A control system or module and a method are disclosed to maximize the current flow from a solar panel into the battery connected during the solar panel's operation by first tracking an output of the solar panel in determining a maximum power point of the output at a specific instance, identifying a range about the maximum power point, and adjusting a current level of the output by (i) increasing the current level of the output when a voltage level of the output indicates that the voltage level is above a maximum charge voltage of a battery, and (ii) decreasing the current level of the output when the voltage level of the output indicates that the voltage level is below a minimum charge voltage of the battery.
|
1. A method for operating a solar panel to charge a battery, the method comprising:
tracking a current level of an output of the solar panel, the output being supplied to a battery; and
repeatedly adjusting the current level of the output by (i) when a voltage level of the output is greater than a minimum specified for charging the battery, increasing the current level of the output until the current level reaches either one of (A) a maximum current level specified for charging the battery or (B) a maximum predetermined current level for the output, and (ii) when the voltage level of the output is less than the minimum specified for charging the battery, decreasing the current level of the output in order to boost the voltage to or above the minimum specified for charging the battery.
2. The method of
3. The method of
4. The method of
5. The method of
6. The method of
7. The method of
determining a maximum power point of the output;
identifying a range about the maximum power point;
wherein adjusting the current level of the output includes increasing the current level of the output while maintaining a power level of the output to be within the range about the maximum power point; and
wherein the range is remotely specified by an off-site entity.
8. The method of
9. The method of
storing energy generated from the solar panel into a charge storage when the output of the solar panel is selectively disconnected from the battery.
10. The method of
11. The method of
selectively discharging the charge storage to increase the voltage level of the output.
12. The method of
13. The method of
14. The method of
15. The method of
determining a maximum power point of the output;
identifying a range about the maximum power point; and
wherein adjusting the current level of the output includes increasing the current level of the output while maintaining a power level of the output to within the range about the maximum power point.
|
This patent application claims the benefit of the U.S. provisional patent application having Ser. No. 61/328,180, filed Apr. 27, 2010; the aforementioned application being hereby incorporated by reference in its entirety.
Embodiments described herein pertain generally to a method and apparatus for controlling a solar panel output for charging of any type of energy storage element such as batteries.
It is known in the art that a solar panel's operating point (voltage and current) may be decided by an electronic circuit called a maximum power point tracker (“MPPT”) to keep the power level of an output of the solar panel to reach a maximum. This operating point of the solar panel is called maximum power point (“MPP”). Currently, a solar panel having MPPT would adjust the solar panel to operate at MPP to charge a battery. However, operating the panel at MPP does not guarantee maximum current flow into the battery connected when charging the battery (e.g., during a “bulk charging” mode), which in turn minimizes the time needed for charging a battery to full capacity.
More specifically, different types of batteries come with different impedance characteristics that may affect the current flow from a solar panel into a connected battery. Each type of battery also has its unique minimum charge voltage, maximum charge voltage, minimum charge current, and maximum charge current. Similarly, the charging status of a battery can affect the voltage level required for charging the battery. Moreover, as ambient temperature changes and/or sunlight condition varies, MPP can drift so that the solar panel produces an output at a different power level. Therefore, it is desirable to employ a control system that monitors and adjusts the current and voltage level of the solar panel's output to maximize the current flow from the solar panel into the battery connected in response to different variables including, for example, different types of battery, the charging status of the battery, temperature of the panel, or sunlight condition (often measured in irradiance).
Further, in conventional approaches, when the voltage level on the solar panels drops to a level that it is unable to provide sufficient minimum charge voltage as required to charge the battery, the energy generated by the panel is lost. Therefore, it is also desirable to provide a mechanism in the solar panel system to enable a boost to the voltage level of the panel's output so that the battery can be charged even in low light conditions. This enables an extension of the energy harvesting period of the solar panel when the panel is experiencing low light conditions such as dusk, dawn or clouds.
Embodiments are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
According to embodiments, a control system or module and a method are provided for controlling a solar panel output in charging a battery during the solar panel's operation.
Embodiments such as described can enable the solar panel to generate a maximum current flow by first tracking an output of the solar panel in determining a maximum power point of the output at a specific instance, and then adjusting a current level of the output from the solar panel by (i) selectively increasing the current level of the output when a voltage level of the output indicates that the voltage level is above a minimum charge voltage of a battery that is coupled to the solar panel, and (ii) selectively decreasing the current level of the output when the voltage level of the output indicates that the voltage level is below a minimum charge voltage of the battery. The power level of the output is monitored so that the power level of the output does not drop below a certain range while adjusting the current level to a maximum. The range may be predetermined or identified by a user. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the embodiments. It will be apparent, however, that the embodiments may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form to avoid unnecessarily obscuring the exemplary embodiments described herein.
More specifically, a typical solar panel has an operation point, called maximum power point, of which the power level of the output of the solar panel is at a maximum. However, the power output characteristics of a solar panel vary with the operation condition including, for example, the solar panel's temperature.
An embodiment includes a control system for a solar panel. The control system includes a control module that is coupled to an output of the solar panel. The control module is structured to: (i) store energy generated from the solar panel into a charge storage whenever current levels of the output is above a maximum charge current of a battery that is coupled to the solar panel; and (ii) selectively discharge the charge storage to increase the voltage level of the output.
Real time clock 105 provides clock information to control module 100, so that control module 100 can repeatedly, in variations, perform current level adjustments (in a manner described above) according to, for example, different time of a day or at a predetermined time interval.
Still further, in one embodiment, environment detection logic 110 has inputs to receive external sensor readings 112 from a plurality of external sensors in the control system of the solar panel (see
Panel monitor logic 120 uses a voltage/current (V/I) sensor (see
Output modification logic 140 is coupled to hardware or other resources for affecting current levels on the output of the solar panel. As described with one or more other embodiments, the output modification logic 140 can affect a switching element (see
Control module 100 may include additional inputs to receive remote control signals 102 from an off-site entity. The remote control signals 102 can be used, for example, to identify or modify a range about the MPP to adjust current levels of the output. Other parameters or services within the control system (see
Control module 100 may be implemented by a processor, a microcontroller, or an integrated circuit device. According to an embodiment, control module 100 includes a plurality of inputs to receive external sensor readings 112 from external sensors 210, to receive panel V/I readings 122 from panel V/I sensor 220, to receive battery V/I readings 132 from battery V/I sensor 230, and optionally, to receive remote control signals 102 from an off-site entity. The panel V/I sensor 220 is coupled to the solar panel 260 to detect the voltage/current level of a panel output 262. The battery V/I sensor 230 is coupled to the battery 270 to detect the voltage/current level of an adjusted panel output 232 that flows through control system 205 into the battery 270. Depending on the application, external sensors 210 may detect different environmental variables and transmit the data into control module 100. Information regarding the battery 270 including, for example, maximum charge current and maximum/minimum charge voltages of the battery 270 can be transmitted to control module 100 through external sensor readings 112. In some embodiments, external sensors 210 include a temperature sensor coupled to the solar panel 260 to detect the temperature of the panel 260.
During normal operation of solar panel system 200, control module 100 tracks a power level of the panel output 262 in determining a maximum power point of the panel output 262. A range about the maximum power point is also identified by control module 100 so that control module 100 maintains the power level of the panel output 262 at or above the identified range when affecting current levels of the panel output 262. Then, when the system 200 is charging the battery 270 (e.g., in “bulk charging” mode), if a voltage level of the panel output 262 is higher than the minimum charge voltage of the battery 270, then control system 100 increases a current level of the panel output 262 (and thereby decreases the voltage level of the panel output 262) by using a modification output 142 to control current switch 240 until a maximum current level of the panel output 262 is reached, or until the panel output 262 reaches the maximum charge current of the battery 270. If the current level of the panel output 262 is above the maximum charge current of the battery 270, then control module 100 will stop increasing the current level of the panel output 262 to ensure the battery 270 is charged within safety limits.
If the voltage level of the panel output 262 is lower than the minimum charge voltage of the battery 270, then control system 100 decreases the current level of the panel output 262 (and thereby increases the voltage level of the panel output 262) by using a modification output 142 to control the current switch 240 until the voltage level of the panel output 262 is at or above the minimum charge voltage of the battery 270.
In some embodiments, off charge storage 252 is positioned and configured to store charge from the solar panel when the current switch is in the off-state. In this configuration it supplies charge to boost the voltage and/or current when the output of the solar panel is too low for the battery 270. If, the voltage level of the panel output 262 cannot be raised to at or above the minimum charge voltage of the battery 270, then control module 100 can discharge the charge storage 252 to boost up voltage levels so that the adjusted panel output 232 may still reach the minimum charge voltage of the battery 270.
The charge storage 252 may be implemented by any suitable type of energy storage including, a rechargeable battery or a capacitor. Furthermore, for illustration purposes, the location of charge storage 252 is shown in
Current switch 240 has an input to receive the modification output 142 from control module 100 to control the current level of the panel output 262. Current switch 240 can force current reduction in the output of the solar panel. The reduction in current, when appropriately measured, results in an increase of the solar panel's output voltage. Similarly, current switch 240 can also force current increase in the output of the solar panel. The increase in current, when appropriately measured, results in a reduction of the solar panel's output voltage.
According to some embodiments, the current switch 240 is an electronic switching element. In particular, one a more embodiments provide that current switch 240 is a buck-boost switching element, capable of bucking or boosting the output voltage (i.e. Voc) on the panel output 262. In one implementation, the switching element is formed by a combination of MOSFETs or other transistors. The gate of the MOSFETs is controlled by pulse width modulation from the control module 100. The control module 100 reduces the current level on the panel output 262 by changing the switching speed (or frequency) of the switching element. In this regard, the control module 100 may signal a pulse width modulation (PWM) control signal to affect the operation of the switching elements in reducing the current levels (or conversely, increasing the current levels) based on the requirements of the algorithm implemented within control module 100 and/or other conditions.
As an alternative or addition, control module 100 redirects the energy from the solar panel 260 to be stored in a controlled charge storage 250. For example, a separate control switch may be implemented under control of the control module 100. In such embodiments, the energy such stored is selectively released when the panel output 262 is reconnected (e.g., in an “on” cycle of current switch 240) to the battery 270. This release of energy from controlled charge storage 250 can boost the voltage level slightly to provide a higher voltage level to the adjusted panel output 232 in situations when the solar panel 260 does not provide sufficient voltage at the panel output 262 to meet the minimum charge voltage requirement of the battery 270. This is especially useful to extend the energy harvest period of the solar panel 260 when in low light conditions such as dusk, dawn or clouds. This technique can also further increase the current level of the panel output 262 so that a maximum charge can be delivered to the battery 270.
Together, in a manner described above, control system 205 performs a “maximum current tracking” for operating a solar panel system 200 by using the current switch 240 to increase the current level of the panel output 262 until either the current level reaches a maximum charge current of the battery or the current level reaches a maximum of the panel output 262 (without dropping the voltage level of the output below a range specified), while maintaining the voltage level of the panel output 262 within the range of the charging voltage of the battery 270. According to embodiments, various control techniques described herein may be applied alone or in various combinations to harvest a maximum usable current to charge the battery 270 and minimize loss of energy generated by solar panel 260.
An example of how operating environment may affect the MPP of the solar panel is now discussed.
Similarly, in other embodiments, the solar panel system 200 of
In
While the invention has been described with reference to specific embodiments thereof, it will be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention. For example, features or aspects of any of the embodiments may be applied, at least where practicable, in combination with any other of the embodiments or in place of counterpart features or aspects thereof. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
Patent | Priority | Assignee | Title |
10404205, | Aug 04 2015 | GOAL ZERO LLC | Portable solar panel system |
Patent | Priority | Assignee | Title |
4086485, | May 26 1976 | Massachusetts Institute of Technology | Solar-radiation collection apparatus with tracking circuitry |
4333136, | Nov 26 1979 | AMOCO ENRON SOLAR | Solar powered automatic turn-on control (SPA-TOC) unit and method |
6255804, | Sep 18 1998 | Fire Wind & Rain Technologies LLC | Method for charging a battery with maximum power tracking |
6433522, | May 02 2001 | The Aerospace Corporation | Fault tolerant maximum power tracking solar power system |
6690590, | Dec 26 2001 | British Columbia Institute of Technology | Apparatus for regulating the delivery of power from a DC power source to an active or passive load |
7158395, | May 02 2003 | RHOMBUS ENERGY SOLUTIONS, INC , A DELAWARE CORPORATION | Method and apparatus for tracking maximum power point for inverters, for example, in photovoltaic applications |
7432691, | Sep 29 2003 | Xantrex Technology Inc. | Method and apparatus for controlling power drawn from an energy converter |
7709727, | May 17 2002 | Circuit arrangement for a photovoltaic system | |
7864497, | Jan 26 2005 | FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E V | Protective circuit |
8044538, | Jan 10 2008 | STMicroelectronics S.r.l. | Multi-cellular photovoltaic panel system with DC-DC conversion replicated for groups of cells in series of each panel and photovoltaic panel structure |
8401706, | Aug 28 2008 | ETM Electromatic Inc | Networked multi-inverter maximum power-point tracking |
20010043050, | |||
20030117822, | |||
20040207366, | |||
20060017327, | |||
20060185727, | |||
20080164766, | |||
20080238195, | |||
20090078300, | |||
20100102773, | |||
20100201305, | |||
20110260676, | |||
20120080943, | |||
EP2056180, | |||
JP2262461, | |||
JP8191573, | |||
WO2006005125, | |||
WO9533283, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 27 2011 | NavSemi Energy Private Ltd. | (assignment on the face of the patent) | / | |||
Apr 27 2011 | JAIN, BABU | NAVSEMI ENERGY PRIVATE LIMITED | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 026190 | /0793 |
Date | Maintenance Fee Events |
May 06 2019 | REM: Maintenance Fee Reminder Mailed. |
Sep 13 2019 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 13 2019 | M1554: Surcharge for Late Payment, Large Entity. |
May 08 2023 | REM: Maintenance Fee Reminder Mailed. |
Oct 23 2023 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Sep 15 2018 | 4 years fee payment window open |
Mar 15 2019 | 6 months grace period start (w surcharge) |
Sep 15 2019 | patent expiry (for year 4) |
Sep 15 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 15 2022 | 8 years fee payment window open |
Mar 15 2023 | 6 months grace period start (w surcharge) |
Sep 15 2023 | patent expiry (for year 8) |
Sep 15 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 15 2026 | 12 years fee payment window open |
Mar 15 2027 | 6 months grace period start (w surcharge) |
Sep 15 2027 | patent expiry (for year 12) |
Sep 15 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |