processor or multiple processors. Examples of a processor include but are not limited to a central processing unit (CPU) and a graphics processing unit (GPU). Memory 525 stores source images 530, fused image(s) 535, and intermediate data 540. Intermediate data 540 are used and/or generated by the processor(s) 515 and the image fusion module 520. The image fusion module 520 contains processor executable instructions, which can be executed by the processor(s) 515 one or more times to compute fused image(s) 535 from the source images 530 following the image fusion procedure 100. Image fusion module 520 may be incorporated as hardware, software or both, and may be within computing device 510 or in communication with computing device 510.

The system 500 functions in the following manner. The image source(s) 505 sends source images 530 to the computing device 510. These source images 530 are stored in the memory 525. The image fusion module 520 uploads instructions to the processor(s) 515. The processor(s) 515 executes the uploaded instructions and generates fused image(s) 535. The fused image(s) 535 is then sent to display(s) 545.

The above-described embodiments have been provided as examples, for clarity in understanding the present disclosure. A person with skill in the art will recognize that alterations, modifications and variations may be effected to the embodiments described above while remaining within the scope as defined by claims appended hereto.

Shen, Rui

Patent Priority Assignee Title
11276207, Jan 26 2018 TENCENT TECHNOLOGY (SHENZHEN) COMPANY LIMITED Image processing method, storage medium, and computer device
11295195, Mar 03 2017 Samsung Electronics Co., Ltd. Neural network devices and methods of operating the same
11875520, Nov 21 2018 ZHEJIANG DAHUA TECHNOLOGY CO., LTD. Method and system for generating a fusion image
9299130, Mar 15 2013 Trustees of Tufts College Methods and apparatus for image processing and analysis
Patent Priority Assignee Title
4661986, Jun 27 1983 RCA Corporation Depth-of-focus imaging process method
5325449, May 15 1992 Sarnoff Corporation Method for fusing images and apparatus therefor
5488674, May 15 1992 Sarnoff Corporation Method for fusing images and apparatus therefor
6088470, Jan 27 1998 Sensar, Inc.; Sarnoff Corporation Method and apparatus for removal of bright or dark spots by the fusion of multiple images
6201899, Oct 09 1998 Sarnoff Corporation Method and apparatus for extended depth of field imaging
6584235, Apr 23 1998 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Wide dynamic range fusion using memory look-up
6816627, Apr 12 2001 Lockheed Martin Corporation System for morphological image fusion and change detection
6879731, Apr 29 2003 Microsoft Technology Licensing, LLC System and process for generating high dynamic range video
6898331, Aug 28 2002 BAE SYSTEMS CONTROLS INC Image fusion system and method
6912324, Apr 23 1998 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Wide dynamic range fusion using memory look-up
7058233, May 30 2001 Mitutoyo Corporation Systems and methods for constructing an image having an extended depth of field
7148861, Mar 01 2003 Boeing Company, the Systems and methods for providing enhanced vision imaging with decreased latency
7176963, Jan 03 2003 L3 Technologies, Inc Method and system for real-time image fusion
7340099, Jan 17 2003 NEW BRUNSWICK, UNIVERSITY OF, THE System and method for image fusion
7443443, Jul 28 2005 Mitsubishi Electric Research Laboratories, Inc.; Mitsubishi Electric Research Laboratories, Inc Method and apparatus for enhancing flash and ambient images
7613360, Feb 01 2006 Honeywell International Inc Multi-spectral fusion for video surveillance
7623683, Apr 13 2006 Hewlett-Packard Development Company, L.P.; HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Combining multiple exposure images to increase dynamic range
7636098, Sep 28 2006 Microsoft Technology Licensing, LLC Salience preserving image fusion
7936948, Dec 01 2006 HONG FU JIN PRECISION INDUSTRY SHENZHEN CO , LTD ; HON HAI PRECISION INDUSTRY CO , LTD System and method for merging differently focused images
7936949, Dec 01 2006 Harris Corporation Panchromatic modulation of multispectral imagery
7940994, Nov 15 2005 TELEDYNE SCIENTIFIC & IMAGING, LLC Multi-scale image fusion
8111300, Apr 22 2009 Qualcomm Incorporated System and method to selectively combine video frame image data
8237813, Apr 23 2009 Qualcomm Incorporated Multiple exposure high dynamic range image capture
8320712, Mar 07 2008 Korea Aerospace Research Institute Satellite image fusion method and system
8339475, Dec 19 2008 Qualcomm Incorporated High dynamic range image combining
8406569, Jan 19 2009 Sharp Kabushiki Kaisha Methods and systems for enhanced dynamic range images and video from multiple exposures
8411938, Nov 29 2007 SRI International Multi-scale multi-camera adaptive fusion with contrast normalization
8447137, Apr 12 2011 CSI Ricerca & Ambiente SRL; Semeion Centro Ricerche Method of image fusion
8525900, Apr 23 2009 Qualcomm Incorporated Multiple exposure high dynamic range image capture
8805111, Feb 09 2010 Indian Institute of Technology Bombay System and method for fusing images
8885976, Jun 20 2013 Cyberlink Corp Systems and methods for performing image fusion
20020015536,
20050190990,
20070247517,
20090278857,
20100103194,
20110025919,
20110064327,
20110147588,
20110176024,
20110194788,
20110221906,
20110293179,
20120183210,
20120274814,
20130070965,
20130129201,
20130223760,
20130272495,
RE41447, Aug 28 2002 BAE SYSTEMS CONTROLS INC Image fusion system and method
WO184828,
WO2006017233,
WO2012173571,
WO2013014083,
WO2013109192,
Executed onAssignorAssigneeConveyanceFrameReelDoc
Date Maintenance Fee Events
Sep 21 2018M2551: Payment of Maintenance Fee, 4th Yr, Small Entity.
Jan 30 2023REM: Maintenance Fee Reminder Mailed.
Feb 10 2023M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.
Feb 10 2023M2555: 7.5 yr surcharge - late pmt w/in 6 mo, Small Entity.


Date Maintenance Schedule
Jun 09 20184 years fee payment window open
Dec 09 20186 months grace period start (w surcharge)
Jun 09 2019patent expiry (for year 4)
Jun 09 20212 years to revive unintentionally abandoned end. (for year 4)
Jun 09 20228 years fee payment window open
Dec 09 20226 months grace period start (w surcharge)
Jun 09 2023patent expiry (for year 8)
Jun 09 20252 years to revive unintentionally abandoned end. (for year 8)
Jun 09 202612 years fee payment window open
Dec 09 20266 months grace period start (w surcharge)
Jun 09 2027patent expiry (for year 12)
Jun 09 20292 years to revive unintentionally abandoned end. (for year 12)