An id transmitter for a motor vehicle access system includes a printed circuit board which is enclosed by a plastic housing. An antenna subassembly arranged next to the printed circuit board is connected thereto and includes a carrier film carrying conductor tracks. The components include a power supply cell, an lf 3d coil assembly, and hf transceiver components, an nfc module and at least one controller component. The conductor tracks of the carrier film form an nfc antenna coil which is coupled to the nfc modules via the conductors of the printed circuit board. The carrier film is arranged substantially in a plane parallel to the printed circuit board and protrudes over the edge of the printed circuit board on all sides. The conductor tracks forming the nfc antenna coil are arranged primarily in the edge region of the carrier film protruding over the edge of the printed circuit board.
|
1. An id transmitter for a motor vehicle access system, comprising:
a plastic housing,
a printed circuit board enclosed in the housing and populated with components and conductors, wherein the components comprise, among other items, a power supply cell with an associated bracket, an lf 3d coil assembly and an hf transceiver for communicating with vehicle-side transceivers, an nfc module, and at least one controller component,
an antenna sub-assembly in the form of a carrier film carrying conductor tracks, disposed next to the printed circuit board, and connected to the printed circuit board, wherein the conductor tracks form an nfc antenna coil, which is coupled to the nfc module via the conductors of the printed circuit board,
wherein the carrier film is disposed in a plane substantially parallel to the printed circuit board, and extends on all sides beyond the edges of the printed circuit board, wherein the conductor tracks forming the nfc antenna coil are disposed substantially in the edge surface region of the carrier film extending beyond the edges of the printed circuit board.
2. The id transmitter according to
3. The id transmitter according to
4. The id transmitter according to
6. The id transmitter according to
7. The id transmitter according to
8. The id transmitter according to
9. The id transmitter according to
10. The id transmitter according to
|
The invention relates to an ID transmitter for a motor vehicle access system, exhibiting a plastic housing and a printed circuit board, which is enclosed in the housing and is populated with components and exhibits conductors, wherein the components comprise, among other items, a power supply cell with an associated bracket, an LF 3D coil assembly and HF transceiver components for communicating with vehicle-side transceiver devices, and at least one controller component.
With known ID transmitters of the type specified above, the printed circuit board (“PCB”) disposed in the plastic housing is populated with components on both sides. An HF antenna coupled to the HF transceiver components is designed as a conductor on the printed circuit board, wherein this conductor, forming the antenna, is normally disposed in the proximity of the edge of the printed circuit board in a region of the printed circuit board not populated with components. The LF 3D coil assembly is designed, for example, as a compact component having three receiver coils oriented in the three spatial planes, wherein a Z-coil, which lies parallel to the printed circuit board surface, and two coils (X- and Y-coils), offset by 90°, having coil windings perpendicular to the printed circuit board, are disposed in the interior thereof.
Based on the known ID transmitter, the basic objective of the invention consists of, on the one hand, creating a compact ID transmitter having a printed circuit board of a minimum size, and, on the other hand, to equip this ID transmitter with an NFC communication possibility.
This objective is attained according to the invention by means of an ID transmitter having the characteristics of Claim 1. The ID transmitter for a motor vehicle access system, according to the invention, exhibits a plastic housing, and a printed circuit board populated with components and conductors, enclosed in the housing, wherein the components comprise, among other items, a power supply cell (e.g. a battery) with an associated bracket, an LF 3D coil assembly, an HF transceiver components for communicating with vehicle-side transceiver devices, an NFC module, and at least one controller component. Furthermore, the ID transmitter exhibits an antenna sub-assembly connected to the printed circuit board, disposed next to the printed circuit board, in the form of a carrier film carrying conductor tracks, wherein the conductor tracks form an NFC antenna coil, which is coupled to the NFC module by means of the conductors of the printed circuit board. The carrier film is disposed substantially in a plane parallel to the printed circuit board, and extends on all sides over the edge of the printed circuit board, wherein the conductor tracks forming the NFC antenna coil are substantially disposed in the edge surface region of the carrier film extending over the edge of the printed circuit board.
The design according to the invention for the ID transmitter enables, on one hand—through the appropriate configuration of the components—a printed circuit board of a minimal size, and on the other hand, the least possible negative effect to the performance of the NFC communication via the NFC antenna coil by means of the printed circuit board, which is densely populated with components and provided with conductors, and thus acting in a shielding manner. By means of the displacement of the NFC antenna coil to a separate component, at a distance to the printed circuit board, specifically in an antenna sub-assembly connected to the printed circuit board in the form of a carrier film carrying conductor tracks, and by means of the positioning of conductor tracks forming the NFC antenna coil substantially beyond the edge of the printed circuit board, a good NFC communication range at both sides of the printed circuit board is enabled, because the NFC antenna coil is, at most, only shielded to a slight degree by the printed circuit board densely populated with components and conductor tracks. A configuration of the components that is as dense as possible on the printed circuit board also results in a minimal size of the printed circuit board and correspondingly, a minimal size of the carrier film as well. The carrier film is “substantially” disposed in a plane parallel to the printed circuit board, meaning that it can also be tilted (e.g. depending on the assembly) to a slight degree (at an acute angle), or slightly bowed. It is decisive thereby that the carrier film and the printed circuit board are disposed inside a flat plastic housing, such that they are adjacent to one another in a two-dimensional manner. The thickness of the plastic housing is thus substantially determined by the structural height of the printed circuit board, which is populated on both sides; the carrier film itself is of a negligible thickness. The lateral dimensions of the plastic housing are substantially determined by the size of the printed circuit board, or the size of the carrier film extending over the edges of the printed circuit board. The carrier film extends on all sides over the edges of the printed circuit board, such that numerous windings of an NFC antenna coil can be disposed entirely within this overhanging region of the carrier film. The NFC antenna coil normally exhibits few antenna windings, e.g. four windings. These conductor tracks forming the NFC antenna coil are “substantially” disposed in the overhanging edge surface region, meaning the major portion (with four windings, this is at least three windings, for example) is disposed in this edge surface region.
In a preferred embodiment of the ID transmitter according to the invention, the components of a larger structural height, including the power supply cell with the associated bracket, the LF 3D coil configuration and the NFC module, are disposed adjacent to one another on one surface of the printed circuit board, and the antenna sub-assembly is disposed on the other surface of the printed circuit board. The components of a smaller structural height, such as surface mounted chips for active components (controller or transceiver), or passive components (resistors, capacitors), can be disposed on that side of the printed circuit board on which the antenna sub-assembly is also disposed. The components of a “larger” structural height are understood to be those components which cannot be attached as flat, surface mounted chips. By way of example, the power supply cell (or “battery”) with its associated bracket normally exhibits a height of at least 2 mm. The LF 3D coil assembly contains three coil packets oriented in the three spatial planes, whereby the height of this component is determined by the coil packets, which are oriented in an axis disposed parallel to the printed circuit board surface. In order to obtain a sufficient cross-section surface within the windings, the LF 3D coil assembly component must exhibit a minimum structural height of a few millimeters. Finally, the NFC module also normally has an structural height of a few millimeters. Preferably, it comprises a chip card mount for a removable NFC chip card, having, for example, the format of a micro-SD card. The NFC chip card mount must exceed the thickness of the NFC chip cards that can be placed therein, in order to ensure a sufficient mechanical stability.
A preferred further development of the latter specified embodiment is characterized in that the LF 3D coil assembly and the NFC module each exhibit a substantially rectangular base surface, and the LF 3D coil assembly, the NFC module and the power supply cell with its associated bracket, are disposed on one surface of the printed circuit board, successively in a spatial direction, without spacing, or with a limited spacing between them, and the surface area of the printed circuit board corresponds substantially to the sum of the surface areas occupied by these components. The three specified components of a larger structural height are disposed successively in a longitudinal axis of the printed circuit board, wherein the rectangular surface area of the printed circuit board corresponds substantially to the sum of the three rectangular surface areas occupied by the respective components. The components are disposed without spacing to one another, or with a limited spacing, due to technological factors, successively. The limited spacing, due to technological factors, is derived from dimensional tolerances. Preferably, a power supply cell is used, which occupies a circular surface area having a diameter of approx. 20 mm, and the printed circuit board is approx. 20 mm wide, and between 40 and 48 mm, preferably 44 mm, long.
The carrier film of the antenna sub-assembly can be relatively rigid, but is preferably slightly flexible, in order to facilitate the assembly, and to be able to accommodate technological tolerances. The flexibility of the carrier film should not, however, be so great that creases or folds occur in the NFC antenna coil during the assembly.
In a preferred further development of the ID transmitter according to the invention, the conductor tracks of the antenna sub-assembly comprise a conductor track for an HF antenna, coupled to the HF transceivers via conductors of the printed circuit board. The displacement of the HF antenna outside of the printed circuit board in a conductor track of the carrier film of the antenna sub-assembly as an external component improves the transceiver characteristics of the HF antenna, because it enables a reduction of the disturbances and the shielding by means of the densely populated printed circuit board. Preferably the conductor track for the HF antenna is likewise disposed in the overhanging edge surface region of the carrier film.
In a preferred further development, the conductor track for the HF antenna is disposed in the interior of the carrier film, inside of the conductor tracks of the NFC antenna coil. By way of example, the conductor track for the HF antenna extends in sections parallel to the innermost winding of the NFC antenna coil.
In an alternative embodiment, the HF antenna and the NFC antenna coils are formed by a single, spiral-shaped conductor track, wherein the conductor track exhibits two end connections, and a pickup disposed on the innermost winding of the conductor track, such that the conductor track section between the pickup and the inner end connection forms the HF antenna, and the remaining section forms the NFC antenna coil. The end connections of the conductor track, and the pickup are connected directly to a conductor on the printed circuit board.
Advantageous and/or preferred further developments of the invention are characterized in the dependent Claims.
In the following, the invention shall be explained in greater detail, based on the preferred embodiments depicted in the drawings. Shown in the drawings are:
Furthermore, a bracket 7 for a power supply cell 6 is installed on the upper surface of the printed circuit board 2. A 3V battery, type CR2032, for example, is used as the power supply cell 6. The bracket 7 installed on the upper surface of the printed circuit board also forms a contact for the battery.
The ID transmitter according to the invention is also equipped with an NFC communication possibility (NFC=“Near Field Communication”). For this purpose, an NFC chip card mount 4 is installed on the upper surface of the printed circuit board 2. The chip card mount 4 enables the insertion and removal of an NFC chip card, which is also designated as an “NFC secure element.” This NFC chip card contains transceiver circuits for high-frequency communication, at a carrier frequency, for example, of 13.56 MHz. This NFC chip card has the format, for example, of a micro-SD card. Furthermore, the NFC chip card contains circuits for encoding and decoding the transmitted signals, as well as controller and interface circuits. By way of example, the NFC chip card contains contacts, disposed in the proximity of a narrow side, for a power supply (supply voltage and ground) and for data transfer (data signals and timing), as well as for coupling to an antenna assembly. Although the NFC chip card is normally equipped with an antenna, the coupling to an external NFC antenna coil serves to increase the communication range. A preferred embodiment of the NFC chip card also contains an interface for a USB bus, preferably on the narrow side of the chip card opposite the contacts specified above. The NFC chip card is preferably removable, such that the housing 1 of the ID transmitter is preferably provided with a lid or a closure, which enables the opening and closing of an insertion slot in the NFC chip card mount 4, for inserting and removing the NFC chip card 5.
The components 3, 4, and 6, normally only a few millimeters high, are disposed directly adjacently to one another and successively in the longitudinal axis of the printed circuit board 2. As can be seen in
As can be derived from
An antenna sub-assembly in the form of a carrier film 8 carrying conductor tracks, is disposed adjacent to the back surface of the printed circuit board 2, and substantially parallel thereto. This carrier film 8 with conductor tracks is schematically depicted in
In a preferred embodiment, the printed circuit board 2 exhibits a length of 44 mm, for example, and a width of 20 mm, such that the width of the printed circuit board 2 corresponds approximately to the diameter of a battery, type CR2032. The LF 3D coil assembly exhibits, for example, dimensions of 11 mm×11 mm, or 15 mm×15 mm. The overlapping region of the carrier film 8 has a width, for example, of between 2 and 5 mm.
The mount for the batter 6 can be designed in one embodiment such that a replacement of the battery is possible. In another embodiment, it can be provided that after the complete draining of the battery, the ID transmitter is discarded and replaced with a new one. In another embodiment, it can be provided that the ID transmitter contains a circuit for recharging the battery 6, wherein the energy that is to be transferred for the recharging is acquired from the LF 3D coil assembly.
Patent | Priority | Assignee | Title |
11764462, | Aug 11 2020 | BCS ACCESS SYSTEMS US, LLC | Vehicle door handle |
9705363, | Jun 14 2013 | Renesas Electronics Corporation | Communication control device and mounting board |
Patent | Priority | Assignee | Title |
20040230348, | |||
20050237220, | |||
20090222338, | |||
20110148574, | |||
EP1376762, | |||
EP1748515, | |||
WO44066, | |||
WO2009147225, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 06 2011 | Huf Huelsbeck & Fuerst GmbH & Co. KG | (assignment on the face of the patent) | / | |||
Aug 19 2013 | ZILLER, BORIS | HUF HULSBECK & FURST GMBH & CO KG | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031139 | /0630 | |
Aug 26 2013 | BROZIO, DIETER | HUF HULSBECK & FURST GMBH & CO KG | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031139 | /0630 |
Date | Maintenance Fee Events |
Mar 19 2019 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Mar 22 2023 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Sep 29 2018 | 4 years fee payment window open |
Mar 29 2019 | 6 months grace period start (w surcharge) |
Sep 29 2019 | patent expiry (for year 4) |
Sep 29 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 29 2022 | 8 years fee payment window open |
Mar 29 2023 | 6 months grace period start (w surcharge) |
Sep 29 2023 | patent expiry (for year 8) |
Sep 29 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 29 2026 | 12 years fee payment window open |
Mar 29 2027 | 6 months grace period start (w surcharge) |
Sep 29 2027 | patent expiry (for year 12) |
Sep 29 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |