A vacuum interrupter comprises a tubular bellows (30) including a first hollow bore (32); at least one sub-assembly (34), each sub-assembly (34) including an end cap (42), the or each end cap (42) including at least one second hollow bore and having a composition including glass or including glass-ceramic; at least one primary annular metallic element (36) being operably connected between the or each end cap (42) and one of respective ends of the tubular bellows (30); a pair of electrically conductive contact elements (38); and a pair of electrically conductive rods (40), each rod (40) being operably connected to a respective contact element (38) at a first end and being connected in use to an electrical network at a second end, a portion of at least one rod (40) being retained inside the or each second hollow bore of a respective end cap (42), wherein the or each end cap (42) and each rod (40) are operably connected to one of the respective ends of the tubular bellows (30) to define a vacuum-tight enclosure; the contact elements (38) are located inside the enclosure and arranged to define opposed contact surfaces; and the tubular bellows (30) is controllable to expand or contract to move one rod (40) relative to the other rod (40) to open or close a gap between the opposed contact surfaces.
|
1. A vacuum interrupter comprising:
a tubular bellows including a first hollow bore;
at least one sub-assembly, the each sub-assembly including an end cap, the each end cap including at least one second hollow bore and having a composition including glass or including glass-ceramic;
at least one primary annular metallic element being operably connected between the each end cap and one of respective ends of the tubular bellows;
a pair of electrically conductive contact elements; and
a pair of electrically conductive rods, each rod being operably connected to a respective contact element at a first end and being connected in use to an electrical network at a second end, a portion of at least one rod being retained inside the or each second hollow bore of a respective end cap,
wherein the each end cap and each rod are operably connected to one of the respective ends of the tubular bellows to define a vacuum-tight enclosure;
the contact elements are located inside the enclosure and arranged to define opposed contact surfaces; and the tubular bellows is controllable to expand or contract to move one rod relative to the other rod to open or close a gap between the opposed contact surfaces.
2. A vacuum interrupter according to
3. A vacuum interrupter according to
4. A vacuum interrupter according to
5. A vacuum interrupter according to
6. A vacuum interrupter according to
7. A vacuum interrupter according to
8. A vacuum interrupter according to any of the preceding
9. A vacuum interrupter according to any of the preceding
10. A vacuum interrupter according to any of the preceding
11. A vacuum interrupter according to any of
12. A vacuum interrupter according to
13. A vacuum interrupter according to any of
14. A vacuum interrupter according to
15. A vacuum interrupter according to any of
16. A vacuum interrupter according to
17. A vacuum interrupter according to
18. A vacuum interrupter according to
19. A vacuum interrupter according to
20. A vacuum interrupter according to
21. A vacuum interrupter according to
22. A vacuum interrupter according to
23. A vacuum interrupter according to
24. A vacuum interrupter according to
25. A vacuum interrupter according to
26. A vacuum interrupter according to
28. A vacuum interrupter according to
29. A vacuum interrupter according to
30. A vacuum interrupter according to
31. A vacuum interrupter according to
32. A vacuum interrupter according to
33. A vacuum interrupter according to
34. A vacuum interrupter according to
35. A vacuum interrupter according to
36. A vacuum interrupter according to
37. A vacuum interrupter according to
38. A vacuum interrupter according to
39. A vacuum interrupter according to
40. A vacuum interrupter according to
41. A vacuum interrupter according to
42. A vacuum interrupter according to
43. A vacuum interrupter according to
44. A vacuum interrupter according to
45. A vacuum interrupter according to
46. A vacuum interrupter according to
47. A vacuum interrupter according to
48. A vacuum interrupter according to
49. A vacuum interrupter according to
50. A vacuum interrupter according to
51. A vacuum interrupter according to
52. A vacuum interrupter according to
53. A vacuum interrupter according to
54. A vacuum interrupter according to
55. A vacuum interrupter according to
56. A vacuum interrupter according to
57. A vacuum interrupter according to
58. A vacuum interrupter according to
59. A vacuum interrupter according to
60. A vacuum interrupter according to
61. A vacuum interrupter according to
|
This invention relates to a vacuum interrupter.
Vacuum interrupters are typically used to act as a load break switch or a circuit breaker in medium and high voltage applications. The operation of the vacuum interrupter relies on the mechanical separation of electrically conductive contacts to open the associated electrical circuit. The operation of the vacuum interrupter at higher voltages results in the development of high electrical stress which may lead to electrical breakdown not only between the contacts, but also external to the vacuum interrupter.
Electrical breakdown occurs when the dielectric strength of a medium is exceeded. This may lead to the initiation of internal and/or external arc discharges which can cause degradation of the vacuum interrupter and affect the safety of those working in the immediate vicinity of the vacuum interrupter. The separation of the contacts is typically carried out in a high vacuum environment to extinguish the arc initiated across its contacts. It is, however, still necessary to provide external insulation to the vacuum interrupter which not only extends the lifetime of the vacuum interrupter by avoiding damage due to electrical breakdown but also ensures a safe working environment in the immediate vicinity of the vacuum interrupter.
A known solution of providing external electrical insulation for a vacuum interrupter is the use of metallised and nickel-plated alumina ceramic housings, as shown in
Both end flanges 14a and 14b are fixed relative to the corresponding cylindrical housing 12. The second end flange 14b includes a hollow bore to accommodate a metallic bellows 20. The metallic bellows 20 also includes a hollow bore for retention of a first oxygen-free high-conductivity (OFHC) copper conductor 22b. The first end flange 14a includes a hollow bore to accommodate a second OFHC copper conductor 22a within its hollow bore.
Each of the copper conductors 22a,22b are connected to electrical networks at a first end and connected to an arcing contact 24a,24b at a second end. The copper conductors 22a,22b are arranged such that the arcing contacts 24a,24b are located inside the cylindrical housings 12 and opposite each other to form opposed contacts 24a,24b. A switching process is carried out by operating the metallic bellows 20 to deform so as to move the conductor 22b closer to or further from the conductor 22a and thereby closing or opening the gap 26 between the opposed contacts 24a,24b at the end of the copper conductors 22a,22b.
As the operating voltage rating of vacuum circuit breakers is increased, the length of the vacuum interrupter generally becomes longer. This is achieved by designing ceramic envelopes with longer lengths or by using multiple envelopes to extend the length of the vacuum interrupter. While the required internal dielectric rating of the vacuum interrupter is easily achieved by current and voltage conditioning, the external dielectric rating of the vacuum interrupter in air is dependent upon the length of the alumina ceramic envelope. These alumina ceramic envelopes represent a significant proportion of the material cost of the vacuum interrupters. This, therefore, leads to an increased cost when lengthening the alumina ceramic housing to accommodate the increased voltage rating of the vacuum interrupter.
In addition, the use of alumina ceramic housings raises environmental and cost concerns because of their energy-intensive manufacture and their disposal at landfill sites at the end of their respective lifetimes.
Another known solution of providing electrical insulation for a vacuum interrupter is by using polymeric material to overmould the interrupter housing or by placing corrugation or polymeric sheds on the external surfaces of the interrupter. The polymeric overmoulding and sheds provide additional electrical insulation for the vacuum interrupter while the corrugations increase creepage distance to improve dielectric performance and voltage rating of the vacuum interrupter. The use of polymeric components, however, not only increases the cost of manufacture of the vacuum interrupter, but also exposes the interrupter to a risk of in-service failure caused by deterioration of the interfacial layer between the polymeric components and the interrupter. In addition, the inclusion of external corrugations or sheds in the design of alumina ceramic housings can become expensive because of machining costs.
A third known solution of providing electrical insulation for a vacuum interrupter is by locating the vacuum interrupter in an external housing and filling the space between the vacuum interrupter and the external housing with either solid insulation material or sulphur hexafluoride, SF6, trifluro-iodo-methane, CF3I or other gas mixtures which offer excellent dielectric properties and enhances the external dielectric rating of the vacuum interrupter. The provision of an external housing filled with solid insulation material, however, adds size and weight to the vacuum interrupter. In addition, the use of SF6, which is a greenhouse gas, means that it is necessary to carry out regular inspection and maintenance to prevent leakage of SF6 into the atmosphere and therefore adds to the complexity of the vacuum interrupter. Different alternatives like CF3I and other gas mixtures also require regular inspection and maintenance.
According to an aspect of the invention, there is provided a vacuum interrupter comprising a tubular bellows including a first hollow bore; at least one sub-assembly, the or each sub-assembly including an end cap, the or each end cap including at least one second hollow bore and having a composition including glass or including glass-ceramic; at least one primary annular metallic element being operably connected between the or each end cap and one of respective ends of the tubular bellows; a pair of electrically conductive contact elements; and a pair of electrically conductive rods, each rod being operably connected to a respective contact element at a first end and being connected in use to an electrical network at a second end, a portion of at least one rod being retained inside the or each second hollow bore of a respective end cap, wherein the or each end cap and each rod are operably connected to one of the respective ends of the tubular bellows to define a vacuum-tight enclosure; the contact elements are located inside the enclosure and arranged to define opposed contact surfaces; and the tubular bellows is controllable to expand or contract to move one rod relative to the other rod to open or close a gap between the opposed contact surfaces.
The provision of at least one primary annular metallic element results in a modular construction of the vacuum interrupter in which one or more primary annular metallic elements are used to interconnect different vacuum interrupter components, such as end caps and tubular bellows, which can have different shapes and sizes. The modular construction simplifies the design process for the vacuum interrupter because each vacuum interrupter component may be designed for fitment of a primary annular metallic element instead of being designed to accommodate different types of connectors for connection to different components. It is, therefore, straightforward to add and remove components to the design of the vacuum interrupter when accounting for different operating environments which require different voltage ratings and/or have adverse weather conditions.
The design based on the use of primary annular metallic elements allows for the self-alignment of components during construction of the vacuum interrupter and thereby simplifies the task of assembling heavy vacuum interrupter components. Each vacuum interrupter component may, for example, include features such as grooves for fitment of the primary annular metallic element. These grooves and the corresponding primary annular metallic element can be used to properly position a vacuum interrupter component on top of another. This leads to an increase in accuracy and efficiency of the manufacture and assembly of the vacuum interrupter.
Vacuum interrupter end caps based on glass and/or glass-ceramic compositions provide excellent electrical insulation and are highly resistant to corrosion which removes the need for external housing when the vacuum interrupter is used outdoors.
Preferably the or each end cap includes a groove for retention of a primary annular metallic element.
The retention of a primary annular metallic element in a groove of an end cap improves the mechanical strength of the joint between the primary annular metallic element and the respective end cap, and thereby reduces the likelihood of leakage due to failure of the joint.
In embodiments of the invention an outer wall of the or each end cap may be tapered to define a truncated cone, the base of the or each truncated cone being connected to a primary annular metallic element.
In other embodiments the or each end cap may be substantially cylindrical and includes an outwardly projecting first circumferential portion. In such an embodiment, the first circumferential portion may be in the form of a flange.
In further embodiments the or each end cap may include an inwardly curved surface to define an inner wall of the vacuum-tight enclosure. In such embodiments, a lip of the or each second hollow bore may project from the inner wall to define a first tubular projection within the vacuum-tight enclosure.
The shape of glass-based or glass-ceramic-based end caps can be easily and cheaply varied to provide the necessary electrical insulation for the vacuum interrupter. This reduces the complexity of the design and manufacturing process because it is only necessary to account for the shape of the end cap when trying to achieve a specific level of electrical insulation. In addition, the modular construction of the vacuum interrupter means that it is straightforward to achieve different vacuum interrupter characteristics by interchanging end caps with different shapes and sizes.
The use of end caps of different shapes to provide the necessary electrical insulation leads to a decrease in interrupter size, weight and cost by removing the need for other methods of providing electrical insulation such as external polymeric housing and sheds, surrounding the interrupter with insulation material and/or enclosing the interrupter in a housing filled with sulphur hexafluoride, SF6, trifluro-iodo-methane, CF3I or other gas mixtures, these other methods having disadvantages in terms of hardware size, economy and environmental concerns.
In another embodiment, the or each end cap may include two or more second hollow bores.
The provision of two or more second hollow bores in each end cap allows the use of more than one rod which increases the potential compatibility with rods used in other power applications.
Preferably each rod is made from copper.
Copper rods are suitable for vacuum interruption applications due to the excellent thermal and electrical characteristics of copper.
In embodiments of the invention the or each end cap may be bonded using brazed joints to the portion of the or each rod retained inside its respective second hollow bore.
The provision of a brazed joint between the rod and the end cap results in a vacuum-tight hermetic seal which is necessary to help retain the vacuum inside the enclosure of the vacuum interrupter.
In other embodiments the or each sub-assembly may further include at least one secondary annular metallic element retained between a wall of the respective second hollow bore of the end cap and the respective portion of the rod.
The or each secondary annular metallic element acts as a seal between the respective end cap and rod to retain the vacuum inside the enclosure of the vacuum interrupter. The use of a secondary annular metallic element as a seal component means that the secondary annular metallic element may be adapted to allow the respective end cap and rod to be used not only with different types of rods and end caps respectively, but also as components in other types of applications.
In such embodiments employing the use of a secondary annular metallic element, the or each secondary annular metallic element may include an outwardly projecting second circumferential portion defining a shield between the corresponding end cap and contact element.
In further embodiments each rod may include an outwardly projecting third circumferential portion defining a shield between the corresponding end cap and contact element.
In such embodiments the or each circumferential portion may be in the form of a flange.
During operation of the vacuum interrupter, arcing between the contact elements results in the development of evaporated metal which can result in deposition of metal onto the vacuum interrupter components within the enclosure and thereby reduce the electrical insulation of the vacuum interrupter. The provision of a shield between the contact elements and the respective end caps limits the amount of deposited metal on the end caps during the arcing of the contact elements, and thereby increases the lifetime of the vacuum interrupter.
The vacuum interrupter preferably further includes one or more housing members, the or each housing member being operably connected between the tubular bellows and the respective sub-assembly to define the vacuum-tight enclosure wherein the or each housing member defines first and second housing portions, the first housing portion defining a third hollow bore and being located within the enclosure and the second housing portion being located outside the enclosure.
The provision of one or more housing members permits the extension of the vacuum interrupter length and thereby increases the potential amount of separation between the opposed contact surfaces. This leads to an increase in voltage rating and performance of the vacuum interrupter.
The use of housing members is also compatible with the modular construction of the vacuum interrupter since it is possible to design the housing members to have a standard shape and size and to be stackable on top of each other to extend the vacuum interrupter length. The use of standard housing members leads to a reduction in manufacturing cost.
Preferably the or each housing member may be connected to an end cap, a neighbouring housing member or one of the respective ends of the tubular bellows via at least one primary annular metallic element.
Two primary annular metallic elements may be connected to one another to form a brazed joint to connect the or each housing member to an end cap, a neighbouring housing member or one of the respective ends of the tubular bellows.
Such use of primary annular metallic elements to form a brazed joint results in a vacuum interrupter with self-aligning components. For example, a primary annular metallic element may be machined to closely fit another primary annular element so that their connection leads to the alignment of different housing members, each housing member being connected to the respective primary annular metallic element.
In other embodiments the or each housing member may include at least one groove for retention of each corresponding primary annular metallic element.
The or each housing member may be designed for fitment of primary annular metallic elements for connection to the other vacuum interrupter components.
In embodiments employing the use of housing members, a lip of the or each third hollow bore may project from an end or both ends of the respective first housing portion to define a second tubular projection at the respective end within the vacuum-tight enclosure.
The second tubular projections extending from the ends of the or each first housing portion provide shields to protect the inner surfaces of the enclosures from the effects of vapour deposition due to arcing of the contact elements. Since deposition of metal vapour is limited to the surface of the second tubular projections, the shielded inner surfaces of the enclosure remain clean of vapour deposition and thereby provide the necessary electrical insulation for the vacuum interrupter.
In other embodiments employing the use of housing members, the or each housing member further includes a shed in the form of an outwardly projecting fourth circumferential portion.
The inclusion of a shed in the or each housing member not only improves the electrical insulation level of the vacuum interrupter but also provides protective shields for an outdoors vacuum interrupter in adverse weather conditions.
In further embodiments employing the use of housing members, the or at least one housing member may be formed from a glass or glass-ceramic material.
Vacuum interrupter housing members based on glass and/or ceramic compositions provide excellent electrical insulation and are highly resistant to corrosion which removes the need for external housing when the interrupter is used outdoors.
In such embodiments, where the or each housing member is formed from a glass or glass-ceramic material and the or each housing member includes a shed, the or each shed may be formed from a glass or glass-ceramic material having a lower melting point than the glass or glass-ceramic material used in the corresponding housing member.
The similar thermal properties of glass or glass-ceramic sheds and housing members minimises the problem of deteriorating interfacial layers typically associated with polymeric sheds attached to alumina ceramic housings. In addition, the ease of processing glass and glass-ceramic materials means that these optional sheds may be manufactured as part of the respective housing member or be added onto the respective housing member at a later stage.
In other embodiments, the or at least one housing member may have a metallic composition to define an arc containment chamber and the contact elements are located within the arc containment chamber.
The provision of an arc containment chamber provides protection for the tubular bellows from damage arising from arc instability, maintains the dielectric strength of the vacuum interrupter components by limiting the effects of metal vapour deposition and ensures the parallelism of electrostatic field lines within the vacuum interrupter.
In embodiments of the invention an external shield may be provided around the tubular bellows.
The external shield provides mechanical protection for the tubular bellows. This is particularly advantageous for vacuum interrupters which are used in outdoor environments.
The external shield may also include an outwardly projecting fifth circumferential portion such as a flange. The circumferential portion can be used to mount the vacuum interrupter onto an external platform or be used to limit the travel distance of the tubular bellows so as to provide better control over the operation of the vacuum interrupter.
In other further embodiments each rod may be substantially cylindrical and the vacuum interrupter may be axi-symmetric about the cylindrical axis of each rod.
The provision of an axi-symmetric vacuum interrupter results in an homogeneous distribution of electrical stress about the axis of the cylindrical rods, which simplifies the design process of electrical insulation for the vacuum interrupter. In addition, the homogenous distribution of electrical stress minimise the possibility of the development of regions with high electrical stress.
Preferred embodiments of the invention will now be described, by way of non-limiting examples, with reference to the accompanying drawings in which:
A vacuum interrupter according to a first embodiment of the invention is shown in
The vacuum interrupter comprises a tubular bellows 30; two sub-assemblies 34; two primary annular metallic elements 36; a pair of electrically conductive contact elements 38; and a pair of electrically conductive rods 40.
The tubular bellows 30 includes a first hollow bore 32; and the corrugated walls of the tubular bellows 30 allow the tubular bellows 30 to undergo deformation so as to increase or decrease the length of the tubular bellows 30.
Each sub-assembly 34 includes an end cap 42, each end cap 42 including a second hollow bore. The outer wall of each end cap 42 is tapered such that the respective end cap 42 defines a truncated cone. The base of each truncated cone includes a groove 44 which retains a primary annular metallic element 36, such as a metallic ring, which is brazed to one of respective ends of the tubular bellows 30.
The pair of electrically conductive rods 40 may be made from copper, preferably oxygen-free high-conductivity copper, for its excellent thermal and electrical properties. Each rod 40 is connected to a respective contact element 38 at a first end and connected in use to an electrical network at a second end. A portion of each rod 40 is retained inside the second hollow bore of the respective end cap 42. The rods 40 are aligned so that the contact elements 38 are positioned opposite each other to define opposed contact surfaces.
Each primary annular metallic element 36 interconnects the respective end cap 42 to one of the respective ends of the tubular bellows 30 such that the arrangement of the end caps 42, tubular bellows 30 and the rods 40 defines a vacuum-tight enclosure whereby the contact elements 38 are located inside the enclosure. The vacuum-tight enclosure can be evacuated to provide a vacuum environment. Each end cap 42 is bonded using a glass or glass-ceramic-to-metal joining process to the portion of the rod 40 retained inside its second hollow bore to provide a hermetic seal.
Each rod 40 may include an outwardly projecting third circumferential portion 46 to define a shield between the corresponding end cap 42 and contact element 38. Each third circumferential portion 46 may be manufactured using flow-forming of the respective rod 40 to provide the required shape of the shield. It is envisaged that in embodiments of the invention, each third circumferential portion 46 may be in the form of a flange at the end of the respective rod 40 connected to the contact element 38.
To carry out a switching process, the tubular bellows 30 is controllable to expand or contract to move one rod 40 relative to the other via the supported sub-assemblies 34 such that the gap between the opposed contact surfaces may open or close. The opening and closing of the gap between the opposed contact surfaces allows the vacuum interrupter to open or close the connection between the electrical networks associated with the respective rods 40.
A vacuum interrupter according to a second embodiment of the invention is shown in
Each secondary annular metallic element 48 acts as a seal between the respective end cap 42 and rod 40 to retain the vacuum environment inside the enclosure of the vacuum interrupter. The use of a secondary annular metallic element 48 as a seal means that the secondary annular metallic element 48 may be adapted to allow the respective end cap 42 and rod 40 to be used not only with different types of rods 40 and end caps 42 respectively, but also as components in other types of applications.
In the embodiment shown in
Each end cap 42 also includes a further second hollow bore to accommodate a further rod 40a such that each contact element 38 is supported by a pair of rods 40a. A second end of each rod 40a may be connected in use to an electrical network. Each rod 40 may include an outwardly projecting third circumferential portion 46 attached to the circumference of the rod 40 to define a shield between the corresponding end cap 42 and contact element 38. It is envisaged that in other embodiments of the invention, each end cap 42 may include any number or shape of second hollow bores to accommodate different numbers of rods and/or rods of different shapes and sizes. Each end cap may also be adapted to accommodate standardized rods used in other power applications as a cost-saving measure.
A vacuum interrupter according to a fourth embodiment of the invention is shown in
Each end cap 42 includes an inwardly curved surface to define an inner wall of the vacuum-tight enclosure. A lip of the second hollow bore of each end cap 42 projects from the inner wall to define a first tubular projection 52 within the vacuum-tight enclosure. Each end cap 42 includes a secondary annular metallic element 48 retained between a wall of the respective second hollow bore of the end cap 42 and the respective portion of the rod 40. Each secondary annular metallic element 48 includes an outwardly projecting second circumferential portion 54 defining a shield between the corresponding end cap 42 and contact element 38.
In each embodiment employing the use of primary annular metallic elements 36, the use of primary annular metallic elements 36 results in a modular construction of the vacuum interrupter in which each primary annular metallic element 36 is used to interconnect different vacuum interrupter components which can have different shapes and sizes. The modular construction simplifies the design process for the vacuum interrupter because each vacuum interrupter component may be designed for fitment of a primary annular metallic element 36 instead of being designed to accommodate different types of connectors for connection to different components. It is therefore straightforward to add and remove components to the design of the vacuum interrupter when accounting for different operating environments which require different voltage ratings and/or have adverse weather conditions.
The design based on the use of primary annular metallic elements 36 allows for the self-alignment of components during construction of the vacuum interrupter and thereby simplifies the task of assembling heavy vacuum interrupter components. Each vacuum interrupter component may, for example, include features such as grooves 44 for fitment of the primary annular metallic element 36. These grooves 44 and the corresponding primary annular metallic element 36 can be used to properly position a vacuum interrupter component on top of another before the vacuum interrupter is placed inside a vacuum furnace or connected to a vacuum pumping and bake-out system for sealing off.
In other embodiments of the invention two primary annular metallic elements 36 may be connected in the form of a brazed joint that interconnects different vacuum interrupter components. In such a brazed joint, each primary annular metallic element 36 may be machined to closely fit the other primary annular metallic element 36 and any gap between the primary annular metallic elements 36 may be filled with brazing material. Such connection of primary annular metallic elements 36 provides the vacuum interrupter components with self-aligning capacity.
It is envisaged that in other embodiments of the invention, the braze joint may be replaced by a welded joint.
The use of primary annular metallic elements 36 therefore leads to an increase in accuracy and efficiency of the manufacture and assembly of the vacuum interrupter.
The various shapes of the end caps 42 in
The modular construction of the vacuum interrupter also makes it straightforward to use different end caps 42 with different numbers of second hollow bores to allow the use of one or more standard rods or one or more other rods 40,40a.
Preferably each end cap 42 has a composition including glass or including glass-ceramic. Vacuum interrupter end caps 42 having glass-based and/or glass-ceramic-based compositions provide excellent electrical insulation and are highly resistant to corrosion which removes the need for external housing when the interrupter is used outdoors. Glass-based and glass-ceramic-based end caps 42 with various shapes and sizes are cheaper and require less energy to manufacture when compared to conventional metallised alumina ceramic housings and can be recycled easily by re-melting. The use of glass-based and/or glass-ceramic-based end caps 42 is therefore preferable in terms of economy and environmental concern.
The composition of the glass or glass-ceramic end cap 42 is preferably modified to absorb X-ray radiation emitted by vacuum interrupters during operation to minimise external radiation and thereby provide a safe working environment for those working in the vicinity of the vacuum interrupter.
It is envisaged that in embodiments of the invention the diameter of each end cap 42 may be larger than the diameter of the tubular bellows 30 to shield the tubular bellows 30 from adverse weather conditions or to protect the tubular bellows 30 from being damaged in the event that the vacuum interrupter is dropped during transport.
As shown in
Preferably each rod 40 is substantially cylindrical and the vacuum interrupter is axi-symmetric about the cylindrical axis of each rod 40. The provision of an axi-symmetric vacuum interrupter results in a homogenous distribution of electrical stress about the axis of the cylindrical rods 40 which simplifies the design process of electrical insulation for the vacuum interrupter. In addition, the homogenous distribution of electrical stress minimise the possibility of the development of regions with high electrical stress.
It is also preferable that the various vacuum interrupter components include curved surfaces and have a minimal amount of sharp edges because sharp edges in high voltage equipment typically leads to high electrical stress in the vicinity of the sharp edges. The use of glass-based or glass-ceramic-based end caps 42 is advantageous in this sense because it is straightforward and cheap to form glass-based structures which have the required shape.
The vacuum interrupter may also include a plurality of housing members 56, each housing member 56 being operably connected between the tubular bellows 30 and the respective sub-assembly 34 to define the vacuum-tight enclosure.
In
When two primary annular metallic elements 36 are used to interconnect vacuum interrupter components, each of the two primary annular metallic elements 36 may be machined to closely fit the other primary annular metallic element 36 so as to provide the vacuum interrupter components with self-aligning capacity. These primary annular metallic elements 36 may be brazed to each other to define a brazed joint. It is envisaged that these annular elements 36 may also be welded to each other to define a welded joint.
Each housing member 56 may include at least one groove 44 for retention of each corresponding primary annular metallic element 36.
Each housing member 56 defines first and second housing portions, the first housing portion defining a third hollow bore and being located within the enclosure and the second housing portion being located outside the enclosure. Each housing member 56 may include a shed 58 in the form of an outwardly projecting circumferential portion of the second housing portion, as shown in
Such sheds 58 may be manufactured from glass or glass-ceramic. The shed material may have a lower melting point than the glass and glass-ceramic material used in the corresponding housing members. However, the shed material is selected so that the sheds 58 have thermal properties, such as thermal expansion coefficient, that closely match those of the corresponding housing member 56. The provision of sheds 58 and housing members 56 having similar thermal properties minimises the problem of deteriorating interfacial layers that is typically associated with polymeric sheds attached to alumina ceramic housings.
A shed 58 may be added to a housing member 56 by heating a shed-less vacuum interrupter in an oven up to at least the melting point of the shed material and then pouring the shed material into a mould surrounding the respective housing member.
The lower melting point of the shed material compared to that of the housing member material means that the structure of the housing member 56 is unaffected by the heating process. Additionally, since the vacuum interrupter is sealed to form a vacuum-tight enclosure, the addition of a shed to a housing member 56 does not affect the internal structure of the vacuum interrupter. Subsequent cooling of the vacuum interrupter and removal of the mould results in the formation of a shed 58 on the circumference of the corresponding housing member 56. Such manufacture of sheds 58 is made possible by the use of glass and/or glass-ceramic materials which are straightforward and cheap to process.
The shed formation step may be omitted during the initial manufacturing stage of the vacuum interrupter and sheds may be added to the vacuum interrupter at a later stage, if desired. Such an ability leads to a reduction in costs because it is possible to design a single manufacturing process for vacuum interrupters with and without sheds since the optional shed formation step may be added after the manufacture of the vacuum interrupter.
The omission of shed formation from the initial manufacturing stage of the vacuum interrupter also means that it is possible to accommodate a higher number of vacuum interrupters inside a furnace during the brazing stage. This is because additional vacuum interrupters can occupy space inside the furnace that would otherwise have been occupied by sheds 58 attached to the other vacuum interrupters.
In addition, simultaneous brazing of a high number of vacuum interrupters in sequence increases the efficiency of the vacuum interrupter manufacturing process.
The provision of the plurality of housing members 56 permits the extension of the vacuum interrupter length and thereby increases the potential amount of separation and, therefore, the insulation between the opposed contact surfaces. This leads to an increase in voltage rating and performance of the vacuum interrupter.
The use of housing members 56 is also compatible with the modular construction of the vacuum interrupter since it is possible to design the housing members 56 to have a standard shape and size and to be stackable on top of each other to extend the vacuum interrupter length. The use of standard housing members 56 leads to a reduction in manufacturing cost because there is no need to account for housing members 56 of different lengths when designing the manufacturing process.
The modular nature of the vacuum interrupter is advantageous in that the increased height of the vacuum interrupter typically leads to an increase in instability which can be avoided by using primary annular metallic elements 36 to achieve self-aligning stacking of the housing members 56. The modular nature of the vacuum interrupter also allows interchanging of the positions of the housing members 56 and tubular bellows 30 depending on installation requirements.
In
One of the housing members 56 may include a metallic composition to define an arc containment chamber 62, as shown in
A further embodiment of a vacuum interrupter based on the use of one sub-assembly 34 instead of two sub-assemblies 34 is shown in
An external shield 64 may be provided around the outer walls of the tubular bellows 30, as shown in
Patent | Priority | Assignee | Title |
10818453, | May 05 2017 | Siemens Aktiengesellschaft | Assembly having a gas spring for a cable rotary-pendulum kinematic system and use of the assembly for switching |
Patent | Priority | Assignee | Title |
3166658, | |||
3814882, | |||
4365127, | Nov 26 1979 | Kabushiki Kaishi Meidensha; Kabushiki Kaisha Gemvac | Vacuum power interrupter |
4401868, | Jun 29 1981 | Westinghouse Electric Corp. | Vacuum interrupter with a spacially modulated axial magnetic field contact |
5254817, | Jun 17 1991 | Mitsubishi Denki Kabushiki Kaisha | Vacuum switch tube |
6114647, | Sep 30 1997 | Hitachi, LTD; KUZE BELLOWS KOGYOSHO CO , LTD | Bellows and vacuum switch using the bellows |
8497445, | Oct 20 2005 | FUJI ELECTRIC FA COMPONENTS & SYSTEMS CO , LTD | Vacuum valve |
20070090095, | |||
GB1259501, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 02 2010 | Alstom Technology Ltd. | (assignment on the face of the patent) | / | |||
Aug 01 2012 | PARASHAR, RAMA SHANKAR | Alstom Technology Ltd | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 029018 | /0853 | |
Jul 20 2015 | Alstom Technology Ltd | SUPERGRID INSTITUTE | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 037223 | /0908 |
Date | Maintenance Fee Events |
May 20 2019 | REM: Maintenance Fee Reminder Mailed. |
Nov 04 2019 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Sep 29 2018 | 4 years fee payment window open |
Mar 29 2019 | 6 months grace period start (w surcharge) |
Sep 29 2019 | patent expiry (for year 4) |
Sep 29 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 29 2022 | 8 years fee payment window open |
Mar 29 2023 | 6 months grace period start (w surcharge) |
Sep 29 2023 | patent expiry (for year 8) |
Sep 29 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 29 2026 | 12 years fee payment window open |
Mar 29 2027 | 6 months grace period start (w surcharge) |
Sep 29 2027 | patent expiry (for year 12) |
Sep 29 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |