Embodiments of mechanisms of forming a semiconductor device structure are provided. The semiconductor device structure includes a substrate and a gate stack structure formed on the substrate. The semiconductor device structure also includes gate spacers formed on sidewalls of the gate stacks. The semiconductor device structure includes doped regions formed in the substrate. The semiconductor device structure also includes a strained source and drain (ssd) structure adjacent to the gate spacers, and the doped regions are adjacent to the ssd structure. The semiconductor device structure includes ssd structure has a tip which is closest to the doped region, and the tip is substantially aligned with an inner side of gate spacers.
|
1. A semiconductor device structure, comprising:
a substrate;
a gate stack structure formed on the substrate;
gate spacers formed on sidewalls of the gate stack structure; and
doped regions formed in the substrate;
a source and drain (ssd) structure adjacent to the gate spacers, wherein the doped regions are adjacent to the ssd structure, and ssd structure has a tip which is closest to the doped region, and the tip is substantially aligned with an inner side of gate spacers, wherein the doped regions have a gradient dopant concentration, and dopant concentration is decreased from inner side to outer side of doped regions.
12. A semiconductor device structure, comprising:
a substrate having a top surface;
a gate stack structure formed on the substrate;
sealing layers formed on sidewalls of the gate stack structure;
gate spacers formed on the sealing layers;
a doped region formed in the substrate below the gate spacers; and
an sige ssd structure formed in the substrate adjacent to gate spacers and the doped region, wherein a surface proximity is defined by a distance on the top surface of the substrate between an inner side of the gate spacers and an inner border of the sige ssd structure, and the surface proximity is in a range from about −1 nm to about +1 nm, wherein the doped regions have a gradient dopant concentration, and dopant concentration is decreased from inner side to outer side of doped regions.
2. The semiconductor device structure as claimed in
3. The semiconductor device structure as claimed in
4. The semiconductor device structure as claimed in
5. The semiconductor device structure as claimed in
6. The semiconductor device structure as claimed in
7. The semiconductor device structure as claimed in
8. The semiconductor device structure as claimed in
9. The semiconductor device structure as claimed in
10. The semiconductor device structure as claimed in
11. The semiconductor device structure as claimed in
13. The semiconductor device structure as claimed in
14. The semiconductor device structure as claimed in
15. The semiconductor device structure as claimed in
16. The semiconductor device structure as claimed in
17. The semiconductor device structure as claimed in
18. The semiconductor device structure as claimed in
19. The semiconductor device structure as claimed in
20. The semiconductor device structure as claimed in
|
Semiconductor devices are used in a variety of electronic applications, such as personal computers, cell phones, digital cameras, and other electronic equipment. Semiconductor devices are typically fabricated by sequentially depositing insulating or dielectric layers, conductive layers, and semiconductor layers of materials over a semiconductor substrate, and patterning the various material layers using lithography to form circuit components and elements thereon.
The semiconductor industry continues to improve the integration density of various electronic components (e.g., transistors, diodes, resistors, capacitors, etc.) by continual reductions in minimum feature size, which allow more components to be integrated into a given area. These smaller electronic components also require smaller packages that utilize less area than packages of the past, in some applications.
A MOSFET with stressor regions is often formed by using epitaxially grown semiconductor materials to form source and drain features. Various techniques directed at the shapes, configurations, and materials of the source and drain features have been implemented to further improve transistor device performance. Although existing approaches have been generally adequate for their intended purposes, they have not been entirely satisfactory in all respects.
For a more complete understanding of the present disclosure, and the advantages, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
The making and using of the embodiments of the disclosure are discussed in detail below. It should be appreciated, however, that the embodiments can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative, and do not limit the scope of the disclosure.
It is to be understood that the following disclosure provides many different embodiments, or examples, for implementing different features of the disclosure. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. Moreover, the performance of a first process before a second process in the description that follows may include embodiments in which the second process is performed immediately after the first process, and may also include embodiments in which additional processes may be performed between the first and second processes. Various features may be arbitrarily drawn in different scales for the sake of simplicity and clarity. Furthermore, the formation of a first feature over or on a second feature in the description may include embodiments in which the first and second features are formed in direct or indirect contact.
Some variations of the embodiments are described. Throughout the various views and illustrative embodiments, like reference numbers are used to designate like elements.
Mechanisms for forming a semiconductor device are provided.
Semiconductor substrate 102 may be made of silicon or other semiconductor materials. Alternatively or additionally, semiconductor substrate 102 may include other elementary semiconductor materials such as germanium. In some embodiments, semiconductor substrate 102 is made of a compound semiconductor such as silicon carbide, gallium arsenic, indium arsenide, or indium phosphide. In some embodiments, semiconductor substrate 102 is made of an alloy semiconductor such as silicon germanium, silicon germanium carbide, gallium arsenic phosphide, or gallium indium phosphide. In some embodiments, semiconductor substrate 102 includes an epitaxial layer. For example, semiconductor substrate 102 has an epitaxial layer overlying a bulk semiconductor.
Semiconductor substrate 102 may further include isolation features (not shown), such as shallow trench isolation (STI) features or local oxidation of silicon (LOCOS) features. The isolation features may define and isolate various integrated circuit devices. Integrated circuit devices, such as metal oxide semiconductor field effect transistors (MOSFET), complementary metal oxide semiconductor (CMOS) transistors, bipolar junction transistors (BJT), high voltage transistors, high frequency transistors, p-channel and/or n-channel field effect transistors (PFETs/NFETs), etc.), diodes, or other suitable elements, are formed in and/or on semiconductor substrate 102.
Gate stack structure 10 includes a gate dielectric layer 112, a gate electrode layer 114 and a mask layer 116 in some embodiments. Gate dielectric layer 112 is formed on substrate 102. Gate dielectric layer 112 may be made of silicon oxide, silicon oxynitride, or a high dielectric constant material (high-k material). The high dielectric constant material may include hafnium oxide (HfO2), hafnium silicon oxide (HfSiO), hafnium silicon oxynitride (HfSiON), hafnium tantalum oxide (HfTaO), hafnium titanium oxide (HfTiO), hafnium zirconium oxide (HfZrO), or other suitable high-k dielectric materials. The high-k material may further include metal oxides, metal nitrides, metal silicates, transition metal-oxides, transition metal-nitrides, transition metal-silicates, oxynitrides of metals, metal aluminates, zirconium silicate, zirconium aluminate, silicon oxide, silicon nitride, silicon oxynitride, zirconium oxide, titanium oxide, aluminum oxide, hafnium dioxide-alumina (HfO2—Al2O3) alloy, or other suitable materials. Gate dielectric layer 112 may be formed by any suitable process, such as atomic layer deposition (ALD), chemical vapor deposition (CVD), physical vapor deposition (PVD), remote plasma CVD (RPCVD), plasma enhanced CVD (PECVD), metal organic CVD (MOCVD), sputtering, plating, or other suitable processes.
Afterwards, gate electrode layer 114, such as polysilicon, metal or metal silicide, is formed on the gate dielectric layer 112. In some embodiments, gate electrode layer 114 is made of a polysilicon layer which serves as a dummy gate that is replaced in a subsequent gate replacement process. In some embodiments, gate electrode layer 114 is formed by using a CVD process.
As shown in
Afterwards, sealing layers 118 are formed on sidewalls of the gate stack structure 10. However, sealing layers 118 are optional. Sealing layers 118 are made of a dielectric material. The dielectric material may include, for example, a silicon nitride, silicon oxide, silicon oxynitride, or other suitable materials. Sealing layers 118 are deposited on the gate stack structures 10 and the semiconductor substrate 102 by using a suitable process, such as a CVD process. Then, an etching process, such as a dry etching process, is performed to partially remove the sealing layers 118 such that the sealing layers 118 remain on the opposite sidewalls of the gate stack structure 10. The sealing layers 118 may protect the gate stack structure 10 from damage when subsequent process steps are performed. In some embodiments, sealing layers 118 have a thickness in a range from about 1 nm to about 5 nm.
As shown in
After forming gate spacers 120, a dry etching process 21 is performed to remove a portion of semiconductor substrate 102 and to form recesses 130 as shown in
In some embodiments, dry etching process 21 includes an etching gas including He, Ar, HBr, N2, CH4, CF4, CH3F, CH2F2, CHF3 and O2. In some embodiments, recesses 130 have a depth X1 in a range from about 57 nm to about 66 nm.
Gate spacer 120 includes an inner side I closer to gate stack structure 10. Recesses 130 include an inner edge E closer to gate stack structure 10. A surface proximity is defined by a distance on a top surface of semiconductor substrate 102 between an inner side I of gate spacers 120 and an inner edge E of recess 130 (or when the recesses are filled, a source and drain structure). It should be noted that an etching profile of recesses 130 is limited by thickness T1 of gate spacers 120. For example, as shown in
Afterwards, a wet etch process 23 is performed to enlarge the recesses 130 to form an enlarged recesses 132 as shown in
It should be noted that an etching profile of enlarged recesses 132 is still limited by thickness T1 of gate spacers 120. For example, as shown in
In some embodiments, wet etching process 23 includes an etching solution including NH4OH, KOH (potassium hydroxide), HF (hydrofluoric acid), TMAH (tetramethyl ammonium hydroxide), or other applicable etching solutions. In some embodiments, enlarged recesses 132 have a depth X2 in a range from about 10 nm to about 20 nm.
Afterwards, a semiconductor material is formed in enlarged recesses 132 to form a strained source and drain (SSD) structure 140. In some embodiments, silicon germanium (SiGe) is deposited in the recesses 132 of semiconductor substrate 102 to form SiGe source and drain structure 140. Strained source and drain structure 140 may alternatively be referred to as raised source and drain regions. Strained source and drain structure 140 associated with gate stack structure 10 may be in-situ doped or undoped during the epi process. When strained source and drain structure 140 are undoped, they may be doped in a subsequent process. The doping may be achieved by an ion implantation process, plasma immersion ion implantation (PIII) process, gas and/or solid source diffusion process, or other suitable process. Strained source and drain structure 140 may further be exposed to annealing processes, such as a rapid thermal annealing process.
In some embodiments, strained source and drain structure 140 is formed by an epitaxy or epitaxial (epi) process. The epi process may include a selective epitaxy growth (SEG) process, CVD deposition techniques (e.g., vapor-phase epitaxy (VPE) and/or ultra-high vacuum CVD (UHV-CVD)), molecular beam epitaxy, or other suitable epi processes. The epi process may use gaseous and/or liquid precursors, which may interact with the composition of semiconductor substrate 102. The deposited semiconductor material is different from semiconductor substrate 102. Accordingly, a channel region of semiconductor device 100 is strained or stressed to enable carrier mobility of a device and enhance device performance. However, as shown in
As shown in
After forming gate spacers 120, doped regions 125 are formed in semiconductor substrate 102 as shown in
In some embodiments, an ion implantation (IMP) process 19 is performed to form doped regions 125. In some embodiments, ion implantation (IMP) process 19 is operated under a power in a range from about 1 KeV to about 20 keV. In some embodiments, doped regions 125 extend from a surface of semiconductor substrate 102 to a depth X3 in a range from about 1 A to about 100 A.
Afterwards, dry etching process 21 is performed to remove a portion of semiconductor substrate 102 and to form recesses 130′ as shown in
In some embodiments, an etching gas used in dry etching process 21′ includes helium (He), argon (Ar), chlorine (Cl2), oxygen (O2), HBr, N2, CF4 and CH3F. In some embodiments, chlorine (Cl2) to helium (He) has a ratio in a range from about 0.1 to about 10.
In some embodiments, an etching pressure used in dry etching process 21′ is in a range from about 1 mT to about 50 mT. In some embodiments, an etching source power used in dry etching process 21′ is in a range from about 100 W to about 2000 W. In some embodiments, an RF bias voltage used in dry etching process 21′ is in a range from about 0 V to about 600 V.
As mentioned above, dopant, such as arsenic (As) is doped in semiconductor substrate 102 to form doped region 125. In addition, chlorine (Cl2) is a main etching gas used in etching process 21′. In the undoped region, the substrate and chlorine atoms react to form a covalent bond (such Si—Cl bond) which is hard to be broken. In contrast, in doped region 125, doped arsenic (As) atoms in doped region 125 induce charge unbalances in semiconductor substrate 102, and the bonding of the Si−Cl bond may be broken due to the unbalanced charge. Therefore, extra chlorine atoms formed by breaking the Si−Cl bond may attack or etch semiconductor substrate 102. In other words, doped regions 125 are etched by the extra chlorine atoms. Accordingly, the doped region 125 under gate spacers 120 is etched by dry etching process 21′. In some embodiments, an etching rate of dry etching process 21′ is increased with an increase in the doping concentration of doped regions 125.
Gate spacer 120 includes an inner side I closer to gate stack structure 10. Recesses 130′ include an inner border R closer to gate stack structure 10. It should be noted that border R of recesses 130′ on the top surface of semiconductor substrate 102 is not aligned with an outer side of gate spacer 120. A surface proximity is defined by a distance on a top surface of semiconductor substrate 102 between an inner side I of gate spacers 120 and an inner border R of recess 130′. In some embodiments, the etching profile of the recesses 130′ achieve a surface proximity T2 from I to R is in a range from about 0 to about 5 nm.
As shown in
Afterwards, a wet etch process 23′ is performed to enlarge the recesses 130′ to form an enlarged recesses 132′ as shown in
In some embodiments, wet etching process 23′ includes an etching solution including TMAH (tetramethyl ammonium hydroxide), NH4OH, KOH (potassium hydroxide), HF (hydrofluoric acid), or other applicable etching solutions. In some embodiments, TMAH used in wet etching process 23′ has a concentration in a range from about 1% to about 10%.
In some embodiments, the etching profile of enlarged recesses 132′ is defined by facets 132′A, 132′B, 132′C, 132′D, and 132′E of semiconductor substrate 102. Facets 132′A, 132′B, 132′C, and 132′D, are referred to as shallow facets, and facet 132′E is referred to as a bottom facet. In some embodiments, the etching profile of the recess is defined by 132′A, 132′B, 132′C, and 132′D in a {111} crystallographic plane of semiconductor substrate 102, and facet 132′E in a {100} crystallographic plane of semiconductor substrate 102. In some embodiments, an angle α between shallow facets 132′A and 132′B of semiconductor substrate 102 is in a range from 115 degree to about 135 degree. In some embodiments, an angle θ between facet 132′B and 132′E is in a range from 115 degree to about 125 degree. In some embodiments, enlarged recesses' 132 have a depth X6 in a range from about 37 nm to about 43 nm.
A tip depth defines a distance between a top surface of semiconductor substrate 102 and an intersection P of facets 132′A and 132′B (or facets 132′C and 132′D). In some embodiments, the etching profile of enlarged recesses 132′ achieves a tip depth X7 in a range from about 5 nm to about 8 nm. In some embodiments, an intersection P of facets 132′A and 132′B (or facets 132′C and 132′D) is almost aligned with inner side I of gate spacers 120.
After forming enlarged recesses 132′, a semiconductor material is formed in enlarged recesses 132′ to form a strained source and drain (SSD) structure 140′ as shown in
It should be noted that border R of strained source and drain (SSD) structure 140′ on the top surface of semiconductor substrate 102 is not aligned with an outer side of gate spacer 120. In addition, since enlarged recesses 132′ achieve a small surface proximity T3, SSD structure 140′ has a small surface proximity T3 from I to R. In some embodiments, the profile of SSD structure 140′ achieves a surface proximity T3 from I to R is in a range from about −1 nm to about +1 nm. Compared to SSD structure 140 shown in
As shown in
After forming SSD structure 140′, gate dielectric layer 112 and gate electrode layer 114 are removed to form a trench 145 as shown in
Afterwards, a metal gate electrode layer 150 is filled into trench 145 as shown in
Embodiments of mechanisms of forming a semiconductor device are provided. Doped regions are formed in a substrate. A portion of the doped region is removed by a dry etching process and a wet etching process to form a recess. A surface proximity of the recess is controlled by design of the concentration of the doped region. The recess has a small surface proximity, and an SSD structure formed afterwards also has a small surface proximity. As a result, a channel length of a semiconductor device is reduced by shortening the surface proximity. Therefore, the performance of the semiconductor device is improved.
In some embodiments, a semiconductor device structure is provided. The semiconductor device structure includes a substrate and a gate stack structure formed on the substrate. The semiconductor device structure also includes gate spacers formed on sidewalls of the gate stacks. The semiconductor device structure includes doped regions formed in the substrate. The semiconductor device structure also includes a strained source and drain (SSD) structure adjacent to the gate spacers, and the doped regions are adjacent to the SSD structure. The semiconductor device structure includes SSD structure has a tip which is closest to the doped region, and the tip is substantially aligned with an inner side of gate spacers.
In some embodiments, a semiconductor device structure is provided. The semiconductor device structure includes a substrate having a top surface and a gate stack structure formed on the substrate. The semiconductor device structure includes sealing layers formed on sidewalls of the gate stack structure and gate spacers formed on the sealing layers. The semiconductor device structure also includes a doped region formed in the substrate below the gate spacers. The semiconductor device structure further includes an SiGe SSD structure formed in the substrate adjacent to gate spacers and the doped region, and a surface proximity is defined by a distance on the top surface of the substrate between an inner side of the gate spacers and an inner border of the SSD structure, and the surface proximity is in a range from about −1 nm to about +1 nm.
In some embodiments, a method for forming a semiconductor device structure is provided. The method includes providing a substrate having a top surface and forming a gate stack structure on the substrate. The method also includes forming sealing layers on sidewalls of the gate stack structure and forming gate spacers on the sealing layers. The method further includes forming a doped region in the substrate and performing a dry etching process to remove a portion of the doped regions and to form a recess in the substrate. The method includes performing a wet etching process to enlarge the recess to form an enlarged recess. The method also includes forming a strained source and drain (SSD) structure in the enlarged recess, and a surface proximity is defined by a distance on the top surface of the substrate between an inner side of the gate spacers and an inner border of the SSD structure, and the surface proximity is in a range from about −1 nm to about +1 nm.
Although embodiments of the present disclosure and their advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the appended claims. For example, it will be readily understood by those skilled in the art that many of the features, functions, processes, and materials described herein may be varied while remaining within the scope of the present disclosure. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
Chen, Yi-Jen, Chang, Che-Cheng, Cheng, Tung-Wen, Chang, Yung-Jung
Patent | Priority | Assignee | Title |
10879399, | Dec 17 2015 | LIMITED | Method of manufacturing semiconductor device comprising doped gate spacer |
11489062, | May 31 2019 | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | Optimized proximity profile for strained source/drain feature and method of fabricating thereof |
11824102, | May 31 2019 | Taiwan Semiconductor Manufacturing Co., Ltd | Optimized proximity profile for strained source/drain feature and method of fabricating thereof |
Patent | Priority | Assignee | Title |
20120181625, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 05 2013 | CHANG, CHE-CHENG | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031184 | /0451 | |
Sep 05 2013 | CHENG, TUNG-WEN | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031184 | /0451 | |
Sep 05 2013 | CHEN, YI-JEN | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031184 | /0451 | |
Sep 05 2013 | CHANG, YUNG-JUNG | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031184 | /0451 | |
Sep 10 2013 | Taiwan Semiconductor Manufacturing Co., Ltd | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Mar 07 2019 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Mar 08 2023 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Sep 22 2018 | 4 years fee payment window open |
Mar 22 2019 | 6 months grace period start (w surcharge) |
Sep 22 2019 | patent expiry (for year 4) |
Sep 22 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 22 2022 | 8 years fee payment window open |
Mar 22 2023 | 6 months grace period start (w surcharge) |
Sep 22 2023 | patent expiry (for year 8) |
Sep 22 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 22 2026 | 12 years fee payment window open |
Mar 22 2027 | 6 months grace period start (w surcharge) |
Sep 22 2027 | patent expiry (for year 12) |
Sep 22 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |